702
Views
10
CrossRef citations to date
0
Altmetric
Review Articles

Recent trends in nanomaterial-based signal amplification in electrochemical aptasensors

ORCID Icon, ORCID Icon & ORCID Icon
Pages 794-812 | Received 12 May 2020, Accepted 12 Jul 2021, Published online: 10 Oct 2021

References

  • Clark LC, Lyons C. Electrode systems for continuous monitoring in cardiovascular surgery. Ann N Y Acad Sci. 1962;102:29–45.
  • Lim SA, Ahmed MU. Electrochemical immunosensors and their recent nanomaterial-based signal amplification strategies: a review. RSC Adv. 2016;6(30):24995–25014.
  • Iarossi M, Schiattarella C, Rea I, et al. Colorimetric immunosensor by aggregation of photochemically functionalized gold nanoparticles. ACS Omega. 2018;3(4):3805–3812.
  • Lim SA, Ahmed MU. A label free electrochemical immunosensor for sensitive detection of porcine serum albumin as a marker for pork adulteration in raw meat. Food Chem. 2016;206:197–203.
  • Yan S, Foroughi MM, Safaei M, et al. A review: Recent advances in ultrasensitive and highly specific recognition aptasensors with various detection strategies. Int J Biol Macromol. 2020;155:184–207.
  • Rizwan M, Mohd-Naim N, Ahmed M. Trends and advances in electrochemiluminescence nanobiosensors. Sensors. 2018;18(2):166.
  • Ahmed MU, Hossain MM, Safavieh M, et al. Toward the development of smart and low cost point-of-care biosensors based on screen printed electrodes. Crit Rev Biotechnol. 2016;36(3):495–505.
  • Chouler J, Cruz-Izquierdo Á, Rengaraj S, et al. A screen-printed paper microbial fuel cell biosensor for detection of toxic compounds in water. Biosens Bioelectron. 2018;102:49–56.
  • Lee VBC, Mohd-Naim NF, Tamiya E, et al. Trends in paper-based electrochemical biosensors: from design to application. Anal Sci. 2018;34(1):7–18.
  • Wang K, Qian J, Jiang D, et al. Onsite naked eye determination of cysteine and homocysteine using quencher displacement-induced fluorescence recovery of the dual-emission hybrid probes with desired intensity ratio. Biosens Bioelectron. 2015;65:83–90.
  • Song J, Li S, Gao F, et al. An in situ assembly strategy for the construction of a sensitive and reusable electrochemical aptasensor. Chem Commun. 2019;55(7):905–908.
  • Adhikari J, Rizwan M, Keasberry NA, et al. Current progresses and trends in carbon nanomaterials‐based electrochemical and electrochemiluminescence biosensors. J Chin Chem Soc. 2020;67(6):937–960.
  • Mohamad A, Rizwan M, Keasberry NA, et al. Gold-microrods/Pd-nanoparticles/polyaniline-nanocomposite-interface as a peroxidase-mimic for sensitive detection of tropomyosin. Biosens Bioelectron. 2020;155:112108.
  • Schöning MJ, Poghossian A. Label-Free biosensing. Institute of nano- and Biotechnologies Aachen University of applied sciences. Jülich, Germany, Cham, Springer. 2018.
  • Kudłak B, Wieczerzak M. Aptamer based tools for environmental and therapeutic monitoring: a review of developments, applications, future perspectives. Crit Rev Environ Sci Technol. 2020;50(8):816–867.
  • Morales MA, Halpern JM. Guide to selecting a biorecognition element for biosensors. Bioconjug Chem. 2018;29(10):3231–3239.
  • Ellington AD, Szostak JWJW. In vitro selection of RNA molecules that bind specific ligands. Nature. 1990;346(6287):818–822.
  • Tuerk C, Gold L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science. 1990;249(4968):505–510.
  • Mao K, Ma J, Li X, et al. Rapid duplexed detection of illicit drugs in wastewater using gold nanoparticle conjugated aptamer sensors. Sci Total Environ. 2019;688:771–779.
  • Song K-M, Lee S, Ban C. Aptamers and their biological applications. Sensors. 2012;12(1):612–631.
