698
Views
0
CrossRef citations to date
0
Altmetric
Review Articles

Envisioning role of ammonia oxidizing bacteria in bioenergy production and its challenges: a review

, &
Pages 931-952 | Received 01 Feb 2021, Accepted 21 Aug 2021, Published online: 12 Oct 2021

References

  • Huang K, Xia H, Cui G, et al. Effects of earthworms on nitrification and ammonia oxidizers in vermicomposting systems for recycling of fruit and vegetable wastes. Sci Total Environ. 2017;578:337–345.
  • Zhang X, Liang Y, Ma Y, et al. Ammonia removal and microbial characteristics of partial nitrification in biofilm and activated sludge treating low strength sewage at low temperature. Ecol Eng. 2016;93:104–111
  • Hendrickx L, De Wever H, Hermans V, et al. Microbial ecology of the closed artificial ecosystem MELiSSA (micro-ecological life support system alternative): reinventing and compartmentalizing the Earth's food and oxygen regeneration system for long-haul space exploration missions. Res Microbiol. 2006;157(1):77–86.
  • Xia L, Li X, Fan W, et al. Heterotrophic nitrification and aerobic denitrification by a novel Acinetobacter sp. ND7 isolated from municipal activated sludge. Bioresour Technol. 2020;301:122749.
  • Yang L, Wang XH, Cui S, et al. Simultaneous removal of nitrogen and phosphorous by heterotrophic nitrification-aerobic denitrification of a metal resistant bacterium Pseudomonas putida strain NP5. Bioresour Technol. 2019;285:121360.
  • Ali SMH, Lenzen M, Sack F, et al. Electricity generation and demand flexibility in wastewater treatment plants: benefits for 100% renewable electricity grids. Appl Energ. 2020;268:114960.
  • Xie Z, Chen H, Zheng P, et al. Influence and mechanism of dissolved oxygen on the performance of ammonia-oxidation microbial fuel cell. Int J Hydrog Energ. 2013;38(25):10607–10615.
  • Liao C, Wu J, Zhou L, et al. Repeated transfer enriches highly active electrotrophic microbial consortia on biocathodes in microbial fuel cells. Biosens Bioelectron. 2018;121:118–124.
  • Taher E, Chandran K. High-rate, high-yield production of methanol by ammonia-oxidizing bacteria. Environ Sci Technol. 2013;47(7):3167–3173.
  • Campbell BJ, Engel AS, Porter ML, et al. The versatile epsilon-proteobacteria: key players in sulphidic habitats. Nat Rev Microbiol. 2006;4(6):458–468.
  • Větrovský T, Baldrian P. The variability of the 16S rRNA gene in bacterial genomes and its consequences for bacterial community analyses. PLOS One. 2013;8(2):e57923.
  • Chistoserdova L, Kalyuzhnaya MG, Lidstrom ME. The expanding world of methylotrophic metabolism. Annu Rev Microbiol. 2009;63:477–499.
  • Chitapornpan S, Chiemchaisri C, Chiemchaisri W, et al. Organic carbon recovery and photosynthetic bacteria population in an anaerobic membrane photo-bioreactor treating food processing wastewater. Bioresour Technol. 2013;141:65–74.
  • Le PT, Pontarotti P, Raoult D. Alphaproteobacteria species as a source and target of lateral sequence transfers. Trends Microbiol. 2014;22(3):147–156.
  • Vilar-Sanz A, Pous N, Puig S, et al. Denitrifying nirK-containing alphaproteobacteria exhibit different electrode driven nitrite reduction capacities. Bioelectrochemistry. 2018;121:74–83.
  • Deutzmann JS, Hoppert M, Schink B. Characterization and phylogeny of a novel methanotroph, Methyloglobulus morosus gen. nov., spec. nov. Syst Appl Microbiol. 2014;37(3):165–169.
  • Xu S, Yao J, Ainiwaer M, et al. Analysis of bacterial community structure of activated sludge from wastewater treatment plants in winter. Biomed Res Int. 2018;2018:8278970.
  • Stolyar S, Costello AM, Peeples TL, et al. Role of multiple gene copies in particulate methane monooxygenase activity in the methane-oxidizing bacterium Methylococcus capsulatus Bath. Microbiology. 1999;145( Pt 5):1235–1244.
  • Hüpeden J, Wemheuer B, Indenbirken D, et al. Taxonomic and functional profiling of nitrifying biofilms in freshwater, brackish and marine RAS biofilters. Aquac Eng. 2020;90:102094.
