1,299
Views
4
CrossRef citations to date
0
Altmetric
Review Articles

Modular tuning engineering and versatile applications of genetically encoded biosensors

, , , & ORCID Icon
Pages 1010-1027 | Received 17 Mar 2021, Accepted 07 Jun 2021, Published online: 06 Oct 2021

References

  • Clark LC, Jr., Lyons C. Electrode systems for continuous monitoring in cardiovascular surgery. Ann N Y Acad Sci. 1962;102:29–45.
  • Jiang B, Song Y, Liu Z, et al. Technology: whole-cell bioreporters for evaluating petroleum hydrocarbon contamination. Crit Rev Environ Sci Technol. 2020;51:272–322.
  • Daunert S, Barrett G, Feliciano JS, et al. Genetically engineered whole-cell sensing systems: coupling biological recognition with reporter genes. Chem Rev. 2000;100(7):2705–2738.
  • Dekker L, Polizzi KM. Sense and sensitivity in bioprocessing-detecting cellular metabolites with biosensors. Curr Opin Chem Biol. 2017;40:31–36.
  • Goers L, Kylilis N, Tomazou M, et al. Engineering microbial biosensors. Methods Microbiol. 2013;40:119–156.
  • Vigneshvar S, Sudhakumari CC, Senthilkumaran B, et al. Recent advances in biosensor technology for potential Applications - An overview. Front Bioeng Biotechnol. 2016;4:11.
  • Jang S, Lee B, Jeong HH, et al. On-chip analysis, indexing and screening for chemical producing bacteria in a microfluidic static droplet array. Lab Chip. 2016;16(10):1909–1916.
  • Belkin S. Microbial whole-cell sensing systems of environmental pollutants. Curr Opin Microbiol. 2003;6(3):206–212.
  • Isabella VM, Ha BN, Castillo MJ, et al. Development of a synthetic live bacterial therapeutic for the human metabolic disease phenylketonuria. Nat Biotechnol. 2018;36(9):857–864.
  • Kurtz CB, Millet YA, Puurunen MK, et al. An engineered E. coli nissle improves hyperammonemia and survival in mice and shows dose-dependent exposure in healthy humans. Sci Transl Med. 2019;11(475):eaau7975.
  • Binder S, Schendzielorz G, Stabler N, et al. A high-throughput approach to identify genomic variants of bacterial metabolite producers at the single-cell level. Genome Biol. 2012;13(5):R40.
  • Liu Y, Zhuang Y, Ding D, et al. Biosensor-based evolution and elucidation of a biosynthetic pathway in Escherichia coli. ACS Synth Biol. 2017;6(5):837–848.
  • Fang M, Wang T, Zhang C, et al. Intermediate-sensor assisted push-pull strategy and its application in heterologous deoxyviolacein production in Escherichia coli. Metab Eng. 2016;33:41–51.
  • Liu SD, Wu YN, Wang TM, et al. Maltose utilization as a novel selection strategy for continuous evolution of microbes with enhanced metabolite production. ACS Synth Biol. 2017;6(12):2326–2338.
  • Goers L, Ainsworth C, Goey CH, et al. Whole-cell Escherichia coli lactate biosensor for monitoring mammalian cell cultures during biopharmaceutical production. Biotechnol Bioeng. 2017;114(6):1290–1300.
  • Skjoedt ML, Snoek T, Kildegaard KR, et al. Engineering prokaryotic transcriptional activators as metabolite biosensors in yeast. Nat Chem Biol. 2016;12(11):951–958.
  • Xu X, Li X, Liu Y, et al. Pyruvate-responsive genetic circuits for dynamic control of Central metabolism. Nat Chem Biol. 2020;16(11):1261–1268.
  • Fiorentino G, Ronca R, Bartolucci S. A novel E. coli biosensor for detecting aromatic aldehydes based on a responsive inducible archaeal promoter fused to the green fluorescent protein. Appl Microbiol Biotechnol. 2009;82(1):67–77.
  • Jha RK, Kern TL, Fox DT, et al. CE MS: engineering an Acinetobacter regulon for biosensing and high-throughput enzyme screening in E. coli via flow cytometry. Nucleic Acids Res. 2014;42(12):8150–8160.