  • Zhao L, Wang Y, Zhao G, et al. Electrochemical aptasensor based on Au@HS-rGO and thymine-Hg2+-thymine structure for sensitive detection of mercury ion. J Electroanal Chem. 2019;848:113308.
  • Stoltenburg R, Reinemann C, Strehlitz B. SELEX-a (r)evolutionary method to generate high-affinity nucleic acid ligands. Biomol Eng. 2007;24(4):381–403.
  • Alsager OA, Alotaibi KM, Alswieleh AM, et al. Colorimetric aptasensor of vitamin D3: a novel approach to eliminate residual adhesion between aptamers and gold nanoparticles. Sci Rep. 2018;8(1):12947.
  • Jia Y, Wu F, Liu P, et al. A label-free fluorescent aptasensor for the detection of aflatoxin B1 in food samples using AIEgens and graphene oxide. Talanta. 2019;198:71–77.
  • Koyun S, Akgönüllü S, Yavuz H, et al. Surface plasmon resonance aptasensor for detection of human activated protein C. Talanta. 2019;194:528–533.
  • Kurup CP, Mohd-Naim NF, Tlili C, et al. A highly sensitive label-free aptasensor based on gold nanourchins and carbon nanohorns for the detection of lipocalin-2 (LCN-2). Anal Sci. 2020;20(1):199.
  • Zhu C, Liu D, Chen Z, et al. An ultra-sensitive aptasensor based on carbon nanohorns/gold nanoparticles composites for impedimetric detection of carbendazim at picogram levels. J Colloid Interface Sci. 2019;546:92–100.
  • Abdul Amir Al-Mokaram AMA, Yahya R, Abdi MM, et al. One-step electrochemical deposition of polypyrrole–chitosan–iron oxide nanocomposite films for non-enzymatic glucose biosensor. Mater Lett. 2016;183:90–93.
  • Azimzadeh M, Rahaie M, Nasirizadeh N, et al. An electrochemical nanobiosensor for plasma miRNA-155, based on graphene oxide and gold nanorod, for early detection of breast cancer. Biosens Bioelectron. 2016;77:99–106.
  • Lu X, Tao L, Li Y, et al. A highly sensitive electrochemical platform based on the bimetallic Pd@Au nanowires network for organophosphorus pesticides detection. Sensors Actuators, B Chem. 2019;284:103–109.
  • Wu L, Xiong E, Zhang X, et al. Nanomaterials as signal amplification elements in DNA-based electrochemical sensing. Nano Today. 2014;9(2):197–211.
  • Sharma R, Ragavan KV, Thakur MS, et al. Recent advances in nanoparticle based aptasensors for food contaminants. Biosens Bioelectron. 2015;74:612–627.
  • Lei J, Ju H. Signal amplification using functional nanomaterials for biosensing. Chem Soc Rev. 2012;41(6):2122–2134.
  • Adhikari J, Keasberry NA, Mahadi AH, et al. An ultra-sensitive label-free electrochemiluminescence CKMB immunosensor using a novel nanocomposite-modified printed electrode. RSC Adv. 2019;9(59):34283–34292.
  • Haldar KK, Biswas R, Patra A, et al. Au/CdSe hybrid nanoflowers: a high photocurrent generating photoelectrochemical cells. Gold Bull. 2019;52(1):1–7.
  • Poma A, Brahmbhatt H, Pendergraff HM, et al. Correction: Generation of novel hybrid aptamer-molecularly imprinted polymeric nanoparticles (adv. Mater. (2015) 27, (740-758)). Adv Mater. 2015;27(9):1478–1478.
  • Rizwan M, Mohd-Naim NF, Keasberry NA, et al. A highly sensitive and label-free electrochemiluminescence immunosensor for beta 2-microglobulin. Anal Methods. 2017;9(17):2570–2577.
  • Ahmed MU, Saaem I, Wu PC, et al. Personalized diagnostics and biosensors: a review of the biology and technology needed for personalized medicine. Crit Rev Biotechnol. 2014;34(2):180–196.
  • Sadighbayan D, Sadighbayan K, Tohid-Kia MR, et al. Development of electrochemical biosensors for tumor marker determination towards cancer diagnosis: recent progress. TrAC Trends Anal Chem. 2019;118:73–88.