  • Utåker JB, Nes IF. A qualitative evaluation of the published oligonucleotides specific for the 16S rRNA gene sequences of the ammonia-oxidizing bacteria. Sys Appl Microbiol. 1998;21(1):72–88.
  • Jiang QQ, Bakken LR. Comparison of Nitrosospira strains isolated from terrestrial environments. FEMS Microbiol Ecol. 1999;30(2):171–186.
  • Park HD, Noguera DR. Characterization of two ammonia-oxidizing bacteria isolated from reactors operated with low dissolved oxygen concentrations. J Appl Microbiol. 2007;102(5):1401–1417.
  • Thandar SM, Ushiki N, Fujitani H, et al. Ecophysiology and comparative genomics of Nitrosomonas mobilis Ms1 isolated from autotrophic nitrifying granules of wastewater treatment bioreactor. Front Microbiol. 2016;7(1869):1869.
  • Koops HP, Böttcher B, Möller UC, et al. Classification of eight new species of ammonia-oxidizing bacteria: Nitrosomonas communis sp. nov., Nitrosomonas ureae sp. nov., Nitrosomonas aestuarii sp. nov., Nitrosomonas marina sp. nov., Nitrosomonas nitrosa sp. nov., Nitrosomonas eutropha sp. nov., Nitrosomonas oligotropha sp. nov. and Nitrosomonas halophila sp. nov. Microbiology. 1999;137(7):1689–1699.
  • Stein LY, Arp DJ, Berube PM, et al. Whole-genome analysis of the ammonia-oxidizing bacterium, Nitrosomonas eutropha C91: implications for niche adaptation. Environ Microbiol. 2007;9(12):2993–3007.
  • Suwa Y, Sumino T, Noto K. Phylogenetic relationships of activated sludge isolates of ammonia oxidizers with different sensitivities to ammonium sulfate. J Gen Appl Microbiol. 1997;43(6):373–379.
  • Yuichi S, Norton JM, Bollmann A, et al. Genome sequence of Nitrosomonas sp. strain AL212, an ammonia-oxidizing bacterium sensitive to high levels of ammonia. J Bacteriol. 2011;193(18):5047–5048.
  • Nakagawa T, Takahashi R. Nitrosomonas stercoris sp. nov., a chemoautotrophic ammonia-oxidizing bacterium tolerant of high ammonium isolated from composted cattle manure. Microbes Environ. 2015;30:221–227.
  • Nakagawa T, Tsuchiya Y, Takahashi R. Whole genome sequence of the ammonia-oxidizing bacterium Nitrosomonas stercoris type strain KYUHI-S, isolated from composted cattle manure. Microbiol Resour Announc. 2019;8(34):e00742–19.
  • Itoh Y, Sakagami K, Uchino Y, et al. Isolation and characterization of a thermotolerant ammonia-oxidizing bacterium Nitrosomonas sp. JPCCT2 from a thermal power station. Microbes Environ. 2013;28(4):432–435.
  • Watson SW, Graham LB, Remsen CC, et al. A lobular, ammonia-oxidizing bacterium, Nitrosolobus multiformis nov.gen.nov.sp. Arch Mikrobiol. 1971;76(3):183–203.
  • Norton JM, Klotz MG, Stein LY, et al. Complete genome sequence of Nitrosospira multiformis, an ammonia-oxidizing bacterium from the soil environment. Appl Environ Microbiol. 2008;74(11):3559–3572.
  • Urakawa H, Garcia JC, Nielsen JL, et al. Nitrosospira lacus sp. nov., a psychrotolerant, ammonia-oxidizing bacterium from sandy lake sediment. Int J Syst Evol Microbiol. 2015;65(Pt 1):242–250.
  • Campbell MA, Chain PS, Dang H, et al. Nitrosococcus watsonii sp. nov., a new species of marine obligate ammonia-oxidizing bacteria that is not omnipresent in the world's oceans: calls to validate the names 'Nitrosococcus halophilus' and 'Nitrosomonas mobilis'. FEMS Microbiol Ecol. 2011;76(1):39–48.
  • Wang L, Lim CK, Dang H, et al. D1FHS, the type strain of the ammonia-oxidizing bacterium Nitrosococcus wardiae spec. nov.: enrichment, isolation, phylogenetic, and growth physiological characterization. Front Microbiol. 2016;7:512.
  • Lebedeva EV, Alawi M, Fiencke C, et al. Moderately thermophilic nitrifying bacteria from a hot spring of the Baikal rift zone. FEMS Microbiol Ecol. 2005;54(2):297–306.
