3,568
Views
7
CrossRef citations to date
0
Altmetric
Review Articles

Membrane bioreactors for syngas permeation and fermentation

, , , &
Pages 856-872 | Received 27 Jan 2021, Accepted 04 Jul 2021, Published online: 15 Sep 2021

References

  • Phillips JR, Huhnke RL, Atiyeh HK. Syngas fermentation: a microbial conversion process of gaseous substrates to various products. Fermentation. 2017;3(2):28.
  • Daniell J, Köpke M, Simpson S. Commercial biomass syngas fermentation. Energies. 2012;5(12):5372–5417.
  • Takors R, Kopf M, Mampel J, et al. Using gas mixtures of CO, CO2 and H2 as microbial substrates: the dos and don’ts of successful technology transfer from laboratory to production scale. Microb Biotechnol. 2018;11(4):606–625.
  • Köpke M, Simpson SD. Pollution to products: recycling of ‘above ground’ carbon by gas fermentation. Curr Opin Biotechnol. 2020;65:180–189.
  • Redl S, Diender M, Jensen TØ, et al. Exploiting the potential of gas fermentation. Ind Crops Prod. 2017;106:21–30.
  • Bengelsdorf FR, Beck MH, Erz C, et al. Bacterial anaerobic synthesis gas (syngas) and CO2+H2 fermentation. In: Sariaslani S, Gadd GM, editors. Advances in applied microbiology. Vol. 103. Cambridge (MA): Academic Press; 2018. p. 143–221.
  • Liew F, Martin ME, Tappel RC, et al. Gas fermentation-a flexible platform for commercial scale production of low-carbon-fuels and chemicals from waste and renewable feedstocks. Front Microbiol. 2016;7:694.
  • Straathof AJJ. Transformation of biomass into commodity chemicals using enzymes or cells. Chem Rev. 2014;114(3):1871–1908.
  • Abubackar HN, Veiga MC, Kennes C. Biological conversion of carbon monoxide: rich syngas or waste gases to bioethanol. Biofuels, Bioprod Bioref. 2011;5(1):93–114.
  • Munasinghe PC, Khanal SK. Syngas fermentation to biofuel: evaluation of carbon monoxide mass transfer coefficient (kLa) in different reactor configurations. Biotechnol Prog. 2010;26(6):1616–1621.
  • Orgill JJ, Atiyeh HK, Devarapalli M, et al. A comparison of mass transfer coefficients between trickle-bed, hollow fiber membrane and stirred tank reactors. Bioresour Technol. 2013;133:340–346.
  • Bredwell MD, Srivastava P, Worden RM. Reactor design issues for synthesis-gas fermentations. Biotechnol Prog. 1999;15(5):834–844.
  • Munasinghe PC, Khanal SK. Syngas fermentation to biofuel: evaluation of carbon monoxide mass transfer and analytical modeling using a composite hollow fiber (CHF) membrane bioreactor. Bioresour Technol. 2012;122:130–136.
  • Yasin M, Jeong Y, Park S, et al. Microbial synthesis gas utilization and ways to resolve kinetic and mass-transfer limitations. Bioresour Technol. 2015;177:361–374.
  • Ebrahimi S, Kleerebezem R, Kreutzer MT, et al. Potential application of monolith packed columns as bioreactors, control of biofilm formation. Biotechnol Bioeng. 2006;93(2):238–245.
  • Asimakopoulos K, Gavala HN, Skiadas IV. Reactor systems for syngas fermentation processes: a review. Chem Eng J. 2018;348:732–744.
  • Ylitervo P, Akinbomi J, Taherzadeh MJ. Membrane bioreactors’ potential for ethanol and biogas production: a review. Environ Technol. 2013;34(13–16):1711–1723.
  • Charcosset C. Membrane processes in biotechnology: an overview. Biotechnol Adv. 2006;24(5):482–492.
  • Yang M-C, Cussler EL. Designing hollow-fiber contactors. AIChE J. 1986;32(11):1910–1916.
  • Kartohardjono S, Chen V. Mass transfer and fluid hydrodynamics in sealed end hydrophobic hollow fiber membrane gas-liquid contactors. J Appl Membr Sci Technol. 2005;2(1):1–12.
  • Kumar A, Dewulf J, Van Langenhove H. Membrane-based biological waste gas treatment. Chem Eng J. 2008;136(2–3):82–91.
  • Reij MW, Keurentjes JTF, Hartmans S. Membrane bioreactors for waste gas treatment. J Biotechnol. 1998;59(3):155–167. doi:(97)00169-7.
  • Stanojević M, Lazarević B, Radić D. Review of membrane contactors designs and applications of different modules in industry. FME Transact. 2003;31(2):91–98.