  • Ramesh KT. Nanomaterials. Boston, MA: Springer US; 2009.
  • Yang C, Denno ME, Pyakurel P, et al. Recent trends in carbon nanomaterial-based electrochemical sensors for biomolecules: a review. Anal Chim Acta. 2015;887:17–37.
  • Rashidiani J, Eskandari K, Mousavy SJ, et al. Nano-Aptasensor: Strategies and categorizing. Int J Med Rev. 2018;5(2):68–76.
  • Cho IH, Lee J, Kim J, et al. Current technologies of electrochemical immunosensors: Perspective on signal amplification. Sensors (Switzerland). 2018;18(2):207–218.
  • Hui Y, Wang B, Ren R, et al. An electrochemical aptasensor based on DNA-AuNPs-HRP nanoprobes and exonuclease-assisted signal amplification for detection of aflatoxin B1. Food Control. 2020;109:106902.
  • Mousavi Nodoushan S, Nasirizadeh N, Amani J, et al. An electrochemical aptasensor for staphylococcal enterotoxin B detection based on reduced graphene oxide and gold nano-urchins. Biosens Bioelectron. 2019;127:221–228.
  • Mousavi Nodoushan S, Nasirizadeh N, Kachuei R, et al. Electrochemical detection of aflatoxin B1: an aptasensor prepared using graphene oxide and gold nanowires. Anal Methods. 2019;11(47):6033–6042.
  • Si Z, Xie B, Chen Z, et al. Electrochemical aptasensor for the cancer biomarker CEA based on aptamer induced current due to formation of molybdophosphate. Microchim Acta. 2017;184(9):3215–3221.
  • Florea A, Taleat Z, Cristea C, et al. Label free MUC1 aptasensors based on electrodeposition of gold nanoparticles on screen printed electrodes. Electrochem Commun. 2013;33:127–130.
  • Hassani S, Maqbool F, Salek-Maghsoudi A, et al. Alteration of hepatocellular antioxidant gene expression pattern and biomarkers of oxidative damage in diazinon-induced acute toxicity in wistar rat: a time-course mechanistic study. Excli J. 2018;17:57–71.
  • Jokar M, Safaralizadeh MH, Hadizadeh F, et al. Apta-nanosensor preparation and in vitro assay for rapid diazinon detection using a computational molecular approach. J Biomol Struct Dyn. 2017;35(2):343–353.
  • Hassani S, Akmal MR, Salek-Maghsoudi A, et al. Novel label-free electrochemical aptasensor for determination of diazinon using gold nanoparticles-modified screen-printed gold electrode. Biosens Bioelectron. 2018;120:122–128.
  • Negahdary M, Heli H. An ultrasensitive electrochemical aptasensor for early diagnosis of Alzheimer's disease, using a fern leaves-like gold nanostructure. Talanta. 2019;198:510–517.
  • Geleta GS, Zhao Z, Wang Z. A novel reduced graphene oxide/molybdenum disulfide/polyaniline nanocomposite-based electrochemical aptasensor for detection of aflatoxin B1. Analyst. 2018;143(7):1644–1649.
  • Peng G, Li X, Cui F, et al. Aflatoxin B1 electrochemical aptasensor based on tetrahedral DNA nanostructures functionalized three dimensionally ordered macroporous MoS2-AuNPs Film. ACS Appl Mater Interfaces. 2018;10(21):17551–17559.
  • Gulati P, Mishra P, Khanuja M, et al. Nano-moles detection of tumor speci fi c biomarker DNA for colorectal cancer detection using vertically aligned multi-wall carbon nanotubes based fl exible electrodes. Process Biochem. 2020;90:184–192.
  • Muniandy S, Teh SJ, Appaturi JN, et al. A reduced graphene oxide-titanium dioxide nanocomposite based electrochemical aptasensor for rapid and sensitive detection of Salmonella enterica. Bioelectrochemistry. 2019;127:136–144.
  • Wang L, Wu A, Wei G. Graphene-based aptasensors: from molecule-interface interactions to sensor design and biomedical diagnostics. Analyst. 2018;143(7):1526–1543.
  • Biju V. Chemical modifications and bioconjugate reactions of nanomaterials for sensing, imaging, drug delivery and therapy. Chem Soc Rev. 2014;43(3):744–764.
