1,457
Views
10
CrossRef citations to date
0
Altmetric
Review Articles

The challenges of using NAD+-dependent formate dehydrogenases for CO2 conversion

ORCID Icon, , & ORCID Icon
Pages 953-972 | Received 23 Nov 2020, Accepted 04 Jun 2021, Published online: 10 Oct 2021

References

  • Yaashikaa PR, Kumar PS, Varjani SJ, et al. A review on photochemical, biochemical and electrochemical transformation of CO2 into value-added products. J CO2 Util. 2019;33:131–147.
  • Amao Y. Formate dehydrogenase for CO2 utilization and its application. J CO2 Util. 2018;26:623–641.
  • Nielsen CF, Lange L, Meyer AS. Classification and enzyme kinetics of formate dehydrogenases for biomanufacturing via CO2 utilization. Biotechnol Adv. 2019;37(7):107408.
  • Sultana S, Sahoo PC, Martha S, et al. A review of harvesting clean fuels from enzymatic CO2 reduction. RSC Adv. 2016;6(50):44170–44194.
  • Olah GA. Beyond oil and gas: the methanol economy. Angew Chem Int Ed Engl. 2005;44(18):2636–2639.
  • Alvarez-Guerra M, Quintanilla S, Irabien A. Conversion of carbon dioxide into formate using a continuous electrochemical reduction process in a lead cathode. Chem Eng J. 2012;207–208:278–284.
  • Innocent B, Liaigre D, Pasquier D, et al. Electroreduction of carbon dioxide to formate on lead electrode in aqueous medium. J Appl Electrochem. 2009;39(2):227–232.
  • Fellay C, Yan N, Dyson PJ, et al. Selective formic acid decomposition for high‐pressure hydrogen generation: a mechanistic study. Chemistry. 2009;15(15):3752–3760.
  • Enthaler S, von Langermann J, Schmidt T. Carbon dioxide and formic acid—the couple for environmental-friendly hydrogen storage? Energy Environ Sci. 2010;3(9):1207–1217.
  • Long NVD, Lee J, Koo KK, et al. Recent progress and novel applications in enzymatic conversion of carbon dioxide. Energies. 2017;10(4):473.
  • Al‐Mamoori A, Krishnamurthy A, Rownaghi AA, et al. Carbon capture and utilization update. Energy Technol. 2017;5(6):834–849.
  • Shi J, Jiang Y, Jiang Z, et al. Enzymatic conversion of carbon dioxide. Chem Soc Rev. 2015;44(17):5981–6000.
  • Aresta M, Dibenedetto A, Quaranta E. Reaction mechanisms in carbon dioxide conversion. Berlin; Heidelberg: Springer; 2015.
  • Li H, Opgenorth PH, Wernick DG, et al. Liao JC, Integrated electromicrobial conversion of CO2 to higher alcohols. Science. 2012;335(6076):1596–1596.
  • Hwang H, Yeon YJ, Lee S, et al. Electro-biocatalytic production of formate from carbon dioxide using an oxygen-stable whole cell biocatalyst. Bioresour Technol. 2015;185:35–39.
  • Gamenara D, Seoane G, Méndez PS, et al. Redox biocatalysis: fundamentals and applications. Hoboken, NJ: John Wiley & Sons Inc.; 2012.
  • Aldridge S. Industry backs biocatalysis for greener manufacturing. Nat Biotechnol. 2013;31(2):95–96.
  • Hudlicky T, Reed JW. Applications of biotransformations and biocatalysis to complexity generation in organic synthesis. Chem Soc Rev. 2009;38(11):3117–3132.
  • Lou WY, Chen L, Zhang BB, et al. Using a water-immiscible ionic liquid to improve asymmetric reduction of 4-(trimethylsilyl)-3-butyn-2-one catalyzed by immobilized Candida parapsilosis CCTCC M203011 cells. BMC Biotechnol. 2009;9(1):90.
  • Bräutigam S, Dennewald D, Schürmann M, et al. Whole-cell biocatalysis: evaluation of new hydrophobic ionic liquids for efficient asymmetric reduction of prochiral ketones. Enzyme Microb. Technol. 2009;45(4):310–316.
  • Bräutigam S, Bringer-Meyer S, Weuster-Botz D. Asymmetric whole cell biotransformations in biphasic ionic liquid/water-systems by use of recombinant Escherichia coli with intracellular cofactor regeneration. Tetrahedron. 2007;18(16):1883–1887.
  • Berg JM, Tymoczko JL, Stryer L. 9.1 Proteases: facilitating a difficult reaction. In Biochemistry. 5th ed. New York (NY): W. H. Freeman; 2002.
