371
Views
2
CrossRef citations to date
0
Altmetric
Review Articles

Advent of phytobiologics and nano-interventions for bone remodeling: a comprehensive review

, , &
Pages 142-169 | Received 16 Jul 2021, Accepted 07 Nov 2021, Published online: 26 Dec 2021

References

  • Ottewell PD. The role of osteoblasts in bone metastasis. J Bone Oncol. 2016;5(3):124–127.
  • Tobeiha M, Moghadasian MH, Amin N, et al. RANKL/RANK/OPG pathway: a mechanism involved in exercise-induced bone remodeling. BioMed Res Int. 2020;2020:6910312;2020.
  • James AW, LaChaud G, Shen J, et al. A review of the clinical side effects of bone morphogenetic protein-2. Tissue Eng Part B Rev. 2016;22(4):284–297.
  • Vargas‐Franco JW, Castaneda B, Rédiní F, et al. Paradoxical side effects of bisphosphonates on the skeleton: what do we know and what can we do? J Cell Physiol. 2018;233(8):5696–5715.
  • Suvarna V, Sarkar M, Chaubey P, et al. Bone health and natural products-an insight front pharmacol. Front Pharmacol. 2018;9:981.
  • Gilbert SF. Osteogenesis: the development of bones. Dev Biol. 2000;6:455–460.
  • Breeland G, Sinkler MA, Menezes RG. Embryology, bone ossification. Treasure Island (FL): StatPearls Publishing; 2021.
  • Dennis SC, Berkland CJ, Bonewald LF, et al. Endochondral ossification for enhancing bone regeneration: converging native extracellular matrix biomaterials and developmental engineering in vivo. Tissue Eng Part B Rev. 2015;21(3):247–266.
  • Nishida T, Kubota S, Takigawa M. The role of osteocytes in bone remodeling clin calcium. Clin Calcium. 2017;27(12):1697–1703.
  • Teotia AK. Bioinspired functionalized bone substitutes for skeletal regenerative therapies [dissertation]. Kanpur: Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, India; 2018.
  • Florencio-Silva R, Sasso GRS, Sasso-Cerri E, et al. Biology of bone tissue: structure, function, and factors that influence bone cell. Biomed Res Int. 2015;2015:421746–421747.
  • Erkhembaatar M, Gu DR, Lee SH, et al. Lysosomal Ca2+ signaling is essential for osteoclastogenesis and bone remodeling. J Bone Miner Res. 2017;32(2):385–396.
  • Delaisse JM. The reversal phase of the bone-remodeling cycle: cellular prerequisites for coupling resorption and formation. BoneKEy Rep. 2014;3:561.
  • Siddiqui JA, Partridge NC. Physiological bone remodeling: systemic regulation and growth factor involvement. Physiology. 2016;31(3):233–245.
  • Allen MR, Burr DB. Bone modeling and remodeling. In: Basic and applied bone biology. London, UK: Academic Press; 2014. p. 75–90.
  • Gupta A, Padmanabhan P, Singh S. Bionanocomposites: green materials for orthopedic applications. In: Jujjavarapu SE, Poluri KM, editors. Green polymeric nanocomposites. Boca Raton (FL): CRC Press; 2020. p. 209–250.
  • Singh P, Gupta A, Qayoom I, et al. Orthobiologics with phytobioactive cues: a paradigm in bone regeneration. Biomed Pharmacother. 2020;130:110754.
  • Tyrovola JB, Odont XX. The “mechanostat theory” of frost and the OPG/RANKL/RANK system. J Cell Biochem. 2015;116(12):2724–2729.
  • Zhuang H, Zhang X, Zhu C, et al. Molecular mechanisms of PPAR-γ governing MSC osteogenic and adipogenic differentiation. Curr Stem Cell Res Ther. 2016;11(3):255–264.