  • Shimaya C, Hashimoto T. Improvement of media for thermophilic ammonia-oxidizing bacteria in compost. J Soil Sci Plant Nutr. 2008;54(4):529–533.
  • Hayatsu M, Tago K, Uchiyama I, et al. An acid-tolerant ammonia-oxidizing γ-proteobacterium from soil. Isme J. 2017;11(5):1130–1141.
  • Picone N, Pol A, Mesman R, et al. Ammonia oxidation at pH 2.5 by a new gammaproteobacterial ammonia-oxidizing bacterium. ISME J. 2021;15(4):1150–1164.
  • Koops HP, Purkhold U, Pommerening-Röser A, et al. The lithoautotrophic ammonia-oxidizing bacteria. In: Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E, editors. The prokaryotes. New York (NY): Springer; 2006.
  • Schmidt I. Chemoorganoheterotrophic growth of Nitrosomonas europaea and Nitrosomonas eutropha. Curr Microbiol. 2009;59(2):130–138.
  • Baskaran V, Patil PK, Antony ML, et al. Microbial community profiling of ammonia and nitrite oxidizing bacterial enrichments from brackish water ecosystems for mitigating nitrogen species. Sci Rep. 2020;10(1):1–11.
  • Zeng Y, Kasalický V, Šimek K, et al. Genome sequences of two freshwater betaproteobacterial isolates. J Bacteriol. 2012;194(22):6302–6303.
  • Zhang Y, Xu Y, Jia M, et al. Stability of partial nitrification and microbial population dynamics in a bioaugmented membrane bioreactor. J Microbiol Biotechnol. 2009;19(12):1656–1664.
  • González-Cabaleiro R, Curtis TP, Ofiţeru ID. Bioenergetics analysis of ammonia-oxidizing bacteria and the estimation of their maximum growth yield. Water Res. 2019;154: 238–e245.
  • Kozlowski JA, Kits KD, Stein LY. Comparison of nitrogen oxide metabolism among diverse ammonia-oxidizing bacteria. Front Microbiol. 2016;7(1090):1090.
  • Norton JM, Alzerreca JJ, Suwa Y, et al. Diversity of ammonia monooxygenase operon in autotrophic ammonia-oxidizing bacteria. Arch Microbiol. 2002;177(2):139–149.
  • Balasubramanian R, Smith SM, Rawat S, et al. Oxidation of methane by a biological dicopper Centre. Nature. 2010;465(7294):115–119.
  • Lawton TJ, Ham J, Sun T, et al. Structural conservation of the B subunit in the ammonia monooxygenase/particulate methane monooxygenase superfamily. Proteins. 2014;82(9):2263–2267.
  • Berube PM, Stahl DA. The divergent amoC3 subunit of ammonia monooxygenase functions as part of a stress response system in Nitrosomonas europaea. J Bacteriol. 2012;194(13):3448–3456.
  • Klotz MG, Alzerreca J, Norton JM. A gene encoding a membrane protein exists upstream of the amoA/amoB genes in ammonia oxidizing bacteria: a third member of the amo operon. FEMS Microbiol Lett. 1997;150(1):65–73.
  • Arp DJ, Sayavedra-Soto LA, Hommes NG. Molecular biology and biochemistry of ammonia oxidation by Nitrosomonas europaea. Arch Microbiol. 2002;178(4):250–255.
  • Cedervall P, Hooper AB, Wilmot CM. Structural studies of hydroxylamine oxidoreductase reveal a unique heme cofactor and a previously unidentified interaction partner. Biochemistry. 2013;52(36):6211–6218.
  • Sayavedra-Soto LA, Hommes NG, Alzerreca JJ, et al. Transcription of the amoC, amoA and amoB genes in Nitrosomonas europaea and Nitrosospira sp. NpAV. FEMS Microbiol Lett. 1998;167(1):81–88.
  • Upadhyay AK, Hooper AB, Hendrich MP. NO reductase activity of the tetraheme cytochrome c554 of Nitrosomonas europaea. J Am Chem Soc. 2006;128(13):4330–4337.
  • Arp DJ, Stein LY. Metabolism of inorganic N compounds by ammonia-oxidizing bacteria. Crit Rev Biochem Mol Biol. 2003;38(6):471–495.
  • Sayavedra-Soto L, Arp D. Ammonia-oxidizing bacteria: their biochemistry and molecular biology. Washington (DC): ASM Press; 2011.