  • Amiri M, Nekoueian K, Saberi RS. Graphene-family materials in electrochemical aptasensors. Anal Bioanal Chem. 2021;413(3):673–699.
  • Arumugasamy SK, Govindaraju S, Yun K. Electrochemical sensor for detecting dopamine using graphene quantum dots incorporated with multiwall carbon nanotubes. Appl Surf Sci. 2020;508:145294.
  • Ping J, Zhou Y, Wu Y, et al. Recent advances in aptasensors based on graphene and graphene-like nanomaterials. Biosens Bioelectron. 2015;64:373–385.
  • Wang Z, Yu J, Gui R, et al. Carbon nanomaterials-based electrochemical aptasensors. Biosens Bioelectron. 2016;79:136–149.
  • Wei M, Yue S, Zhang W, et al. Development of an electrochemical aptasensor using Au octahedra and graphene for signal amplification. Anal Methods. 2020;12(3):317–323.
  • Liu M, Yu J, Ding X, et al. Photoelectrochemical aptasensor for the sensitive detection of Microcystin-LR based on graphene functionalized vertically-aligned TiO2 nanotubes. Electroanalysis. 2016;28(1):161–168.
  • Zhang G, Liu Z, Fan L, et al. Electrochemical prostate specific antigen aptasensor based on hemin functionalized graphene-conjugated palladium nanocomposites. Microchim Acta. 2018;185(3):1–8.
  • You H, Mu Z, Zhao M, et al. Voltammetric aptasensor for sulfadimethoxine using a nanohybrid composed of multifunctional fullerene, reduced graphene oxide and Pt@Au nanoparticles, and based on direct electron transfer to the active site of glucose oxidase. Mikrochim Acta. 2019;186(1):1–8.
  • Yin J, Guo W, Qin X, et al. A sensitive electrochemical aptasensor for highly specific detection of streptomycin based on the porous carbon nanorods and multifunctional graphene nanocomposites for signal amplification. Sensors Actuators B Chem. 2017;241:151–159.
  • Rezaei B, Jamei HR, Asghar A. An ultrasensitive and selective electrochemical aptasensor based on rGO-MWCNTs/Chitosan/carbon quantum dot for the detection of lysozyme. Biosens Bioelectron. 2018;115:37–44.
  • Fang S, Dong X, Ji H, et al. Electrochemical aptasensor for lysozyme based on a gold electrode modified with a nanocomposite consisting of reduced graphene oxide, cuprous oxide, and plasma-polymerized propargylamine. Microchim Acta. 2016;183(2):633–642.
  • Rezaei B, Jamei HR, Ensafi AA. Lysozyme aptasensor based on a glassy carbon electrode modified with a nanocomposite consisting of multi-walled carbon nanotubes, poly(diallyl dimethyl ammonium chloride) and carbon quantum dots. Mikrochim Acta. 2018;185(3):180.
  • Hernández-Ibáñez N, García-Cruz L, Montiel V, et al. Electrochemical lactate biosensor based upon chitosan/carbon nanotubes modified screen-printed graphite electrodes for the determination of lactate in embryonic cell cultures. Biosens Bioelectron. 2016;77:1168–1174.
  • Sireesha M, Jagadeesh Babu V, Kranthi Kiran AS, et al. Review on carbon nanotubes in biosensor devices and their applications in medicine. Nanocomposites. 2018;4(2):36–57.
  • Beiranvand ZS, Abbasi AR, Dehdashtian S, et al. Aptamer-based electrochemical biosensor by using Au-Pt nanoparticles, carbon nanotubes and acriflavine platform. Anal Biochem. 2017;518:35–45.
  • Khonsari YN, Sun S. A novel label free electrochemiluminescent aptasensor for the detection of lysozyme. Mater Sci Eng C. 2019;96:146–152.
  • Shahdost-Fard F, Roushani M. Designing an ultra-sensitive aptasensor based on an AgNPs/thiol-GQD nanocomposite for TNT detection at femtomolar levels using the electrochemical oxidation of rutin as a redox probe. Biosens Bioelectron. 2017;87:724–731.