  • Machado LF, Dixon N. Development and substrate specificity screening of an in vivo biosensor for the detection of biomass derived aromatic chemical building blocks. Chem Commun (Camb). 2016;52(76):11402–11405.
  • Marin AM, Souza EM, Pedrosa FO, et al. Naringenin degradation by the endophytic diazotroph Herbaspirillum seropedicae SmR1. Microbiology (Reading). 2013;159(Pt 1):167–175.
  • Kasey CM, Zerrad M, Li Y, et al. Development of transcription factor-based designer macrolide biosensors for metabolic engineering and synthetic biology. ACS Synth Biol. 2018;7(1):227–239.
  • Zhang F, Carothers JM, Keasling JD. Design of a dynamic sensor-regulator system for production of chemicals and fuels derived from fatty acids. Nat Biotechnol. 2012;30(4):354–359.
  • Liu D, Xiao Y, Evans BS, et al. Negative feedback regulation of fatty acid production based on a malonyl-CoA sensor-actuator. ACS Synth Biol. 2015;4(2):132–140.
  • Xu P, Wang W, Li L, et al. Design and kinetic analysis of a hybrid promoter-regulator system for malonyl-CoA sensing in Escherichia coli. ACS Chem Biol. 2014;9(2):451–458.
  • Dietrich JA, Shis DL, Alikhani A, et al. Transcription factor-based screens and synthetic selections for microbial small-molecule biosynthesis. ACS Synth Biol. 2013;2(1):47–58.
  • Reed B, Blazeck J, Alper H. Evolution of an alkane-inducible biosensor for increased responsiveness to short-chain alkanes. J Biotechnol. 2012;158(3):75–79.
  • Siedler S, Schendzielorz G, Binder S, et al. SoxR as a single-cell biosensor for NADPH-consuming enzymes in Escherichia coli. ACS Synth Biol. 2014;3(1):41–47.
  • Koch M, Pandi A, Delepine B, et al. A dataset of small molecules triggering transcriptional and translational cellular responses. Data Brief. 2018;17:1374–1378.
  • Breaker RR. Prospects for riboswitch discovery and analysis. Mol Cell. 2011;43(6):867–879.
  • Barrick JE. Predicting riboswitch regulation on a genomic scale. In: Serganov A. editor. Riboswitches: methods and protocols. Totowa (NJ): Humana Press; 2009. 1–13.
  • Lee SW, Oh MK. A synthetic suicide riboswitch for the high-throughput screening of metabolite production in Saccharomyces cerevisiae. Metab Eng. 2015;28:143–150.
  • Winkler WC, Nahvi A, Roth A, et al. Control of gene expression by a natural metabolite-responsive ribozyme. Nature. 2004;428(6980):281–286.
  • Liu CC, Arkin AP. Cell biology. The case for RNA. Science. 2010;330(6008):1185–1186.
  • Henkin TM. Riboswitch RNAs: using RNA to sense cellular metabolism. Genes Dev. 2008;22(24):3383–3390.
  • Meyer A, Pellaux R, Potot S, et al. Optimization of a whole-cell biocatalyst by employing genetically encoded product sensors inside nanolitre reactors. Nat Chem. 2015;7(8):673–678.
  • Nahvi A, Barrick JE, Breaker RR. Coenzyme B12 riboswitches are widespread genetic control elements in prokaryotes. Nucleic Acids Res. 2004;32(1):143–150.
  • Delfosse V, Bouchard P, Bonneau E, et al. Riboswitch structure: an internal residue mimicking the purine ligand. Nucleic Acids Res. 2010;38(6):2057–2068.
  • Xiu Y, Jang S, Jones JA, et al. Naringenin-responsive riboswitch-based fluorescent biosensor module for Escherichia coli co-cultures. Biotechnol Bioeng. 2017;114(10):2235–2244.
  • Jang S, Jang S, Im DK, et al. Artificial Caprolactam-Specific riboswitch as an intracellular metabolite sensor. ACS Synth Biol. 2019;8(6):1276–1283.