  • McArdle WD, Katch FI, Katch VL. Essentials of exercise physiology. USA: Lippincott Williams & Wilkins; 2006.
  • Blumenfeld LA, Tikhonov AN. Principles of enzyme catalysis. Biophysical thermodynamics of intracellular processes. New York: Springer; 1994.
  • Schmid A, Dordick JS, Hauer B, et al. Industrial biocatalysis today and tomorrow. Nature. 2001;409(6817):258–268.
  • Bhosale SH, Rao MB, Deshpande VV. Molecular and industrial aspects of glucose isomerase. Microbiol Rev. 1996;60(2):280–300.
  • Vidal LS, Kelly CL, Mordaka PM, et al. Review of NAD(P)H-dependent oxidoreductases: properties, engineering and application. Biochim Biophys Acta Proteins Proteom. 2018;1866(2):327–347.
  • van Berkel WJH, Kamerbeek NM, Fraaije MW. Flavoprotein monooxygenases, a diverse class of oxidative biocatalysts. J Biotechnol. 2006;124(4):670–689.
  • da Silva SM, Pimentel C, Valente FMA, et al. Tungsten and molybdenum regulation of formate dehydrogenase expression in Desulfovibrio vulgaris Hildenborough. J Bacteriol. 2011;193(12):2909–2916.
  • De Bok FAM, Hagedoorn PL, Silva PJ, et al. Two W-containing formate dehydrogenases (CO2-reductases) involved in syntrophic propionate oxidation by Syntrophobacter fumaroxidans. Eur J Biochem. 2003;270(11):2476–2485.
  • Tishkov VI, Popov VO. Catalytic mechanism and application of formate dehydrogenase. Biochemistry. 2004;69(11):1252–1267.
  • VanLinden MR, Skoge RH, Ziegler M. Discovery, metabolism and functions of NAD and NADP. Biochemist. 2015;37(1):9–13.
  • Popov VO, Tishkov VI. NAD+-dependent formate dehydrogenase. From a model enzyme to a versatile biocatalyst. In: Uversky VN, editor. Protein structures: Kaleidoscope of strucutural properties and functions. Kerala, India: Research Signpost; 2003. p. 441–473.
  • Hille R, Hall J, Basu P. The mononuclear molybdenum enzymes. Chem Rev. 2014;114(7):3963–4038.
  • Popov VO, Lamzin VS. NAD+-dependent formate dehydrogenase. Biochem. J. 1994;302(3):967.
  • Almendra MJ, Brondino CD, Gavel O, et al. Purification and characterization of a tungsten-containing formate dehydrogenase from Desulfovibrio gigas. Biochemistry. 1999;38(49):16366–16372.
  • Cone JE, Del Río RM, Davis JN, et al. Chemical characterization of the selenoprotein component of clostridial glycine reductase: identification of selenocysteine as the organoselenium moiety. Proc Natl Acad Sci USA. 1976;73(8):2659–2663.
  • Graentzdoerffer A, Rauh D, Pich A, et al. Molecular and biochemical characterization of two tungsten- and selenium-containing formate dehydrogenases from Eubacterium acidaminophilum that are associated with components of an iron-only hydrogenase. Arch Microbiol. 2003;179(2):116–130.
  • Reda T, Plugge CM, Abram NJ, et al. Reversible interconversion of carbon dioxide and formate by an electroactive enzyme. Proc Natl Acad Sci USA. 2008;105(31):10654–10658.
  • Maia LB, Moura JJ, Moura I. Molybdenum and tungsten-dependent formate dehydrogenases. J Biol Inorg Chem. 2015;20(2):287–309.
  • Axley MJ, Bock A, Stadtman TC. Catalytic properties of an Escherichia coli formate dehydrogenase mutant in which sulfur replaces selenium. Proc Natl Acad Sci USA. 1991;88(19):8450–8454.
  • Chen GT, Axley MJ, Hacia J, et al. Overproduction of a selenocysteine-containing polypeptide in Escherichia coli: the fdhF gene product. Mol Microbiol. 1992;6(6):781–785.
  • Gladyshev VN, Boyington JC, Khangulov SV, et al. Characterization of crystalline formate dehydrogenase H from Escherichia coli. Stabilization, EPR spectroscopy, and preliminary crystallographic analysis. J Biol Chem. 1996;271(14):8095–8100.
  • Boyington JC, Gladyshev VN, Khangulov SV, et al. Crystal structure of formate dehydrogenase H: catalysis involving Mo, molybdopterin, selenocysteine, and an Fe4S4 cluster. Science. 1997;275(5304):1305–1308.