  • Caranto JD, Lancaster KM. Nitric oxide is an obligate bacterial nitrification intermediate produced by hydroxylamine oxidoreductase. Proc Natl Acad Sci USA. 2017;114(31):8217–8222.
  • Chandran K, Stein LY, Klotz MG, et al. Nitrous oxide production by lithotrophic ammonia-oxidizing bacteria and implications for engineered nitrogen-removal systems. Biochem Soc Trans. 2011;39(6):1832–1837.
  • Domingo-Félez C, Smets BF. Regulation of key N2O production mechanisms during biological water treatment. Curr Opin Biotechnol. 2019;57:119–126.
  • Caranto JD, Vilbert AC, Lancaster KM. Nitrosomonas europaea cytochrome P460 is a direct link between nitrification and nitrous oxide emission. Proc Natl Acad Sci USA. 2016;113(51):14704–14709.
  • Cua LS, Stein LY. Effects of nitrite on ammonia-oxidizing activity and gene regulation in three ammonia-oxidizing bacteria. FEMS Microbiol Lett. 2011;319(2):169–175.
  • Kozlowski JA, Price J, Stein LY. Revision of N2O-producing pathways in the ammonia-oxidizing bacterium Nitrosomonas europaea ATCC 19718. Appl Environ Microbiol. 2014;80(16):4930–4935.
  • Hink L, Lycus P, Gubry‐Rangin C, et al. Kinetics of NH3‐oxidation, NO‐turnover, N2O‐production and electron flow during oxygen depletion in model bacterial and archaeal ammonia oxidisers. Environ Microbiol. 2017;19(12):4882–4896.
  • Torà JA, Lafuente J, Baeza JA, et al. Combined effect of inorganic carbon limitation and inhibition by free ammonia and free nitrous acid on ammonia oxidizing bacteria. Bioresour Technol. 2010;101(15):6051–6058.
  • Arciero DM, Pierce BS, Hendrich MP, et al. Nitrosocyanin, a red cupredoxin-like protein from Nitrosomonas europaea. Biochemistry. 2002;41(6):1703–1709.
  • Bollmann A, Sedlacek CJ, Norton J, et al. Complete genome sequence of Nitrosomonas sp. Is79 – an ammonia oxidizing bacterium adapted to low ammonium. Stand Genomic Sci. 2013;7(3):469–482.
  • Whittaker M, Bergmann D, Arciero D, et al. Electron transfer during the oxidation of ammonia by the chemolithotrophic bacterium Nitrosomonas europaea. Biochim Biophy Acta. 2000;1459(2–3):346–355.
  • Yu R, Chandran K. Strategies of Nitrosomonas europaea 19718 to counter low dissolved oxygen and high nitrite concentrations. BMC Microbiol. 2010;10:70.
  • Yu R, Perez-Garcia O, Lud H, et al. Nitrosomonas europaea adaptation to anoxic-oxic cycling: insights from transcription analysis, proteomics and metabolic network modeling. Sci Tot Environ. 2018;615:1566–1573.
  • Bock E, Schmidt I, Steven R, et al. Nitrogen loss caused by denitrifying Nitrosomonas cells using ammonium or hydrogen as electron donors and nitrite as electron acceptor. Arch Microbiol. 1995;163(1):16–20.
  • Hooper AB, Vannelli T, Bergmann DJ, et al. Enzymology of the oxidation of ammonia to nitrite by bacteria. Antonie Van Leeuwenhoek. 1997;71(1–2):59–67.
  • Schmidt I, Bock E. Anaerobic ammonia oxidation with nitrogen dioxide by Nitrosomonas eutropha. Arch Microbiol. 1997;167(2–3):106–111.
  • Schmidt I, Bock E. Anaerobic ammonia oxidation by cell-free extracts of Nitrosomonas eutropha. Antonie Van Leeuwenhoek. 1998;73(3):271–278.
  • Nybo SE, Khan NE, Woolston BM, et al. Metabolic engineering in chemolithoautotrophic hosts for the production of fuels and chemicals. Metab Eng. 2015;30:105–120.
  • Li Z, Xin X, Xiong B, et al. Engineering the Calvin–Benson–Bassham cycle and hydrogen utilization pathway of Ralstonia eutropha for improved autotrophic growth and polyhydroxybutyrate production. Microb Cell Fact. 2020;19(1):1–9.