  • Wang J, Gao D, Yu X, et al. Evolution of a chimeric aspartate kinase for L-lysine production using a synthetic RNA device. Appl Microbiol Biotechnol. 2015;99(20):8527–8536.
  • Yang J, Seo SW, Jang S, et al. Synthetic RNA devices to expedite the evolution of metabolite-producing microbes. Nat Commun. 2013;4:1413.
  • Zhou LB, Zeng AP. Exploring lysine riboswitch for metabolic flux control and improvement of L-lysine synthesis in Corynebacterium glutamicum. ACS Synth Biol. 2015;4(6):729–734.
  • de la Pena M, Garcia-Robles I, Cervera A. The hammerhead ribozyme: a long history for a short RNA. Molecules. 2017;22(1):78.
  • Gebetsberger J, Micura R. Unwinding the twister ribozyme: from structure to mechanism. Wires Rna. 2017;8(3):e1402.
  • Felletti M, Hartig JS. Ligand-dependent ribozymes. Wires RNA. 2017;8:e1395.
  • Yang P, Wang J, Pang Q, et al. Pathway optimization and key enzyme evolution of N-acetylneuraminate biosynthesis using an in vivo aptazyme-based biosensor. Metab Eng. 2017;43(Pt A):21–28.
  • Ravikumar S, Baylon MG, Park SJ, et al. Engineered microbial biosensors based on bacterial two-component systems as synthetic biotechnology platforms in bioremediation and biorefinery. Microb Cell Fact. 2017;16(1):62.
  • Zhang F, Keasling J. Biosensors and their applications in microbial metabolic engineering. Trends Microbiol. 2011;19(7):323–329.
  • Laub MT, Goulian M. Specificity in two-component signal transduction pathways. Annu Rev Genet. 2007;41:121–145.
  • Ganesh I, Vidhya S, Eom GT, et al. Construction of methanol-sensing Escherichia coli by the introduction of a Paracoccus denitrificans MxaY-based chimeric two-component system. J Microbiol Biotechnol. 2017;27(6):1106–1111.
  • Ganesh I, Ravikumar S, Lee SH, et al. Engineered fumarate sensing Escherichia coli based on novel chimeric two-component system. J Biotechnol. 2013;168(4):560–566.
  • Ganesh I, Ravikumar S, Yoo IK, et al. Construction of malate-sensing Escherichia coli by introduction of a novel chimeric two-component system. Bioprocess Biosyst Eng. 2015;38(4):797–804.
  • Amiram M, Haimovich AD, Fan C, et al. Evolution of translation machinery in recoded bacteria enables multi-site incorporation of nonstandard amino acids. Nat Biotechnol. 2015;33(12):1272–1279.
  • Ninfa AJ. Use of two-component signal transduction systems in the construction of synthetic genetic networks. Curr Opin Microbiol. 2010;13(2):240–245.
  • Mannan AA, Liu D, Zhang F, et al. Fundamental design principles for transcription-factor-based metabolite biosensors. ACS Synth Biol. 2017;6(10):1851–1859.
  • Ang J, Harris E, Hussey BJ, et al. Tuning response curves for synthetic biology. ACS Synth Biol. 2013;2(10):547–567.
  • Trabelsi H, Koch M, Faulon JL. Building a minimal and generalizable model of transcription factor-based biosensors: showcasing flavonoids. Biotechnol Bioeng. 2018;115(9):2292–2304.
  • Brewster RC, Weinert FM, Garcia HG, et al. The transcription factor titration effect dictates level of gene expression. Cell. 2014;156(6):1312–1323.
  • Garcia HG, Phillips R. Quantitative dissection of the simple repression input-output function. Proc Natl Acad Sci U S A. 2011;108(29):12173–12178.
  • Chen Y, Ho JML, Shis DL, et al. Tuning the dynamic range of bacterial promoters regulated by ligand-inducible transcription factors. Nat Commun. 2018;9(1):64.
  • Dabirian Y, Li X, Chen Y, et al. Expanding the dynamic range of a transcription factor-based biosensor in Saccharomyces cerevisiae. ACS Synth Biol. 2019;8(9):1968–1975.