  • Torre E. Molecular signaling mechanisms behind polyphenol-induced bone anabolism. Phytochem Rev. 2017;16(6):1183–1226.
  • Wang W, Yeung KW. Bone grafts and biomaterials substitutes for bone defect repair: a review. Bioact Mater. 2017;2(4):224–247.
  • Khosla S, Bilezikian JP, Dempster DW, et al. Benefits and risks of bisphosphonate therapy for osteoporosis. J Clin Endocrinol Metab. 2012;97(7):2272–2282.
  • Yasein N, Barghouti F, Shroukh W, et al. The use of bisphosphonates by postmenopausal osteoporotic women: adherence and side effects. J Biol Sci. 2013;13(3):163–167.
  • Warren MP, Fried JL. Temporomandibular disorders and hormones in women. Cells Tissues Organs. 2001;169(3):187–192.
  • Larson MJ, Oakes AB, Epperson E, et al. Medication-related osteonecrosis of the jaw after long-term bisphosphonate treatment in a cat. J Vet Intern Med. 2019;33(2):862–867.
  • Drake MT, Clarke BL, Khosla S. Bisphosphonates: mechanism of action and role in clinical practice. Mayo Clin Proc. 2008;83(9):1032–1045.
  • Abd Jalil MA, Shuid AN, Muhammad N. Role of medicinal plants and natural products on osteoporotic fracture healing. Evid Based Complement Alternat Med. 2012;2012:714512.
  • Jaiswal Y, Liang Z, Zhao Z. Botanical drugs in Ayurveda and traditional Chinese medicine. J Ethnopharmacol. 2016;194:245–259.
  • Harvey AL, Edrada-Ebel R, Quinn RJ. The re-emergence of natural products for drug discovery in the genomics era. Nat Rev Drug Discov. 2015;14(2):111–129.
  • World Health Organization. WHO traditional medicine strategy: 2014–2023. Geneva, Switzerland: World Health Organization; 2013.
  • Abubakar AR, Haque M. Preparation of medicinal plants: basic extraction and fractionation procedures for experimental purposes. J Pharm Bioallied Sci. 2020;12(1):1–10.
  • Visht S, Chaturvedi S. Isolation of natural products. JCPR. 2012; 2(3):584–599.
  • Markom M, Hasan M, Daud WRW, et al. Extraction of hydrolysable tannins from Phyllanthus niruri Linn.: effects of solvents and extraction methods. Sep Purif Technol. 2007;52(3):487–496.
  • Thomford NE, Senthebane DA, Rowe A, et al. Natural products for drug discovery in the 21st century: innovations for novel drug discovery. IJMS. 2018;19(6):1578.
  • Wong RH, Thaung Zaw JJ, Xian CJ, et al. Regular supplementation with resveratrol improves bone mineral density in postmenopausal women: a randomized, placebo-controlled trial. J Bone Miner Res. 2020;35(11):2121–2131.
  • Aghamohammadi D, Dolatkhah N, Shakouri SK, et al. Ginger (Zingiber officinale) and turmeric (Curcuma longa L.) supplementation effects on quality of life, body composition, bone mineral density and osteoporosis related biomarkers and micro-RNAs in women with postmenopausal osteoporosis: a study protocol for a randomized controlled clinical trial. J Complement Integr Med. 2020;18(1):131–137.
  • Heidari‐Beni M, Moravejolahkami AR, Gorgian P, et al. Herbal formulation “turmeric extract, black pepper, and ginger” versus naproxen for chronic knee osteoarthritis: a randomized, double‐blind, controlled clinical trial. Phytother Res. 2020;34(8):2067–2073.
  • Dixit P, Pande S, Deshmukh A. Safety and efficacy of a standardized extract from leaves of Dalbergia sissoo in healing of long bone fracture: a pilot clinical study. J Complement Med Alt Healthcare. 2018;4(5):555651.