  • Chawley P, Banerjee C, Jagadevan S. Growth of planktonic and biofilm culture of Nitrosomonas mobilis Ms1 in response to stoichiometric ammonia consumption. Int Biodeter Biodegr. 2020;154:105080.
  • Das I, Das S, Ghangrekar MM. Application of bimetallic low-cost CuZn as oxygen reduction cathode catalyst in lab-scale and field-scale microbial fuel cell. Chem Phys Lett. 2020;251:137536.
  • Slate AJ, Whitehead KA, Brownson DAC, et al. Microbial fuel cells: an overview of current technology. Renew Sust Energ. 2019;101:60–81.
  • Logan BE. Exoelectrogenic bacteria that power microbial fuel cells. Nat Rev Microbiol. 2009;7(5):375–381.
  • Kumar SS, Kumar V, Malyan SK, et al. Microbial fuel cells (MFCs) for bioelectrochemical treatment of different wastewater streams. Fuel. 2019;254(115526):115526.
  • Choudhury P, Uday USP, Mahata N, et al. Performance improvement of microbial fuel cells for waste water treatment along with value addition: a review on past achievements and recent perspectives. Renew Sust Energ Rev. 2017;79:372–389.
  • Milner EM, Popescu D, Curtis T, et al. Microbial fuel cells with highly active aerobic biocathodes. J Power Sources. 2016;324:e8–e16.
  • Sotres A, Cerrillo M, Viñas M, et al. Nitrogen removal in a two-chambered microbial fuel cell: establishment of a nitrifying–denitrifying microbial community on an intermittent aerated cathode. Chem Eng J. 2016;284:905–916.
  • Chen H, Zheng P, Zhang J, et al. Substrates and pathway of electricity generation in a nitrification-based microbial fuel cell. Bioresour Technol. 2014;161:208–214.
  • Wang CT, Chen WJ, Huang RY. Influence of growth curve phase on electricity performance of microbial fuel cell by Escherichia coli. Int J Hydrog Energ. 2010;35(13):7217–7223.
  • Du Y, Feng Y, Dong Y, et al. Coupling interaction of cathodic reduction and microbial metabolism in aerobic biocathode of microbial fuel cell. RSC Adv. 2014;4(65):34350–34355.
  • Virdis B, Read ST, Rabaey K, et al. Biofilm stratification during simultaneous nitrification and denitrification (SND) at a biocathode. Bioresour Technol. 2011;102(1):334–341.
  • Li Y, Xu Z, Cai D, et al. Self-sustained high-rate anammox: from biological to bioelectrochemical processes. Environ Sci Water Res Technol. 2016;2(6):1022–1031.
  • Zhang L, Jiang M, Zhou S. Conversion of nitrogen and carbon in enriched paddy soil by denitrification coupled with anammox in a bioelectrochemical system. J Environ Sci. 2022;111:197–207.
  • Kokabian B, Gude VG, Smith R, et al. Evaluation of anammox biocathode in microbial desalination and wastewater treatment. Chem Eng J. 2018;342:410–419.
  • Zhao C, Wei D, Fan D, et al. Coupling of nitrifying granular sludge into microbial fuel cell system for wastewater treatment: system performance, electricity production and microbial community shift. Bioresour Technol. 2021;326:124741.
  • Xie F, Zhao B, Cui Y, et al. Reutilize tire in microbial fuel cell for enhancing the nitrogen removal of the anammox process coupled with iron-carbon micro-electrolysis. Front Environ Sci Eng. 2021;15(6):121.
  • Talan A, Tyagi RD, Drogui P. Critical review on insight into the impacts of different inhibitors and performance inhibition of anammox process with control strategies. Environ Technol Innov. 2021;23:101553.
  • Li H, Yao H, Liu T, et al. Achieving simultaneous nitrogen and antibiotic removal in one-stage partial nitritation-Anammox (PN/A) process. Environ Int. 2020; 143:105987.
  • Park Y, Park S, Nguyen VK, et al. Complete nitrogen removal by simultaneous nitrification and denitrification in flat-panel air-cathode microbial fuel cells treating domestic wastewater. Chem Eng. 2017;316:673–679.
  • Chen J, Yang Y, Liu Y, et al. Bacterial community shift and antibiotics resistant genes analysis in response to biodegradation of oxytetracycline in dual graphene modified bioelectrode microbial fuel cell. Bioresour Technol. 2019;276:236–243.
  • Cano V, Cano J, Nunes SC, et al. Electricity generation influenced by nitrogen transformations in a microbial fuel cell: assessment of temperature and external resistance. Renew Sust Energ Rev. 2021;139:110590.