  • Meyer AJ, Segall-Shapiro TH, Glassey E, et al. Escherichia coli "marionette" strains with 12 highly optimized small-molecule sensors. Nat Chem Biol. 2019;15(2):196–204.
  • Hicks M, Bachmann TT, Wang B. Synthetic biology enables programmable cell-based biosensors. Chemphyschem. 2020;21(2):132–144.
  • Wan X, Volpetti F, Petrova E, et al. Cascaded amplifying circuits enable ultrasensitive cellular sensors for toxic metals. Nat Chem Biol. 2019;15(5):540–548.
  • Jang S, Jung GY. Systematic optimization of L-tryptophan riboswitches for efficient monitoring of the metabolite in Escherichia coli. Biotechnol Bioeng. 2018;115(1):266–271.
  • Brophy JA, Voigt CA. Antisense transcription as a tool to tune gene expression. Mol Syst Biol. 2016;12(1):854.
  • Ramakrishnan P, Tabor JJ. Repurposing synechocystis PCC6803 UirS-UirR as a UV-Violet/green photoreversible transcriptional regulatory tool in E. coli. ACS Synth Biol. 2016;5(7):733–740.
  • Daeffler KN, Galley JD, Sheth RU, et al. Engineering bacterial thiosulfate and tetrathionate sensors for detecting gut inflammation. Mol Syst Biol. 2017;13(4):923.
  • Ong NT, Olson EJ, Tabor JJ. Engineering an E. coli near-infrared light sensor. ACS Synth Biol. 2018;7(1):240–248.
  • Sawai H, Yamanaka M, Sugimoto H, et al. Structural basis for the transcriptional regulation of heme homeostasis in Lactococcus lactis. J Biol Chem. 2012;287(36):30755–30768.
  • Yu H, Chen Z, Wang N, et al. Engineering transcription factor BmoR for screening butanol overproducers. Metab Eng. 2019;56:28–38.
  • Wang B, Barahona M, Buck M. Amplification of small molecule-inducible gene expression via tuning of intracellular receptor densities. Nucleic Acids Res. 2015;43(3):1955–1964.
  • Chong H, Ching CB. Development of colorimetric-based whole-cell biosensor for organophosphorus compounds by engineering transcription regulator DmpR. ACS Synth Biol. 2016;5(11):1290–1298.
  • Georgi C, Buerger J, Hillen W, et al. Promoter strength driving TetR determines the regulatory properties of tet-controlled expression systems. PLoS One. 2012;7(7):e41620.
  • Rossger K, Charpin-El-Hamri G, Fussenegger M. A closed-loop synthetic gene circuit for the treatment of diet-induced obesity in mice. Nat Commun. 2013;4:2825.
  • Berset Y, Merulla D, Joublin A, et al. Mechanistic modeling of genetic circuits for ArsR arsenic regulation. ACS Synth Biol. 2017;6(5):862–874.
  • Ho JCH, Pawar SV, Hallam SJ, et al. An improved Whole-Cell biosensor for the discovery of Lignin-Transforming enzymes in functional metagenomic screens. ACS Synth Biol. 2018;7(2):392–398.
  • Serganov A, Huang L, Patel DJ. Structural insights into amino acid binding and gene control by a lysine riboswitch. Nature. 2008;455(7217):1263–1267.
  • Pang Q, Han H, Liu X, et al. In vivo evolutionary engineering of riboswitch with high-threshold for N-acetylneuraminic acid production. Metab Eng. 2020;59:36–43.
  • Landry BP, Palanki R, Dyulgyarov N, et al. Phosphatase activity tunes two-component system sensor detection threshold. Nat Commun. 2018;9(1):1433.
  • Pham VD, Ravikumar S, Lee SH, et al. Modification of response behavior of zinc sensing HydHG two-component system using a self-activation loop and genomic integration. Bioprocess Biosyst Eng. 2013;36(9):1185–1190.
  • Zhang J, Wang Z, Su T, et al. Tuning the binding affinity of Heme-Responsive biosensor for precise and dynamic pathway regulation. iScience. 2020;23(5):101067.