  • Sweetman MJ, Hickey SM, Brooks DA, et al. A practical guide to prepare and synthetically modify graphene quantum dots. Adv Funct Mater. 2019;29:1–18.
  • Yang Y, Yang Z, Lv J, et al. Thrombin aptasensor enabled by Pt nanoparticles-functionalized Co-based metal organic frameworks assisted electrochemical signal amplification. Talanta. 2017;169:44–49.
  • Su F, Zhang S, Ji H, et al. Two-dimensional zirconium-based metal-organic framework nanosheet composites embedded with Au nanoclusters: a highly sensitive electrochemical aptasensor toward detecting cocaine. ACS Sens. 2017;2(7):998–1005.
  • Liu X, Qin Y, Deng C, et al. A simple and sensitive impedimetric aptasensor for the detection of tumor markers based on gold nanoparticles signal amplification. Talanta. 2015;132:150–154.
  • Chen Z, Lai G, Liu S, et al. Ultrasensitive electrochemical aptasensing of kanamycin antibiotic by enzymatic signal amplification with a horseradish peroxidase-functionalized gold nanoprobe. Sensors Actuators B Chem. 2018;273:1762–1767.
  • Alizadeh N, Salimi A, Hallaj R. Hemin/G-Quadruplex horseradish Peroxidase-Mimicking DNAzyme: Principle and biosensing application. In: Seitz H, Stahl F, Walter J-G, editors. Catalytically active nucleic acids. Cham: Springer International Publishing; 2020. p. 85–106.
  • Yang Z-H, Zhuo Y, Yuan R, et al. Amplified thrombin aptasensor based on alkaline phosphatase and hemin/G-Quadruplex-Catalyzed oxidation of 1-Naphthol. ACS Appl Mater Interfaces. 2015;7(19):10308–10315.
  • Chu Y, Wang H, Ma H, et al. Sandwich-type electrochemical immunosensor for ultrasensitive detection of prostate-specific antigen using palladium-doped cuprous oxide nanoparticles. RSC Adv. 2016;6(88):84698–84704.
  • Chen S, Liu P, Su K, et al. Electrochemical aptasensor for thrombin using co-catalysis of hemin/G-quadruplex DNAzyme and octahedral Cu2O-Au nanocomposites for signal amplification. Biosens Bioelectron. 2018;99:338–345.
  • Fu X, Liu Z, Cai S, et al. Electrochemical aptasensor for the detection of vascular endothelial growth factor (VEGF) based on DNA-templated Ag/Pt bimetallic nanoclusters. Chinese Chem Lett. 2016;27(6):920–926.
  • Farzin L, Shamsipur M, Samandari L, et al. Advances in the design of nanomaterial-based electrochemical affinity and enzymatic biosensors for metabolic biomarkers: a review. Mikrochim Acta. 2018;185(5):276.
  • Zhao W-W, Xu J-J, Chen H-Y. Photoelectrochemical enzymatic biosensors. Biosens Bioelectron. 2017;92:294–304.
  • Mohamad A, Teo H, Keasberry NA, et al. Critical reviews in biotechnology recent developments in colorimetric immunoassays using nanozymes and plasmonic nanoparticles. Crit Rev Biotechnol. 2018;2019:1–17.
  • Aghayan M, Mahmoudi A, Nazari K, et al. Fe(III) porphyrin metal–organic framework as an artificial enzyme mimics and its application in biosensing of glucose and H2O2. J Porous Mater. 2019;26(5):1507–1521.
  • Wang T, Fan X, Hou C, et al. Design of artificial enzymes by supramolecular strategies. Curr Opin Struct Biol. 2018;51:19–27.
  • Wei H, Wang E. Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes. Chem Soc Rev. 2013;42(14):6060–6093.
  • Zhang Q-W, Elemans JAAW, White PB, et al. A manganese porphyrin-α-cyclodextrin conjugate as an artificial enzyme for the catalytic epoxidation of polybutadiene. Chem Commun (Camb). 2018;54(44):5586–5589.
  • Wu J, Wang X, Wang Q, et al. Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes (II). Chem Soc Rev. 2019;48(4):1004–1076.
  • You H, Bai L, Yuan Y, et al. An amperometric aptasensor for ultrasensitive detection of sulfadimethoxine based on exonuclease-assisted target recycling and new signal tracer for amplification. Biosens Bioelectron. 2018;117:706–712.