  • He Z, Kan J, Wang Y, et al. Electricity production coupled to ammonium in a microbial fuel cell. Environ Sci Technol. 2009;43(9):3391–3397.
  • Kindaichi T, Ito T, Okabe S. Ecophysiological interaction between nitrifying bacteria and heterotrophic bacteria in autotrophic nitrifying biofilms as determined by microautoradiography-fluorescence in situ hybridization. Appl Environ Microbiol. 2004;70(3):1641–1650.
  • Yang N, Liu H, Jin X, et al. One-pot degradation of urine wastewater by combining simultaneous halophilic nitrification and aerobic denitrification in air-exposed biocathode microbial fuel cells (AEB-MFCs). Sci Tot Environ. 2020;748:141379.
  • Yang N, Zhou Q, Zhan G, et al. Comparative evaluation of simultaneous nitritation/denitritation and energy recovery in air-cathode microbial fuel cells (ACMFCs) treating low C/N ratio wastewater. Sci Tot Environ. 2021;788:147652.
  • Li M, Zhou M, Tian X, et al. Microbial fuel cell (MFC) power performance improvement through enhanced microbial electrogenicity. Biotechnol Adv. 2018;36(4):1316–1327.
  • Lu S, Li H, Tan G, et al. Resource recovery microbial fuel cells for urine-containing wastewater treatment without external energy consumption. Chem Eng J. 2019;373:1072–1080.
  • Lawton TJ, Rosenzweig AC. Biocatalysts for methane conversion: big progress on breaking a small substrate. Curr Opin Chem Biol. 2016;35:142–149.
  • Kalyuzhnaya MG, Puri AW, Lidstrom ME. Metabolic engineering in methanotrophic bacteria. Metab Eng. 2015;29:142–152.
  • Semrau JD, Jagadevan S, DiSpirito AA, et al. Methanobactin and MmoD work in concert to act as the 'copper-switch' in methanotrophs. Environ Microbiol. 2013;15(11):3077–3086.
  • Gilch S, Meyer O, Schmidt I. A soluble form of ammonia monooxygenase in Nitrosomonas europaea. Biol Chem. 2009;390(9):863–873.
  • Gilch S, Meyer O, Schmidt I. Electron paramagnetic studies of the copper and iron containing soluble ammonia monooxygenase from Nitrosomonas europaea. Biometals. 2010;23(4):613–622.
  • Holmes AJ, Costello A, Lidstrom ME, et al. Evidence that particulate methane monooxygenase and ammonia monooxygenase may be evolutionarily related. FEMS Microbiol Lett. 1995;132(3):203–208.
  • Moir JW, Crossman LC, Spiro S, et al. The purification of ammonia monooxygenase from Paracoccus denitrificans. FEBS Lett. 1996;387(1):71–74.
  • Shiemke AK, Arp DJ, Sayavedra-Soto LA. Inhibition of membrane-bound methane monooxygenase and ammonia monooxygenase by diphenyliodonium: implications for electron transfer. J Bacteriol. 2004;186(4):928–937.
  • Lontoh S, DiSpirito AA, Krema CL, et al. Differential inhibition in vivo of ammonia monooxygenase, soluble methane monooxygenase and membrane‐associated methane monooxygenase by phenylacetylene. Environ Microbiol. 2000;2(5):485–494.
  • Hyman MR, Wood PM. Ethylene oxidation by Nitrosomonas europaea. Arch Microbiol. 1984;137(2):155–158.
  • Juliette LY, Hyman MR, Arp DJ. Mechanism-based inactivation of ammonia monooxygenase in Nitrosomonas europaea by allylsulfide. Appl Environ Microbiol. 1993;59(11):3728–3735.
  • Bennett K, Sadler NC, Wright AT, et al. Activity-based protein profiling of ammonia monooxygenase in Nitrosomonas europaea. Appl Environ Microbiol. 2016;82(8):2270–2279.
  • Hyman MR, Wood PM. Methane oxidation by Nitrosomonas europaea. Biochem J. 1983;212(1):31–37.
  • Ward BB. Kinetic studies on ammonia and methane oxidation by Nitrosococcus oceanus. Arch Microbiol. 1987;147(2):126–133.
  • Zhang J, Hu Z, Liu T, et al. Feasibility of methane bioconversion to methanol by acid-tolerant ammonia-oxidizing bacteria. Water Res. 2021;197:117077.