  • Cayron J, Prudent E, Escoffier C, et al. Pushing the limits of nickel detection to nanomolar range using a set of engineered bioluminescent Escherichia coli. Environ Sci Pollut Res Int. 2017;24(1):4–14.
  • Zhang J, Barajas JF, Burdu M, et al. Development of a transcription Factor-Based lactam biosensor. ACS Synth Biol. 2017;6(3):439–445.
  • Shi S, Ang EL, Zhao H. In vivo biosensors: mechanisms, development, and applications. J Ind Microbiol Biotechnol. 2018;45(7):491–516.
  • Libis V, Delepine B, Faulon JL. Expanding biosensing abilities through computer-aided design of metabolic pathways. ACS Synth Biol. 2016;5(10):1076–1085.
  • De Paepe B, Peters G, Coussement P, et al. Tailor-made transcriptional biosensors for optimizing microbial cell factories. J Ind Microbiol Biotechnol. 2017;44(4-5):623–645.
  • Collins CH, Arnold FH, Leadbetter JR. Directed evolution of Vibrio fischeri LuxR for increased sensitivity to a broad spectrum of acyl-homoserine lactones. Mol Microbiol. 2005;55(3):712–723.
  • Taylor ND, Garruss AS, Moretti R, et al. Engineering an allosteric transcription factor to respond to new ligands. Nat Methods. 2016;13(2):177–183.
  • Galvao TC, Mencia M, de Lorenzo V. Emergence of novel functions in transcriptional regulators by regression to stem protein types. Mol Microbiol. 2007;65(4):907–919.
  • Hawkins AC, Arnold FH, Stuermer R, et al. Directed evolution of Vibrio fischeri LuxR for improved response to butanoyl-homoserine lactone. Appl Environ Microbiol. 2007;73(18):5775–5781.
  • Collins CH, Leadbetter JR, Arnold FH. Dual selection enhances the signaling specificity of a variant of the quorum-sensing transcriptional activator LuxR. Nat Biotechnol. 2006;24(6):708–712.
  • Cebolla A, Sousa C, de Lorenzo V. Effector specificity mutants of the transcriptional activator NahR of naphthalene degrading Pseudomonas define protein sites involved in binding of aromatic inducers. J Biol Chem. 1997;272(7):3986–3992.
  • Tang SY, Fazelinia H, Cirino PC. AraC regulatory protein mutants with altered effector specificity. J Am Chem Soc. 2008;130(15):5267–5271.
  • Chen W, Zhang S, Jiang P, et al. Design of an ectoine-responsive AraC mutant and its application in metabolic engineering of ectoine biosynthesis. Metab Eng. 2015;30:149–155.
  • Tang SY, Cirino PC. Design and application of a mevalonate-responsive regulatory protein. Angew Chem Int Ed Engl. 2011;50(5):1084–1086.
  • Tang SY, Qian S, Akinterinwa O, et al. Screening for enhanced triacetic acid lactone production by recombinant Escherichia coli expressing a designed triacetic acid lactone reporter. J Am Chem Soc. 2013;135(27):10099–10103.
  • Henssler EM, Scholz O, Lochner S, et al. Structure-based design of tet repressor to optimize a new inducer specificity. Biochemistry. 2004;43(29):9512–9518.
  • Chai Y, Winans SC. Site-directed mutagenesis of a LuxR-type quorum-sensing transcription factor: alteration of autoinducer specificity. Mol Microbiol. 2004;51(3):765–776.
  • Looger LL, Dwyer MA, Smith JJ, et al. Computational design of receptor and sensor proteins with novel functions. Nature. 2003;423(6936):185–190.
  • Yang W, Lai L. Computational design of ligand-binding proteins. Curr Opin Struct Biol. 2017;45:67–73.
  • Tinberg CE, Khare SD, Dou J, et al. Computational design of ligand-binding proteins with high affinity and selectivity. Nature. 2013;501(7466):212–216.
  • Lassila JK, Privett HK, Allen BD, et al. Combinatorial methods for small-molecule placement in computational enzyme design. Proc Natl Acad Sci U S A. 2006;103(45):16710–16715.