  • Zhou Y, Yin H, Wang Y, et al. Electrochemical aptasensors for zeatin detection based on MoS2 nanosheets and enzymatic signal amplification. Analyst. 2018;143(21):5185–5190.
  • Shah K, Bhagat S, Varade D, et al. Novel synthesis of polyoxyethylene cholesteryl ether coated Fe-Pt nanoalloys: a multifunctional and cytocompatible bimetallic alloy exhibiting intrinsic chemical catalysis and biological enzyme-like activities. Colloids Surfaces A Physicochem Eng Asp. 2018;553:50–57.
  • Fu X, He J, Zhang C, et al. Trimetallic signal amplification aptasensor for TSP-1 detection based on Ce-MOF@Au and AuPtRu nanocomposites. Biosens Bioelectron. 2019;132:302–309.
  • Liu S, Lai G, Zhang H, et al. Amperometric aptasensing of chloramphenicol at a glassy carbon electrode modified with a nanocomposite consisting of graphene and silver nanoparticles. Microchim Acta. 2017;184(5):1445–1451.
  • Lv JJ, Yang ZH, Zhuo Y, et al. A novel aptasensor for thrombin detection based on alkaline phosphatase decorated ZnO/Pt nanoflowers as signal amplifiers. Analyst. 2015;140(24):8088–8091.
  • Zheng C, Zheng A-X, Liu B, et al. One-pot synthesized DNA-templated Ag/Pt bimetallic nanoclusters as peroxidase mimics for colorimetric detection of thrombin. Chem Commun (Camb). 2014;50(86):13103–13106.
  • Kwon OS, Park SJ, Jang J. A high-performance VEGF aptamer functionalized polypyrrole nanotube biosensor. Biomaterials. 2010;31(17):4740–4747.
  • Lv Z, Wang K, Zhang X. A new electrochemical aptasensor for the analysis of the vascular endothelial growth factor. J Immunoassay Immunochem. 2014;35(3):233–240.
  • Heydari-Bafrooei E, Amini M, Ardakani MH. An electrochemical aptasensor based on TiO2/MWCNT and a novel synthesized schiff base nanocomposite for the ultrasensitive detection of thrombin. Biosens Bioelectron. 2016;85:828–836.
  • Cui HF, Zhang TT, Lv QY, et al. An acetylcholinesterase biosensor based on doping Au nanorod@SiO2 nanoparticles into TiO2-chitosan hydrogel for detection of organophosphate pesticides. Biosens Bioelectron. 2019;141:111452.
  • Wang X, Xia X, Zhang X, et al. Nonenzymatic glucose sensor based on Ag&Pt hollow nanoparticles supported on TiO2 nanotubes. Mater Sci Eng C Mater Biol Appl. 2017;80:174–179.
  • Li L, Liu X, Yang L, et al. Amplified oxygen reduction signal at a Pt-Sn-modified TiO2 nanocomposite on an electrochemical aptasensor. Biosens Bioelectron. 2019;142:111525.
  • Wu L, Xiong E, Yao Y, et al. A new electrochemical aptasensor based on electrocatalytic property of graphene toward ascorbic acid oxidation. Talanta. 2015;134:699–704.
  • Qiao X, Xia F, Tian D, et al. Ultrasensitive “signal-on” electrochemical aptasensor for assay of acetamiprid residues based on copper-centered metal-organic frameworks. Anal Chim Acta. 2019;1050:51–59.
  • Xue J, Liu J, Wang C, et al. Simultaneous electrochemical detection of multiple antibiotic residues in milk based on aptamers and quantum dots. Anal Methods. 2016;8(9):1981–1988.
  • Kokkinos C, Economou A. Emerging trends in biosensing using stripping voltammetric detection of metal-containing nanolabels – A review. Anal Chim Acta. 2017;961:12–32.
  • Bai L, Chen Y, Bai Y, et al. Fullerene-doped polyaniline as new redox nanoprobe and catalyst in electrochemical aptasensor for ultrasensitive detection of Mycobacterium tuberculosis MPT64 antigen in human serum. Biomaterials. 2017;133:11–19.