  • Farshbaf‐Khalili A, Farajnia S, Pourzeinali S, et al. The effect of nanomicelle curcumin supplementation and Nigella sativa oil on the expression level of miRNA‐21, miRNA‐422a, and miRNA‐503 gene in postmenopausal women with low bone mass density: a randomized, triple‐blind, placebo‐controlled clinical trial with factorial design. Phytother Res. 2021;35(11):1–12.
  • Marini H, Minutoli L, Polito F, et al. Effects of the phytoestrogen genistein on bone metabolism in osteopenic postmenopausal women: a randomized trial. Ann Intern Med. 2007;146(12):839–847.
  • Zhang G, Qin L, Shi Y. Epimedium-derived phytoestrogen flavonoids exert beneficial effect on preventing bone loss in late postmenopausal women: a 24-month randomized, double-blind and placebo-controlled trial. J Bone Miner Res. 2007;22(7):1072–1079.
  • Deng WM, Zhang P, Huang H, et al. Five-year follow-up study of a kidney-tonifying herbal Fufang for prevention of postmenopausal osteoporosis and fragility fractures. J Bone Miner Metab. 2012;30(5):517–524.
  • Zhu HM, Qin L, Garnero P, et al. The first multicenter and randomized clinical trial of herbal Fufang for treatment of postmenopausal osteoporosis. Osteoporos Int. 2012;23(4):1317–1327.
  • Lin Y, Kazlova V, Ramakrishnan S, et al. Bone health nutraceuticals alter microarray mRNA gene expression: a randomized, parallel, open-label clinical study. Phytomedicine. 2016;23(1):18–26.
  • Nayak T, Keerthi R. An assessment of the osteogenic potential of Cissus quadrangularis in mandibular fractures: a pilot study. J Maxillofac Oral Surg. 2020;19(1):106–112.
  • Stebbings S, Beattie E, McNamara D, et al. A pilot randomized, placebo-controlled clinical trial to investigate the efficacy and safety of an extract of Artemisia annua administered over 12 weeks, for managing pain, stiffness, and functional limitation associated with osteoarthritis of the hip and knee. Clin Rheumatol. 2016;35(7):1829–1836.
  • Lee MS, Park KW, Park JS, et al. Effects of nutritional supplement with herbal extract on bone mineral density and height in prepubescent children – a preliminary study. Phytother Res. 2005;19(9):810–811.
  • Abiramasundari G, Gowda CM, Pampapathi G, et al. Ethnomedicine based evaluation of osteoprotective properties of Tinospora cordifolia on in vitro and in vivo model systems. Biomed Pharmacother. 2017;87:342–354.
  • Nagareddy PR, Lakshmana M. Withania somnifera improves bone calcification in calcium-deficient ovariectomized rats. J Pharm Pharmacol. 2006;58(4):513–519.
  • Srivastava K, Khan K, Tyagi AM, et al. Greater skeletal gains in ovary intact rats at maturity are achieved by supplementing a standardized extract of Butea monosperma stem bark that confers better bone conserving effect following ovariectomy and concurrent treatment withdrawal. Evid Based Complement Alternat Med. 2013;2013:519387.
  • Gupta R, Singh M, Kumar M, et al. Anti-osteoporotic effect of Urtica dioica on ovariectomised rat. Indian J Biotech Pharm Res. 2014;2(1):1015.
  • Shivakumar K, Mukund H, Rabin P. Evaluation of antiosteoporotic activity of root extract of Rubia cordifolia in ovariectomized rats. Int J Drug Dev Res. 2012;4(3):163–172.
  • Li N, Qin LP, Han T, et al. Inhibitory effects of Morinda officinalis extract on bone loss in ovariectomized rats. Molecules. 2009;14(6):2049–2061.
  • Casarin RC, Casati MZ, Pimentel SP, et al. Resveratrol improves bone repair by modulation of bone morphogenetic proteins and osteopontin gene expression in rats. Int J Oral Maxillofac Surg. 2014;43(7):900–906.