  • Enoch HG, Lester RL. The purification and properties of formate dehydrogenase and nitrate reductase from Escherichia coli. J Biol Chem. 1975;250(17):6693–6705.
  • Alissandratos A, Kim HK, Matthews H, et al. Clostridium carboxidivorans strain P7T recombinant formate dehydrogenase catalyzes reduction of CO(2) to formate. Appl Environ Microbiol. 2013;79(2):741–744.
  • Hartmann T, Leimkühler S. The oxygen-tolerant and NAD+-dependent formate dehydrogenase from Rhodobacter capsulatus is able to catalyze the reduction of CO2 to formate. FEBS J. 2013;280(23):6083–6096.
  • Bassegoda A, Madden C, Wakerley DW, et al. Reversible interconversion of CO2 and formate by a molybdenum-containing formate dehydrogenase. J Am Chem Soc. 2014;136(44):15473–15476.
  • Yu X, Niks D, Mulchandani A, et al. Efficient reduction of CO2 by the molybdenum-containing formate dehydrogenase from Cupriavidus necator (Ralstonia eutropha). J Biol Chem. 2017;292(41):16872–16879.
  • Choe H, Joo JC, Cho DH, et al. Efficient CO2-reducing activity of NAD-dependent formate dehydrogenase from Thiobacillus sp. KNK65MA for formate production from CO2 gas. PLOS One. 2014;9(7):e103111.
  • Vinals C, Depiereux E, Feytmans E. Prediction of structurally conserved regions of D-specific hydroxy acid dehydrogenases by multiple alignment with formate dehydrogenase. Biochem Biophys Res Commun. 1993;192(1):182–188.
  • Choe H, Ha JM, Joo JC, et al. Structural insights into the efficient CO2-reducing activity of an NAD+-dependent formate dehydrogenase from Thiobacillus sp. KNK65MA. Acta Crystallogr D Biol Crystallogr. 2015;71(Pt 2):313–323.
  • Jayathilake BS, Bhattacharya S, Vaidehi N, et al. Efficient and selective electrochemically driven enzyme-catalyzed reduction of carbon dioxide to formate using formate dehydrogenase and an artificial cofactor. Acc Chem Res. 2019;52(3):676–685.
  • Alissandratos A, Easton CJ. Biocatalysis for the application of CO2 as a chemical feedstock. Beilstein J Org Chem. 2015;11(1):2370–2387.
  • Ducat DC, Silver PA. Improving carbon fixation pathways. Curr Opin Chem Biol. 2012;16(3–4):337–344.
  • Tishkov VI, Popov VO. Protein engineering of formate dehydrogenase. Biomol Eng. 2006;23(2–3):89–110.
  • Alpdağtaş S, Yücel S, Kapkaç HA, et al. Discovery of an acidic, thermostable and highly NADP+ dependent formate dehydrogenase from Lactobacillus buchneri NRRL B-30929. Biotechnol Lett. 2018;40(7):1135–1147.
  • Alpdağtaş S, Çelik A, Ertan F, et al. DMSO tolerant NAD (P) H recycler enzyme from a pathogenic bacterium, Burkholderia dolosa PC543: effect of N‐/C‐terminal his tag extension on protein solubility and activity. Eng Life Sci. 2018;18(12):893–903.
  • Fogal S, Beneventi E, Cendron L, et al. Structural basis for double cofactor specificity in a new formate dehydrogenase from the acidobacterium Granulicella mallensis MP5ACTX8. Appl Microbiol Biotechnol. 2015;99(22):9541–9554.
  • Lamzin VS, Dauter Z, Popov VO, et al. High resolution structures of Holo and Apo formate dehydrogenase. J Mol Biol. 1994;236(3):759–785.
  • Berman HM, Westbrook J, Feng Z, et al. The protein data bank. Nucleic Acids Res. 2000;28(1):235–242.
  • Schirwitz K, Schmidt A, Lamzin VS. High‐resolution structures of formate dehydrogenase from Candida boidinii. Protein Sci. 2007;16(6):1146–1156.
  • Castillo R, Oliva M, Marti S, et al. A theoretical study of the catalytic mechanism of formate dehydrogenase. J Phys Chem B. 2008;112(32):10012–10022.
  • Alberty RA, Silbey RS. Physical chemistry. New York (NY): John Wiley & Sons; 1992.
  • Brasseur GP, Orlando JJ, Tyndall GS, editors. Atmospheric chemistry and global change. Oxford: Oxford University Press; 1999.