  • Li F, Wang X, Sun X, et al. Multiplex electrochemical aptasensor for detecting multiple antibiotics residues based on carbon fiber and mesoporous carbon-gold nanoparticles. Sensors Actuators B Chem. 2018;265:217–226.
  • Wilcoxon JP, Abrams BL. Synthesis, structure and properties of metal nanoclusters. Chem Soc Rev. 2006;35(11):1162–1194.
  • Latorre A, Somoza Á. DNA-Mediated silver nanoclusters: Synthesis. Propert Appl. 2012;13(7):951–958.
  • Rotaru A, Dutta S, Jentzsch E, et al. Selective dsDNA-Templated formation of copper nanoparticles in solution. Angew Chem Int Ed Engl. 2010;49(33):5665–5667.
  • Wang Y, Zhang X, Zhao L, et al. Integrated amplified aptasensor with in-situ precise preparation of copper nanoclusters for ultrasensitive electrochemical detection of microRNA 21. Biosens Bioelectron. 2017;98:386–391.
  • Chen G-Z, Yin Z-Z, Lou J-F. Electrochemical immunoassay of Escherichia coli O157:H7 using Ag@SiO 2 nanoparticles as labels. J Anal Methods Chem. 2014;2014:1–7.
  • Qin B, Yang K. Voltammetric aptasensor for thrombin by using a gold microelectrode modified with graphene oxide decorated with silver nanoparticles. Microchim Acta. 2018;185(9):1–9.
  • Gao F, Du L, Zhang Y, et al. A sensitive sandwich-type electrochemical aptasensor for thrombin detection based on platinum nanoparticles decorated carbon nanocages as signal labels. Biosens Bioelectron. 2016;86:185–193.
  • Wu Y, Zou L, Lei S, et al. Highly sensitive electrochemical thrombin aptasensor based on peptide-enhanced electrocatalysis of hemin/G-quadruplex and nanocomposite as nanocarrier. Biosens Bioelectron. 2017;97:317–324.
  • Zhang J, Yang K, Chen L. In situ deposition of silver nanoparticles on polydopamine nanospheres for an ultrasensitive electrochemical aptasensor of ochratoxin A. J Electrochem Soc. 2019;166(6):H182–6.
  • Suaifan GARY, Alhogail S, Zourob M. Rapid and low-cost biosensor for the detection of Staphylococcus aureus. Biosens Bioelectron. 2017;90:230–237.
  • Ye W, Xu Y, Zheng L, et al. A nanoporous alumina membrane based electrochemical biosensor for histamine determination with biofunctionalized magnetic nanoparticles concentration and signal amplification. Sensors (Switzerland). 2016;16(10):1767.
  • Zhang M, Zheng J, Wang J, et al. Direct electrochemistry of cytochrome c immobilized on one dimensional Au nanoparticles functionalized magnetic N-doped carbon nanotubes and its application for the detection of H2O2. Sensors Actuators, B Chem. 2019;282:85–95.
  • Lee C, Wu L, Chou T, et al. Sensors and actuators B: Chemical functional magnetic nanoparticles – assisted electrochemical biosensor for eosinophil cationic protein in cell culture. Sensors Actuators B Chem. 2018;257:672–677.
  • Bahreyni A, Tahmasebi S, Ramezani M, et al. A novel fluorescent aptasensor for sensitive detection of PDGF-BB protein based on a split complementary strand of aptamer and magnetic beads. Sensors Actuators, B Chem. 2019;280:10–15.
  • Zhang Y, Xia J, Zhang F, et al. Ultrasensitive label-free homogeneous electrochemical aptasensor based on sandwich structure for thrombin detection. Sensors Actuators B Chem. 2018;267:412–418.
  • Wu D, Wang Y, Zhang Y, et al. Facile fabrication of an electrochemical aptasensor based on magnetic electrode by using streptavidin modified magnetic beads for sensitive and specific detection of Hg(2.). Biosens Bioelectron. 2016;82:9–13.
  • Jahanbani S, Benvidi A. Comparison of two fabricated aptasensors based on modified carbon paste/oleic acid and magnetic bar carbon paste/Fe3O4@oleic acid nanoparticle electrodes for tetracycline detection. Biosens Bioelectron. 2016;85:553–562.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.