  • Shen Y, Brown R, Wen Z. Syngas fermentation of clostridium carboxidivoran P7 in a hollow fiber membrane biofilm reactor: evaluating the mass transfer coefficient and ethanol production performance. Biochem Eng J. 2014;85:21–29.
  • Drioli E, Criscuoli A, Curcio E. Membrane contactors: fundamentals, applications and potentialities. Vol. 11. Amsterdam (The Netherlands): Elsevier; 2006.
  • Ismail AF, Khulbe KC, Matsuura T. Gas separation membranes. Vol. 7. New York (NY): Springer; 2015.
  • Zhou H, Jin W. Membranes with intrinsic micro-porosity: structure, solubility, and applications. Membranes. 2018;9(1):3.
  • Zhao S, Feron PHM, Deng L, et al. Status and progress of membrane contactors in post-combustion carbon capture: a state-of-the-art review of new developments. J Membr Sci. 2016;511:180–206.
  • Gabelman A, Hwang S-T. Hollow fiber membrane contactors. J Membr Sci. 1999;159(1–2):61–106.
  • Feron PHM, Jansen AE. CO2 separation with polyolefin membrane contactors and dedicated absorption liquids: performances and prospects. Sep Purif Technol. 2002;27(3):231–242.
  • Casey E, Glennon B, Hamer G. Review of membrane aerated biofilm reactors. Resour Conserv Recycl. 1999;27(1–2):203–215. doi:(99)00007-5.
  • Mallevialle J, Odendaal PE, Wiesner MR, et al. Water treatment membrane processes. New York (NY): McGraw-Hill; 1996.
  • Sridhar S, Smitha B, Aminabhavi TM. Separation of carbon dioxide from natural gas mixtures through polymeric membranes—a review. Separat Purific Rev. 2007;36(2):113–174.
  • Resnick PR, Buck WH. Teflon® AF: a family of amorphous fluoropolymers with extraordinary properties. In: Hougham G, Cassidy PE, Johns K, editors. Fluoropolymers 2: properties. Boston (MA): Springer US; 1999. p. 25–33.
  • Merkel TC, Gupta RP, Turk BS, et al. Mixed-gas permeation of syngas components in poly(dimethylsiloxane) and poly(1-trimethylsilyl-1-propyne) at elevated temperatures. J Membr Sci. 2001;191(1–2):85–94. doi:(01)00452-5.
  • Voss MA, Ahmed T, Semmens MJ. Long-term performance of parallel-flow, bubbleless, hollow-fiber-membrane aerators. Water Environ Res. 1999;71(1):23–30.
  • Ahmed T, Semmens MJ. Use of sealed end hollow fibers for bubbleless membrane aeration: experimental studies. J Membr Sci. 1992;69(1–2):1–10.
  • Wang Z, Dong S, Li N, et al. CO2-selective membranes: how easy is their moving from laboratory to industrial scale? In: Basile A, Favvas EP, editors. Current trends and future developments on (bio-) membranes. Amsterdam (The Netherlands): Elsevier; 2018. p. 75–102.
  • Pinnau I. MEMBRANE SEPARATIONS | membrane preparation. In: Wilson ID, editor. Encyclopedia of separation science. Oxford (UK): Academic Press; 2000. p. 1755–1764.
  • Bazhenov DS, Bildyukevich VA, Volkov VA. Gas-liquid hollow fiber membrane contactors for different applications. Fibers. 2018;6(4):76.
  • Wan CF, Yang T, Lipscomb GG, et al. Design and fabrication of hollow fiber membrane modules. J Membr Sci. 2017;538:96–107.
  • Orgill JJ, Abboud MC, Atiyeh HK, et al. Measurement and prediction of mass transfer coefficients for syngas constituents in a hollow fiber reactor. Bioresour Technol. 2019;276:1–7.
  • Yasin M, Park S, Jeong Y, et al. Effect of internal pressure and gas/liquid interface area on the CO mass transfer coefficient using hollow fibre membranes as a high mass transfer gas diffusing system for microbial syngas fermentation. Bioresour Technol. 2014;169:637–643.
  • Jang N, Yasin M, Kang H, et al. Bubble coalescence suppression driven carbon monoxide (CO)-water mass transfer increase by electrolyte addition in a hollow fiber membrane bioreactor (HFMBR) for microbial CO conversion to ethanol. Bioresour Technol. 2018;263:375–384.
  • Ferreira BS, Fernandes HL, Reis A, et al. Microporous hollow fibres for carbon dioxide absorption: mass transfer model fitting and the supplying of carbon dioxide to microalgal cultures. J Chem Technol Biotechnol. 1998;71(1):61–70.