  • Aslan AS, Valjakka J, Ruupunen J, et al. Chaetomium thermophilum formate dehydrogenase has high activity in the reduction of hydrogen carbonate (HCO3−) to formate. Protein Eng Des Sel. 2017;30(1):47–55.
  • Çakar MM, Ruupunen J, Mangas-Sanchez J, et al. Engineered formate dehydrogenase from Chaetomium thermophilum, a promising enzymatic solution for biotechnical CO2 fixation. Biotech Lett. 2020;42(11):2251–2262.
  • Pala U, Yelmazer B, Çorbacioglu M, et al. Functional effects of active site mutations in NAD+-dependent formate dehydrogenases on transformation of hydrogen carbonate to formate. Protein Eng Des Sel. 2018;31(9):327–335.
  • Ruschig U, Müller U, Willnow P, et al. CO2 reduction to formate by NADH catalysed by formate dehydrogenase from Pseudomonas oxalaticus. Eur J Biochem. 1976;70(2):325–330.
  • Nilov DK, Shabalin IG, Popov VO, et al. Molecular modeling of formate dehydrogenase: the formation of the Michaelis complex. J Biomol Struct Dyn. 2012;30(2):170–179.
  • Baccour M, Lamotte A, Sakai K, et al. Production of formate from CO2 gas under ambient conditions: towards flow-through enzyme reactors. Green Chem. 2020;22(12):3727–3733.
  • Altaş N, Aslan AS, Karataş E, et al. Heterologous production of extreme alkaline thermostable NAD+-dependent formate dehydrogenase with wide-range pH activity from Myceliophthora thermophila. Process Biochem. 2017;61:110–118.
  • Bommarius AS, Blum JK, Abrahamson MJ. Status of protein engineering for biocatalysts: how to design an industrially useful biocatalyst. Curr Opin Chem Biol. 2011;15(2):194–200.
  • Chen Z, Zeng AP. Protein engineering approaches to chemical biotechnology. Curr Opin Biotechnol. 2016;42:198–205.
  • Bickerstaff GF. Immobilization of enzymes and cells: methods in biotechnology. Vol. 1. Totowa: Humana Press; 1997.
  • Chibata I, Tosa T, Sato T. Biocatalysis: immobilized cells and enzymes. J Mol Catal. 1986;37(1):1–24.
  • Hartmeier W. Immobilized biocatalysts-from simple to complex systems. Tibtech. 1985;3(6):149–153.
  • Katchalski-Katzir E. Immobilized enzymes: learning from past successes and failures. Trends Biotechnol. 1993;11(11):471–478.
  • Cheetham PSJ. The use of biotransformations for the production of flavours and fragrances. Trends Biotechnol. 1993;11(11):478–488.
  • Du Y, Gao J, Zhou L, et al. Enzyme nanocapsules armored by metal-organic frameworks: a novel approach for preparing nanobiocatalyst. Chem Eng J. 2017;327:1192–1197.
  • Du Y, Gao J, Zhou L, et al. MOF-based nanotubes to hollow nanospheres through protein-induced soft-templating pathways. Adv Sci. 2019;6(6):1801684.
  • Tavares APM, Silva CG, Dražić G, et al. Laccase immobilization over multi-walled carbon nanotubes: kinetic, thermodynamic and stability studies. J Colloid Interface Sci. 2015;454:52–60.
  • Gao J, Kong W, Zhou L, et al. Monodisperse core-shell magnetic organosilica nanoflowers with radial wrinkle for lipase immobilization. Chem Eng J. 2017;309:70–79.
  • Lasmi K, Derder H, Kermad A, et al. Tyrosinase immobilization on functionalized porous silicon surface for optical monitoring of pyrocatechol. Appl Surf Sci. 2018;446:3–9.
  • Liu DM, Chen J, Shi YP. Tyrosinase immobilization on aminated magnetic nanoparticles by physical adsorption combined with covalent crosslinking with improved catalytic activity, reusability and storage stability. Anal Chim Acta. 2018;1006:90–98.
  • El‐Zahab B, Donnelly D, Wang P. Particle‐tethered NADH for production of methanol from CO2 catalyzed by coimmobilized enzymes. Biotechnol Bioeng. 2008;99(3):508–514.
  • Bolivar JM, Wilson L, Ferrarotti SA, et al. Evaluation of different immobilization strategies to prepare an industrial biocatalyst of formate dehydrogenase from Candida boidinii. Enzyme Microb Technol. 2007;40(4):540–546.
  • Bolivar JM, Rocha-Martin J, Mateo C, et al. Coating of soluble and immobilized enzymes with ionic polymers: full stabilization of the quaternary structure of multimeric enzymes. Biomacromolecules. 2009;10(4):742–747.