  • de los Santos EL, Meyerowitz JT, Mayo SL, et al. Engineering transcriptional regulator effector specificity using computational design and in vitro rapid prototyping: developing a vanillin sensor. ACS Synth Biol. 2016;5(4):287–295.
  • Jha RK, Kern TL, Kim Y, et al. A microbial sensor for organophosphate hydrolysis exploiting an engineered specificity switch in a transcription factor. Nucleic Acids Res. 2016;44(17):8490–8500.
  • Wu J, Jiang P, Chen W, et al. Design and application of a lactulose biosensor. Sci Rep. 2017;7:45994.
  • Jha RK, Chakraborti S, Kern TL, et al. Rosetta comparative modeling for library design: engineering alternative inducer specificity in a transcription factor. Proteins. 2015;83(7):1327–1340.
  • Dixon N, Duncan JN, Geerlings T, et al. Reengineering orthogonally selective riboswitches. Proc Natl Acad Sci U S A. 2010;107(7):2830–2835.
  • Jang S, Jang S, Yang J, et al. RNA-based dynamic genetic controllers: development strategies and applications. Curr Opin Biotechnol. 2018;53:1–11.
  • Raman S, Taylor N, Genuth N, et al. Engineering allostery. Trends Genet. 2014;30(12):521–528.
  • Garmendia J, Devos D, Valencia A, et al. A la carte transcriptional regulators: unlocking responses of the prokaryotic enhancer-binding protein XylR to non-natural effectors. Mol Microbiol. 2001;42(1):47–59.
  • Meinhardt S, Manley MW, Jr., Becker NA, et al. Novel insights from hybrid LacI/GalR proteins: family-wide functional attributes and biologically significant variation in transcription repression. Nucleic Acids Res. 2012;40(21):11139–11154.
  • Selvamani V, Ganesh I, Maruthamuthu M, et al. Engineering chimeric two-component system into Escherichia coli from Paracoccus denitrificans to sense methanol. Biotechnol Bioprocess Eng . 2017;22(3):225–230.
  • Shis DL, Hussain F, Meinhardt S, et al. Modular, multi-input transcriptional logic gating with orthogonal LacI/GalR family chimeras. ACS Synth Biol. 2014;3(9):645–651.
  • Younger AK, Dalvie NC, Rottinghaus AG, et al. Engineering modular biosensors to confer metabolite-responsive regulation of transcription. ACS Synth Biol. 2017;6(2):311–325.
  • Juarez JF, Lecube-Azpeitia B, Brown SL, et al. Biosensor libraries harness large classes of binding domains for construction of allosteric transcriptional regulators. Nat Commun. 2018;9(1):3101.
  • Feng J, Jester BW, Tinberg CE, et al. A general strategy to construct small molecule biosensors in eukaryotes. Elife. 2015;4:e10606.
  • Umeyama T, Okada S, Ito T. Synthetic gene circuit-mediated monitoring of endogenous metabolites: identification of GAL11 as a novel multicopy enhancer of s-adenosylmethionine level in yeast. ACS Synth Biol. 2013;2(8):425–430.
  • Chou HH, Keasling JD. Programming adaptive control to evolve increased metabolite production. Nat Commun. 2013;4:2595.
  • Chang HJ, Mayonove P, Zavala A, et al. A modular receptor platform to expand the sensing repertoire of bacteria. ACS Synth Biol. 2018;7(1):166–175.
  • Liu D, Evans T, Zhang F. Applications and advances of metabolite biosensors for metabolic engineering. Metab Eng. 2015;31:35–43.
  • Schendzielorz G, Dippong M, GrüNberger A, et al. Taking control over control: use of product sensing in single cells to remove flux control at key enzymes in biosynthesis pathways. ACS Synth Biol. 2014;3(1):21–29.
  • Rogers JK, Church GM. Genetically encoded sensors enable real-time observation of metabolite production. Proc Natl Acad Sci USA. 2016;113(9):2388–2393.
  • Rogers JK, Guzman CD, Taylor ND, et al. Synthetic biosensors for precise gene control and real-time monitoring of metabolites. Nucleic Acids Res. 2015;43(15):7648–7660.