  • Jones RD, Morita RY. Methane oxidation by Nitrosococcus oceanus and Nitrosomonas europaea. Appl Environ Microbiol. 1983;45(2):401–410.
  • Su YC, Sathyamoorthy S, Chandran K. Bioaugmented methanol production using ammonia oxidizing bacteria in a continuous flow process. Bioresour Technol. 2019;279:101–107.
  • Thorn GJS. Development of an immobilized Nitrosomonas europaea bioreactor for the production of methanol from methane [Master’s Thesis]. Christchurch, New Zealand: University of Canterbury; 2007.
  • Hyman MR, Murton IB, Arp DJ. Interaction of ammonia monooxygenase from Nitrosomonas europaea with alkanes, alkenes, and alkynes. Appl Environ Microbiol. 1988;54(12):3187–3190.
  • Wang L, Tabata K, Kamachi T, et al. Effect of electron donor on methanol production by ammonia-oxidizing bacterium Nitrosomonas europaea. J Jpn Petrol Inst. 2010;53(6):319–326.
  • Hommes NG, Sayavedra-Soto LA, Arp DJ. Mutagenesis and expression of amo, which codes for ammonia monooxygenase in Nitrosomonas europaea. J Bacteriol. 1998;180(13):3353–3359.
  • Hommes NG, Sayavedra-Soto LA, Arp DJ. Mutagenesis of hydroxylamine oxidoreductase in Nitrosomonas europaea by transformation and recombination. J Bacteriol. 1996;178(13):3710–3714.
  • Hirota R, Kuroda A, Ikeda T, et al. Transcriptional analysis of the multicopy hao gene coding for hydroxylamine oxidoreductase in Nitrosomonas sp. strain ENI-11. Biosci Biotechnol Biochem. 2006;70(8):1875–1881.
  • Gvakharia BO, Bottomley PJ, Arp DJ, et al. Construction of recombinant Nitrosomonas europaea expressing green fluorescent protein in response to co-oxidation of chloroform. Appl Microbiol Biotechnol. 2009;82(6):1179–1185.
  • Xin Y, Guo T, Mu Y, et al. Coupling the recombineering to Cre-lox system enables simplified large-scale genome deletion in Lactobacillus casei. Microb Cell Fact. 2018;17(1):21.
  • Díez-Villaseñor C, Almendros C, García-Martínez J, et al. Diversity of CRISPR loci in Escherichia coli. Microbiology. 2010;156(5):1351–1361.
  • Zerbini F, Zanella I, Fraccascia D, et al. Large scale validation of an efficient CRISPR/Cas-based multi gene editing protocol in Escherichia coli. Microb Cell Fact. 2017;16(1):68.
  • AIChE. Bioconversion of methane [WWW Document]; 2014 [cited 2020 Dec 21]. Available from: https://www.aiche.org/chenected/2014/04/bioconversion-methane.
  • Tikhomirova TS, But SY. Laboratory scale bioreactor designs in the processes of methane bioconversion: mini-review. Biotechnol Adv. 2021;47:107709.
  • Feng F, Duan C-S, Tang X, et al. Performance, microbial community and inhibition kinetics of long-term Cu2+ stress on an air-lift nitritation reactor with self-recirculation. J Environ Sci. 2020;91:117–127.
  • Lu Z, Li D, Jiang L, et al. Characterizing the biofilm stoichiometry and kinetics on the media in situ based on pulse-flow respirometer coupling with a new breathing reactor. Chemosphere. 2020;252:126378.
  • Bhatia SK, Bhatia RK, Yang Y-H. An overview of microdiesel – a sustainable future source of renewable energy. Renew Sust Energy Rev. 2017;79:1078–1090.
  • Yusoff MFM, Xu X, Guo Z. Comparison of fatty acid methyl and ethyl esters as biodiesel base stock: a review on processing and production requirements. J Am Oil Chem Soc. 2014;91(4):525–531.
  • Jeevan Kumar SP, Banerjee R. Enhanced lipid extraction from oleaginous yeast biomass using ultrasound assisted extraction: a greener and scalable process. Ultrason Sonochem. 2019;52:25–32.
  • Navarro López E, Robles Medina A, González Moreno PA, et al. Extraction of microalgal lipids and the influence of polar lipids on biodiesel production by lipase-catalyzed transesterification. Bioresour Technol. 2016;216:904–913.
  • Folayan AJ, Anawe PAL, Aladejare AE, et al. Experimental investigation of the effect of fatty acids configuration, chain length, branching and degree of unsaturation on biodiesel fuel properties obtained from lauric oils, high-oleic and high-linoleic vegetable oil biomass. Energ Rep. 2019;5:793–806.