  • Netto CG, Nakamura M, Andrade LH, et al. Improving the catalytic activity of formate dehydrogenase from Candida boidinii by using magnetic nanoparticles. J Mol Catal. 2012;84:136–143.
  • Mateo C, Palomo JM, Fernandez-Lorente G, et al. Improvement of enzyme activity, stability and selectivity via immobilization techniques. Enzyme Microb Technol. 2007;40(6):1451–1463.
  • Rodrigues RC, Ortiz C, Berenguer-Murcia Á, et al. Modifying enzyme activity and selectivity by immobilization. Chem Soc Rev. 2013;42(15):6290–6307.
  • Dominguez-Benetton X, Srikanth S, Satyawali Y. Enzymatic electrosynthesis: an overview on the progress in enzyme-electrodes for the production of electricity, fuels and chemicals. J Microb Biochem Technol. 2013. DOI:https://doi.org/10.4172/1948-5948.s6-007
  • Lu Y, Jiang Z-y, Xu S-W, et al. Efficient conversion of CO2 to formic acid by formate dehydrogenase immobilized in a novel alginate–silica hybrid gel. Catal Today. 2006;115(1–4):263–268.
  • Yoshimoto M, Yamashita T, Yamashiro T. Stability and reactivity of liposome-encapsulated formate dehydrogenase and cofactor system in carbon dioxide gas-liquid flow. Biotechnol Prog. 2010;26(4):1047–1053.
  • Aytar BS, Bakir U. Preparation of cross-linked tyrosinase aggregates. Process Biochem. 2008;43(2):125–131.
  • Schoevaart R, Wolbers MW, Golubovic M, et al. Preparation, optimization, and structures of cross-linked enzyme aggregates (CLEAs). Biotechnol Bioeng. 2004;87(6):754–762.
  • Kim MH, Park S, Kim YH, et al. Immobilization of formate dehydrogenase from Candida boidinii through cross-linked enzyme aggregates. J Mol Catal. 2013;97:209–214.
  • Munasinghe PC, Khanal SK. Biomass-derived syngas fermentation into biofuels: opportunities and challenges. Bioresour Technol. 2010;101(13):5013–5022.
  • Kim Y-K, Park SE, Lee H, et al. Enhancement of bioethanol production in syngas fermentation with Clostridium ljungdahlii using nanoparticles. Bioresour Technol. 2014;159:446–450.
  • Kim YK, Lee H. Use of magnetic nanoparticles to enhance bioethanol production in syngas fermentation. Bioresour Technol. 2016;204:139–144.
  • Kim YK, Lee SY, Oh BK. Enhancement of formic acid production from CO2 in formate dehydrogenase reaction using nanoparticles. RSC Adv. 2016;6(111):109978–109982.
  • Maia LB, Fonseca L, Moura I, et al. Reduction of carbon dioxide by a molybdenum-containing formate dehydrogenase: a kinetic and mechanistic study. J Am Chem Soc. 2016;138(28):8834–8846.
  • Fernandez-Lafuente R. Stabilization of multimeric enzymes: strategies to prevent subunit dissociation. Enzyme Microb Technol. 2009;45(6–7):405–418.
  • Yildirim D, Alagöz D, Toprak A, et al. Tuning dimeric formate dehydrogenases reduction/oxidation activities by immobilization. Process Biochem. 2019;85:97–105.
  • Walcarius A, Nasraoui R, Wang Z, et al. Factors affecting the electrochemical regeneration of NADH by (2,2′-bipyridyl) (pentamethylcyclopentadienyl)-rhodium complexes: impact on their immobilization onto electrode surfaces. Bioelectrochemistry. 2011;82(1):46–54.
  • Ali I, Gill A, Omanovic S. Direct electrochemical regeneration of the enzymatic cofactor 1,4-NADH employing nano-patterned glassy carbon/Pt and glassy carbon/Ni electrodes. Chem Eng J. 2012;188:173–180.
  • Liu J, Antonietti M. Bio-inspired NADH regeneration by carbon nitride photocatalysis using diatom templates. Energy Environ Sci. 2013;6(5):1486–1493.
  • Barin R, Biria D, Rashid-Nadimi S, et al. Enzymatic CO2 reduction to formate by formate dehydrogenase from Candida boidinii coupling with direct electrochemical regeneration of NADH. J CO2 Util. 2018;28:117–125.
  • Amao Y, Shuto N. Formate dehydrogenase–viologen-immobilized electrode for CO2 conversion, for development of an artificial photosynthesis system. Res Chem Intermed. 2014;40(9):3267–3276.