  • Unge A, Tombolini R, Molbak L, et al. Simultaneous monitoring of cell number and metabolic activity of specific bacterial populations with a dual gfp-luxAB marker system. Appl Environ Microbiol. 1999;65(2):813–821.
  • Lei Y, Chen W, Mulchandani A. Microbial biosensors. Anal Chim Acta. 2006;568(1-2):200–210.
  • Zhang C, Su FY, Zhang JF, Yan ST, et al. Luciferase and fluorescent protein as dual reporters analyzing the effect of n-dodecyltrimethylammonium bromide on the physiology of Pseudomonas putida. Appl Microbiol Biotechnol. 2012;93(1):393–400.
  • Blouin K, Walker SG, Smit J, et al. Characterization of in vivo reporter systems for gene expression and biosensor applications based on luxAB luciferase genes. Appl Environ Microbiol. 1996;62(6):2013–2021.
  • Sun Y, Zhao X, Zhang D, et al. New naphthalene whole-cell bioreporter for measuring and assessing naphthalene in polycyclic aromatic hydrocarbons contaminated site. Chemosphere. 2017;186:510–518.
  • Yagur-Kroll S, Lalush C, Rosen R, et al. Escherichia coli bioreporters for the detection of 2,4-dinitrotoluene and 2,4,6-trinitrotoluene. Appl Microbiol Biotechnol. 2014;98(2):885–895.
  • Shemer B, Palevsky N, Yagur-Kroll S, et al. Genetically engineered microorganisms for the detection of explosives' residues. Front Microbiol. 2015;6:1175.
  • Xiao Y, Bowen CH, Liu D, et al. Exploiting nongenetic cell-to-cell variation for enhanced biosynthesis. Nat Chem Biol. 2016;12(5):339–344.
  • Desai SK, Gallivan JP. Genetic screens and selections for small molecules based on a synthetic riboswitch that activates protein translation. J Am Chem Soc. 2004;126(41):13247–13254.
  • Raman S, Rogers JK, Taylor ND, et al. Evolution-guided optimization of biosynthetic pathways. Proc Natl Acad Sci U S A. 2014;111(50):17803–17808.
  • Wackwitz A, Harms H, Chatzinotas A, et al. Internal arsenite bioassay calibration using multiple bioreporter cell lines. Microb Biotechnol. 2008;1(2):149–157.
  • Watstein DM, Styczynski MP. Development of a pigment-based whole-cell zinc biosensor for human serum. ACS Synth Biol. 2018;7(1):267–275.
  • Webster DP, TerAvest MA, Doud DF, et al. Angenent LT: an arsenic-specific biosensor with genetically engineered Shewanella oneidensis in a bioelectrochemical system. Biosens Bioelectron. 2014;62:320–324.
  • Cui Y, Lai B, Tang X. Microbial fuel cell-based biosensors. Biosensors. 2019;9(3):801–809.
  • Bourdeau RW, Lee-Gosselin A, Lakshmanan A, et al. Acoustic reporter genes for noninvasive imaging of microorganisms in mammalian hosts. Nature. 2018;553(7686):86–90.
  • Mimee M, Nadeau P, Hayward A, et al. An ingestible bacterial-electronic system to monitor gastrointestinal health. Science. 2018;360(6391):915–918.
  • Danino T, Prindle A, Kwong GA, et al. Programmable probiotics for detection of cancer in urine. Sci Transl Med. 2015;7(289):289ra84–ra289r284.
  • Kirscher L, Dean-Ben XL, Scadeng M, et al. Doxycycline inducible melanogenic vaccinia virus as theranostic anti-Cancer agent. Theranostics. 2015;5(10):1045–1057.
  • Fedson DS. Treating the host response to emerging virus diseases: lessons learned from sepsis, pneumonia, influenza and ebola. Ann Transl Med. 2016;4(21):421.
  • Liu X, Tang TC, Tham E, et al. Stretchable living materials and devices with hydrogel-elastomer hybrids hosting programmed cells. Proc Natl Acad Sci U S A. 2017;114(9):2200–2205.