  • Lee P-H, Ni S-Q, Chang S-Y, et al. Enhancement of carbon monoxide mass transfer using an innovative external hollow fiber membrane (HFM) diffuser for syngas fermentation: experimental studies and model development. Chem Eng J. 2012;184:268–277.
  • Zhao Y, Haddad M, Cimpoia R, et al. Performance of a Carboxydothermus hydrogenoformans-immobilizing membrane reactor for syngas upgrading into hydrogen. Int J Hydrogen Energy. 2013;38(5):2167–2175.
  • Anggraini ID, Keryanti M, Purwadi R, et al. Bioethanol production via syngas fermentation of Clostridium ljungdahlii in a hollow fiber membrane supported bioreactor. IJTech. 2019;10(3):481–490.
  • Zhang F, Ding J, Zhang Y, et al. Fatty acids production from hydrogen and carbon dioxide by mixed culture in the membrane biofilm reactor. Water Res. 2013;47(16):6122–6129.
  • Zhang F, Ding J, Shen N, et al. In situ hydrogen utilization for high fraction acetate production in mixed culture hollow-fiber membrane biofilm reactor. Appl Microbiol Biotechnol. 2013;97(23):10233–10240.
  • Wang H-J, Dai K, Xia X-Y, et al. Tunable production of ethanol and acetate from synthesis gas by mesophilic mixed culture fermentation in a hollow fiber membrane biofilm reactor. J Cleaner Prod. 2018;187:165–170.
  • Shen N, Dai K, Xia X-Y, et al. Conversion of syngas (CO and H2) to biochemicals by mixed culture fermentation in mesophilic and thermophilic hollow-fiber membrane biofilm reactors. J Cleaner Prod. 2018;202:536–542.
  • Wang Y-Q, Yu S-J, Zhang F, et al. Enhancement of acetate productivity in a thermophilic (55 °C) hollow-fiber membrane biofilm reactor with mixed culture syngas (H2/CO2) fermentation. Appl Microbiol Biotechnol. 2017;101(6):2619–2627.
  • Tsai S-P, Datta R, Basu R, et al. inventors; Synata Bio Inc., assignee. Syngas conversion system using asymmetric membrane and anaerobic microorganism. US patent 8,329,456 B2. 2012.
  • Luo G, Wang W, Angelidaki I. Anaerobic digestion for simultaneous sewage sludge treatment and CO biomethanation: process performance and microbial ecology. Environ Sci Technol. 2013;47(18):10685–10693.
  • Perez-Calleja P, Aybar M, Picioreanu C, et al. Periodic venting of MABR lumen allows high removal rates and high gas-transfer efficiencies. Water Res. 2017;121:349–360.
  • Semmens MJ. Alternative MBR configurations: using membranes for gas transfer. Desalination. 2008;231(1–3):236–242.
  • Fang Y, Novak PJ, Hozalski RM, et al. Condensation studies in gas permeable membranes. J Membr Sci. 2004;231(1–2):47–55.
  • Chen H, Zhao L, Hu S, et al. High-rate production of short-chain fatty acids from methane in a mixed-culture membrane biofilm reactor. Environ Sci Technol Lett. 2018;5(11):662–667.
  • Whiteley M, Diggle SP, Greenberg EP. Progress in and promise of bacterial quorum sensing research. Nature. 2017;551(7680):313–320.
  • Hickey R, Datta R, Tsai S-P, et al. inventors; Synata Bio Inc., assignee. Membrane supported bioreactor for conversion of syngas components to liquid products. US patent 8,828,692. 2014.
  • Nerenberg R. The membrane-biofilm reactor (MBfR) as a counter-diffusional biofilm process. Curr Opin Biotechnol. 2016;38:131–136.
  • Zetty Arenas AM. Towards enhanced second-generation n-butanol production from sugarcane [doctoral thesis]. Delft (The Netherlands): Delft University of Technology; 2019.
  • Wang Z-W, Chen S. Potential of biofilm-based biofuel production [journal article. Appl Microbiol Biotechnol. 2009;83(1):1–18.
  • Philips J, Rabaey K, Lovley DR, et al. Biofilm formation by Clostridium ljungdahlii is induced by sodium chloride stress: experimental evaluation and transcriptome analysis. PLoS One. 2017;12(1):e0170406.
  • Pantaléon V, Bouttier S, Soavelomandroso AP, et al. Biofilms of clostridium species. Anaerobe. 2014;30:193–198.
  • Almeida Benalcázar E, Noorman H, Maciel Filho R, et al. Modeling ethanol production through gas fermentation: a biothermodynamics and mass transfer-based hybrid model for microbial growth in a large-scale bubble column bioreactor. Biotechnol Biofuels. 2020;13(1):59.