  • Zhang L, Liu J, Ong J, et al. Specific and sustainable bioelectro-reduction of carbon dioxide to formate on a novel enzymatic cathode. Chemosphere. 2016;162:228–234.
  • Srikanth S, Maesen M, Dominguez-Benetton X, et al. Enzymatic electrosynthesis of formate through CO2 sequestration/reduction in a bioelectrochemical system (BES). Bioresour Technol. 2014;165:350–354.
  • Aresta M, Dibenedetto A, Baran T, et al. An integrated photocatalytic/enzymatic system for the reduction of CO2 to methanol in bioglycerol–water. J Org Chem. 2014;10:2556–2565.
  • Lee SY, Lim SY, Seo D, et al. Light-driven highly selective conversion of CO2 to formate by electrosynthesized enzyme/cofactor thin film electrode. Adv Energy Mater. 2016;6(11):1502207–1502208.
  • Ullah N, Ali I, Omanovic S. Direct electrocatalytic reduction of coenzyme NAD+ to enzymatically-active 1,4-NADH employing an iridium/ruthenium-oxide electrode. Mater Chem Phys. 2015;149:413–417.
  • Kim YH, Yoo YJ. Regeneration of the nicotinamide cofactor using a mediator-free electrochemical method with a tin oxide electrode. Enzyme Microb Technol. 2009;44(3):129–134.
  • Kohlmann C, Wolfgang M, Stephan L. Electroenzymatic synthesis. J Mol Catal B Enzym. 2008;51(3–4):57–72.
  • Man F, Omanovic S. A kinetic study of NAD+ reduction on a ruthenium modified glassy carbon electrode. J Electroanal Chem. 2004;568:301–313.
  • Kim S, Kim MK, Lee SH, et al. Conversion of CO2 to formate in an electroenzymatic cell using Candida boidinii formate dehydrogenase. J Mol Catal. 2014;102:9–15.
  • Kim SH, Chung GY, Kim SH, et al. Electrochemical NADH regeneration and electroenzymatic CO2 reduction on Cu nanorods/glassy carbon electrode prepared by cyclic deposition. Electrochim Acta. 2016;210:837–845.
  • Chen Y, Li P, Noh H, et al. Stabilization of formate dehydrogenase in a metal–organic framework for bioelectrocatalytic reduction of CO2. Angew Chem. 2019;131(23):7764–7768.
  • Barin R, Biria D, Rashid-Nadimi S, et al. Investigating the enzymatic CO2 reduction to formate with electrochemical NADH regeneration in batch and semi-continuous operations. Chem Eng Process. 2019;140:78–84.
  • Song H, Ma C, Liu P, et al. A hybrid CO2 electroreduction system mediated by enzyme-cofactor conjugates coupled with Cu nanoparticle-catalyzed cofactor regeneration. J CO2 Util. 2019;34:568–575.
  • Vass I, Cser K, Cheregi O. Molecular mechanisms of light stress of photosynthesis. Ann N Y Acad Sci. 2007;1113:114–122.
  • Amao Y. Solar fuel production based on the artificial photosynthesis system. ChemCatChem. 2011;3(3):458–474.
  • Wen FY, Li C. Hybrid artificial photosynthetic systems comprising semiconductors as light harvesters and biomimetic complexes as molecular cocatalysts. Acc Chem Res. 2013;46(11):2355–2364.
  • Lee SH, Choi DS, Kuk SK, et al. Photobiocatalysis: activating redox enzymes by direct or indirect transfer of photoinduced electrons. Angew Chem Int Ed Engl. 2018;57(27):7958–7985.
  • Gulder T, Seel CJ. Biocatalysis fueled by light: on the versatile combination of photocatalysis and enzymes. ChemBioChem. 2019;20(15):1871–1897.
  • Shih CF, Zhang T, Li J, et al. Powering the future with liquid sunshine. Joule. 2018;2(10):1925–1949.
  • Kornienko N, Zhang JZ, Sakimoto KK, et al. Interfacing nature’s catalytic machinery with synthetic materials for semiartificial photosynthesis. Nature Nanotech. 2018;13(10):890–899.
  • Majumdar P, Pant D, Patra S. Integrated photobioelectrochemical systems: a paradigm shift in artificial photosynthesis. Trends Biotechnol. 2017;35(4):285–287.
  • Zheng D, Zhang Y, Liu X, et al. Coupling natural systems with synthetic chemistry for light-driven enzymatic biocatalysis. Photosynth Res. 2020;143(2):221–231.