  • Tiwari ON, Bhunia B, Muthuraj M, et al. Optimization of process parameters on lipid biosynthesis for sustainable biodiesel production and evaluation of its fuel characteristics. Fuel. 2020;269:117471.
  • Kialashaki M, Mahdavi MA, Gheshlaghi R. Improved transesterification conditions for production of clean fuel from municipal wastewater microalgae feedstock. J Clean Prod. 2019;241:118388.
  • Sierra-Cantor JF, Guerrero-Fajardo CA. Methods for improving the cold flow properties of biodiesel with high saturated fatty acids content: a review. Renew Sustain Energ Rev. 2017;72:774–790.
  • Tsai YY, Ohashi T, Wu C-C, et al. Delta-9 fatty acid desaturase overexpression enhanced lipid production and oleic acid content in Rhodosporidium toruloides for preferable yeast lipid production. J Biosci Bioeng. 2019;127(4):430–440.
  • Yao J, Rock CO. Bacterial fatty acid metabolism in modern antibiotic discovery. Biochim Biophys Acta Mol Cell Biol Lipids. 2017;1862(11):1300–1309.
  • Handke P, Lynch SA, Gill RT. Application and engineering of fatty acid biosynthesis in Escherichia coli for advanced fuels and chemicals. Metab Eng. 2011;13(1):28–37.
  • Rock CO, Jackowski S. Forty years of bacterial fatty acid synthesis. Biochem Biophys Res Commun. 2002;292(5):1155–1166.
  • Asakura H, Kawamoto K, Murakami S, et al. Ex vivo proteomics of Campylobacter jejuni 81-176 reveal that FabG affects fatty acid composition to alter bacterial growth fitness in the chicken gut. Res Microbiol. 2016;167(2):63–71.
  • Yao J, Rock CO. Exogenous fatty acid metabolism in bacteria. Biochimie. 2017;141:30–39.
  • Blumer M, Chase T, Watson SW. Fatty acids in the lipids of marine and terrestrial nitrifying bacteria. J Bacteriol. 1969;99(2):366–370.
  • Yuan ZT, Hu WY, Han WJ, et al. Heterotrophic cultivation of microalgae in straw lignocellulose hydrolysate for production of high-value biomass rich in polyunsaturated fatty acids (PUFA). Chem Eng J. 2019;367:37–44.
  • Lacroux J, Trably E, Bernet N, et al. Mixotrophic growth of microalgae on volatile fatty acids is determined by their undissociated form. Algal Res. 2020;47:101870.
  • Kech C, Galloy A, Frippiat C, et al. Optimization of direct liquid-liquid extraction of lipids from wet urban sewage sludge for biodiesel production. Fuel. 2018;212:132–139.
  • Patiño Y, Mantecón LG, Polo S, et al. Effect of sludge features and extraction-esterification technology on the synthesis of biodiesel from secondary wastewater treatment sludges. Bioresour Technol. 2018;247:209–216.
  • Choi OK, Song JS, Cha DK, et al. Biodiesel production from wet municipal sludge: Evaluation of in situ transesterification using xylene as a cosolvent. Bioresour Technol. 2014;166:51–56.
  • Alvarez HM. Relationship between β-oxidation pathway and the hydrocarbon-degrading profile in actinomycetes bacteria. Int Biodeter Biodegr. 2003;52(1):35–42.
  • Bharti RK, Srivastava S, Thakur IS. Production and characterization of biodiesel from carbon dioxide concentrating chemolithotrophic bacteria, Serratia sp. ISTD04. Bioresour Technol. 2014;153:189–197.
  • Jung JM, Oh JI, Kim JG, et al. Valorization of sewage sludge via non-catalytic transesterification. Environ Int. 2019;131:105035.
  • Liu H, Marsafari M, Wang F, et al. Engineering acetyl-CoA metabolic shortcut for eco-friendly production of polyketides triacetic acid lactone in Yarrowia lipolytica. Metab Eng. 2019;56:60–68.
  • Shin KS, Lee SK. Introduction of an acetyl-CoA carboxylation bypass into Escherichia coli for enhanced free fatty acid production. Bioresour Technol. 2017;245(Pt B):1627–1633.
  • Berg I. Ecological aspects of the distribution of different autotrophic CO2 fixation pathways. Appl Environ Microbiol. 2011;77(6):1925–1936.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.