  • Brophy JA, Voigt CA. Principles of genetic circuit design. Nat Methods. 2014;11(5):508–520.
  • Nielsen AA, Der BS, Shin J, et al. Genetic circuit design automation. Science. 2016;352(6281):aac7341.
  • Soma Y, Hanai T. Self-induced metabolic state switching by a tunable cell density sensor for microbial isopropanol production. Metab Eng. 2015;30:7–15.
  • Gupta A, Reizman IM, Reisch CR, et al. Dynamic regulation of metabolic flux in engineered bacteria using a pathway-independent quorum-sensing circuit. Nat Biotechnol. 2017;35(3):273–279.
  • Farmer WR, Liao JC. Improving lycopene production in Escherichia coli by engineering metabolic control. Nat Biotechnol. 2000;18(5):533–537.
  • Xu P, Li L, Zhang F, et al. Improving fatty acids production by engineering dynamic pathway regulation and metabolic control. Proc Natl Acad Sci U S A. 2014;111(31):11299–11304.
  • Dinh CV, Prather KLJ. Development of an autonomous and bifunctional quorum-sensing circuit for metabolic flux control in engineered Escherichia coli. Proc Natl Acad Sci U S A. 2019;116(51):25562–25568.
  • Lo TM, Chng SH, Teo WS, et al. A Two-Layer gene circuit for decoupling cell growth from metabolite production. Cell Syst. 2016;3(2):133–143.
  • Hwang IY, Tan MH, Koh E, et al. Reprogramming microbes to be pathogen-seeking killers. ACS Synth Biol. 2014;3(4):228–237.
  • Swofford CA, Van Dessel N, Forbes NS. Quorum-sensing Salmonella selectively trigger protein expression within tumors. Proc Natl Acad Sci U S A. 2015;112(11):3457–3462.
  • Zheng JH, Nguyen VH, Jiang SN, et al. Two-step enhanced cancer immunotherapy with engineered Salmonella typhimurium secreting heterologous flagellin. Sci Transl Med. 2017;9(376):eaak9537.
  • Shao J, Xue S, Yu G, et al. Smartphone-controlled optogenetically engineered cells enable semiautomatic glucose homeostasis in diabetic mice. Sci Transl Med. 2017;9(387):eaal2298.
  • Yin J, Yang L, Mou L, et al. A green tea-triggered genetic control system for treating diabetes in mice and monkeys. Sci Transl Med. 2019;11(515):eaav8826.
  • Shao J, Wang M, Yu G, et al. Synthetic far-red light-mediated CRISPR-dCas9 device for inducing functional neuronal differentiation. Proc Natl Acad Sci U S A. 2018;115(29):E6722–E6730.
  • Zhang D, Zhao Y, He Y, et al. Characterization and modeling of transcriptional cross-regulation in Acinetobacter baylyi ADP1. ACS Synth Biol. 2012;1(7):274–283.
  • Song Y, Li G, Thornton SF, et al. Optimization of bacterial whole cell bioreporters for toxicity assay of environmental samples. Environ Sci Technol. 2009;43(20):7931–7938.
  • Segall-Shapiro TH, Sontag ED, Voigt CA. Engineered promoters enable constant gene expression at any copy number in bacteria. Nat Biotechnol. 2018;36(4):352–358.
  • Bjerketorp J, Hakansson S, Belkin S, et al. Advances in preservation methods: keeping biosensor microorganisms alive and active. Curr Opin Biotechnol. 2006;17(1):43–49.
  • Yu D, Volponi J, Chhabra S, et al. Aqueous sol-gel encapsulation of genetically engineered moraxella spp. cells for the detection of organophosphates. Biosens Bioelectron. 2005;20(7):1433–1437.
  • Jiang B, Lian L, Xing Y, et al. Advances of magnetic nanoparticles in environmental application: environmental remediation and (bio)sensors as case studies. Environ Sci Pollut Res Int. 2018;25(31):30863–30879.
  • Jiang B, Li G, Xing Y, et al. A whole-cell bioreporter assay for quantitative genotoxicity evaluation of environmental samples. Chemosphere. 2017;184:384–392.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.