  • Wombwell C, Caputo CA, Reisner E. [NiFeSe]-hydrogenase chemistry. Acc Chem Res. 2015;48(11):2858–2865.
  • Reisner E, Powell DJ, Cavazza C, et al. Visible light-driven H(2) production by hydrogenases attached to dye-sensitized TiO(2) nanoparticles. J Am Chem Soc. 2009;131(51):18457–18466.
  • Bachmeier A, Wang VC, Woolerton TW, et al. How light-harvesting semiconductors can alter the bias of reversible electrocatalysts in favor of H2 production and CO2 reduction. J Am Chem Soc. 2013;135(40):15026–15032.
  • Woolerton TW, Sheard S, Reisner E, et al. Efficient and clean photoreduction of CO(2) to CO by enzyme-modified TiO(2) nanoparticles using visible light. J Am Chem Soc. 2010;132(7):2132–2133.
  • Tran NH, Nguyen D, Dwaraknath S, et al. An efficient light-driven P450 BM3 biocatalyst. J Am Chem Soc. 2013;135(39):14484–14487.
  • Ferry JG. Formate dehydrogenase. FEMS Microbiol Rev. 1990;7(3–4):377–382.
  • Sládek NE. Human aldehyde dehydrogenases: potential pathological, pharmacological, and toxicological impact. J Biochem Mol Toxicol. 2003;17(1):7–23.
  • Riveros‐Rosas H, Julián‐Sánchez A, Villalobos‐Molina R, et al. Diversity, taxonomy and evolution of medium‐chain dehydrogenase/reductase superfamily. Eur J Biochem. 2003;270(16):3309–3334.
  • Kalyanasundaram K, Graetzel M. Artificial photosynthesis: biomimetic approaches to solar energy conversion and storage. Curr Opin Biotechnol. 2010;21(3):298–310.
  • Miyatani R, Amao Y. Photochemical synthesis of formic acid from CO2 with formate dehydrogenase and water-soluble zinc porphyrin. J Mol Catal. 2004;27(2–3):121–125.
  • Tsujisho I, Toyoda M, Amao Y. Photochemical and enzymatic synthesis of formic acid from CO2 with chlorophyll and dehydrogenase system. Catal Comm. 2006;7(3):173–176.
  • Ikeyama S, Katagiri T, Amao Y. The improvement of formic acid production from CO2 with visible-light energy and formate dehydrogenase by the function of the viologen derivative with carbamoylmethyl group as an electron carrier. J Photochem Photobiol. 2018;358:362–367.
  • Kuk SK, Singh RK, Nam DH, et al. Photoelectrochemical reduction of carbon dioxide to methanol through a highly efficient enzyme cascade. Angew Chem Int Ed Engl. 2017;56(14):3827–3832.
  • Kim J, Lee SH, Tieves F, et al. Biocatalytic C = C bond reduction through carbon nanodot-sensitized regeneration of NADH analogues. Angew Chem Int Ed Engl. 2018;57(42):13825–13828.
  • Ou H, Yang P, Lin L, et al. Carbon nitride aerogels for the photoredox conversion of water. Angew Chem Int Ed Engl. 2017;56(36):10905–10910.
  • Ishibashi T, Higashi M, Ikeda S, et al. Photoelectrochemical CO2 reduction to formate with the sacrificial reagent free system of semiconductor photocatalysts and formate dehydrogenase. ChemCatChem. 2019;11(24):6227–6235.
  • Choi WS, Lee SH, Ko JW, et al. Human urine-fueled light-driven NADH regeneration for redox biocatalysis. ChemSusChem. 2016;9(13):1559–1564.
  • Ikeyama S, Amao Y. An artificial co‐enzyme based on the viologen skeleton for highly efficient CO2 reduction to formic acid with formate dehydrogenase. ChemCatChem. 2017;9(5):833–838.
  • Amao Y, Takahara S, Sakai Y. Visible-light induced hydrogen and formic acid production from biomass and carbon dioxide with enzymatic and artificial photosynthesis system. Int J Hydrogen Energy. 2014;39(35):20771–20776.
  • Noji T, Jin T, Nango M, et al. CO2 photoreduction by formate dehydrogenase and a Ru-complex in a nanoporous glass reactor. ACS Appl Mater Interfaces. 2017;9(4):3260–3265.
  • Ishibashi T, Ikeyama S, Ito M, et al. Light-driven CO2 reduction to formic acid with a hybrid system of biocatalyst and semiconductor based photocatalyst. Chem Lett. 2018;47(12):1505–1508.
  • Ikeyama S, Abe R, Shiotani S, et al. Effective artificial co-enzyme based on single-electron reduced form of 2,2′-bipyridinium salt derivatives for formate dehydrogenase in the catalytic conversion of CO2 to formic acid. BCSJ. 2018;91(9):1369–1376.
  • Ikeyama S, Amao Y. The effect of the functional ionic group of the viologen derivative on visible-light driven CO2 reduction to formic acid with the system consisting of water-soluble zinc porphyrin and formate dehydrogenase. Photochem Photobiol Sci. 2018;17(1):60–68.
  • Ikeyama S, Abe R, Shiotani S, et al. Novel artificial coenzyme based on reduced form of diquat for formate dehydrogenase in the catalytic conversion of CO2 to formic acid. Chem Lett. 2016;45(8):907–909.
  • Ikeyama S, Amao Y. Abnormal co-enzymatic behavior of a one-electron reduced bipyridinium salt with a carbamoyl group on the catalytic activity of CO2 reduction by formate dehydrogenase. New J Chem. 2018;42(19):15556–15560.
  • Ikeyama S, Amao Y. A novel electron carrier molecule based on a viologen derivative for visible light-driven CO2 reduction to formic acid with the system of zinc porphyrin and formate dehydrogenase. Sustainable Energy Fuels. 2017;1(8):1730–1733.
  • Amao Y. Viologens for coenzymes of biocatalysts with the function of CO2 reduction and utilization. Chem Lett. 2017;46(6):780–788.
  • Meng J, Tian Y, Li C, et al. A thiophene-modified double shell hollow gC3N4 nanosphere boosts NADH regeneration via synergistic enhancement of charge excitation and separation. Catal Sci Technol. 2019;9(8):1911–1921.
  • Chen Y, Li P, Zhou J, et al. Integration of enzymes and photosensitizers in a hierarchical meso-porous metal–organic framework for light-driven CO2 reduction. J Am Chem Soc. 2020;142(4):1768–1773.
  • Hummel W, Kula MR. Dehydrogenases for the synthesis of chiral compounds. EJB Rev. 1989;14(1):1–13.
  • Carrea G, Ottolina G. Stereoselective synthesis of drugs and drug precursors by hydrolases and oxidoreductases. Biocatal Biotransformation. 2000;18(2):119–132.
  • Bommarius AS, Schwarm M, Stingl K, et al. Synthesis and use of enantiomerically pure tert-leucine. Tetrahedron . 1995;6(12):2851–2888.
  • Brzica H, Breljak D, Burckhardt BC, et al. Oxalate: from the environment to kidney stones. Arh Hig Rada Toksiko. 2013;64(4):609–630.
  • Rose GA, editor. Oxalate metabolism in relation to urinary stone. In: The bloomsbury series in clinical science. Berlin: Springer-Verlag; 1988.
  • Worramongkona P, Seeda K, Phansomboon P, et al. A simple paper-based colorimetric device for rapid and sensitive urinary oxalate determinations. Anal Sci. 2018;34(1):103–108.
  • Hovda KE, Urdal P, Jacobsen D. Increased serum formate in the diagnosis of methanol poisoning. J Anal Toxicol. 2005;29(6):586–588.
  • Barceloux DG, Bond GR, Krenzelok EP, et al. American academy of clinical toxicology practice guidelines on the treatment of methanol poisoning. J Clin Toxicol. 2002;40(4):415–446.
  • Muthuvel A, Rajamani R, Sheeladevi R. Therapeutic response to single intravenous bolus administration of formate dehydrogenase in methanol-intoxicated rats. Toxicol Lett. 2006;161(2):89–95.
  • Yamamoto H, Mitsuhashi K, Kimoto N, et al. Robust NADH-regenerator: improved alpha-haloketone-resistant formate dehydrogenase. Appl Microbiol Biotechnol. 2005;67(1):33–39.
  • Slusarczyk H, Felber S, Kula MR, et al. Stabilization of NAD-dependent formate dehydrogenase from Candida boidinii by site-directed mutagenesis of cysteine residues. Eur J Biochem. 2000;267(5):1280–1289.
  • Zhao H, Van Der Donk WA. Regeneration of cofactors for use in biocatalysis. Curr Opin Biotechnol. 2003;14(6):583–589.
  • Hollmann F, Arends IW, Buehler K. Biocatalytic redox reactions for organic synthesis: nonconventional regeneration methods. ChemCatChem. 2010;2(7):762–782.
  • Xiong J, Chen H, Liu R, et al. Tuning a bi-enzymatic cascade reaction in Escherichia coli to facilitate NADPH regeneration for ε-caprolactone production. Bioresour Bioprocess. 2021;8(1):1–10.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.