  • Yuan Z, Min J, Zhao Y, et al. Quercetin rescued TNF-alpha-induced impairments in bone marrow-derived mesenchymal stem cell osteogenesis and improved osteoporosis in rats. Am J Transl Res. 2018;10(12):4313–4321.
  • Lee HH, Jang JW, Lee JK, et al. Rutin improves bone histomorphometric values by reduction of osteoclastic activity in osteoporosis mouse model induced by bilateral ovariectomy. J Korean Neurosurg Soc. 2020;63(4):433–443.
  • Jiang HJ, Tian XG, Huang SB, et al. Tenuigenin promotes the osteogenic differentiation of bone mesenchymal stem cells in vitro and in vivo. Cell Tissue Res. 2017;367(2):257–267.
  • Fei WY, Huo Q, Zhao PQ, et al. Magnolol prevents ovariectomy-induced bone loss by suppressing osteoclastogenesis via inhibition of the nuclear factor-κB and mitogen-activated protein kinase pathways. Int J Mol Med. 2019;43(4):1669–1678.
  • Zhou R, Wang Z, Ma C. Hispidulin exerts anti-osteoporotic activity in ovariectomized mice via activating AMPK signaling pathway. Cell Biochem Biophys. 2014;69(2):311–317.
  • Singh KB, Dixit M, Dev K, et al. Formononetin, a methoxy isoflavone, enhances bone regeneration in a mouse model of cortical bone defect. Br J Nutr. 2017;117(11):1511–1522.
  • Siddiqua A, Mittapally S. A review on Cissus quadrangularis. J Pharm Innov. 2017;6(7, Part E):329.
  • Chauhan S, Sharma A, Upadhyay NK, et al. In-vitro osteoblast proliferation and in-vivo anti-osteoporotic activity of bombax ceiba with quantification of lupeol, gallic acid and β-sitosterol by HPTLC and HPLC. BMC Complement Altern Med. 2018;18(1):1–2.
  • Meng J, Zhang W, Wang C, et al. Catalpol suppresses osteoclastogenesis and attenuates osteoclast-derived bone resorption by modulating PTEN activity. Biochem Pharmacol. 2020;171:113715.
  • Sharma AR, Nam JS. Kaempferol stimulates WNT/β-catenin signaling pathway to induce differentiation of osteoblasts. J Nutr Biochem. 2019;74:108228.
  • Corrêa MG, Pires PR, Ribeiro FV, et al. Systemic treatment with resveratrol and/or curcumin reduces the progression of experimental periodontitis in rats. J Periodont Res. 2017;52(2):201–209.
  • Tasadduq R, Gordon J, Al‐Ghanim KA, et al. Ethanol extract of Cissus quadrangularis enhances osteoblast differentiation and mineralization of murine pre-osteoblastic MC3T3-E1 cells. J Cell Physiol. 2017;232(3):540–547.
  • Toor RH, Malik S, Qamar H, et al. Osteogenic potential of hexane and dichloromethane fraction of Cissus quadrangularis on murine preosteoblast cell line MC3T3-E1 (subclone 4). J Cell Physiol. 2019;234(12):23082–23096.
  • Toor RH, Tasadduq R, Adhikari A, et al. Ethyl acetate and n-butanol fraction of Cissus quadrangularis promotes the mineralization potential of murine pre-osteoblast cell line MC3T3-E1 (sub-clone 4). J Cell Physiol. 2019;234(7):10300–10314.
  • Tiwari P, Jena S, Sahu PK. Butea monosperma: phytochemistry and pharmacology. Acta Sci Pharm Sci. 2019;3(4):19–26.
  • Pandey R, Gautam AK, Bhargavan B, et al. Total extract and standardized fraction from the stem bark of Butea monosperma have osteoprotective action: evidence for the nonestrogenic osteogenic effect of the standardized fraction. Menopause. 2010;17(3):602–610.
  • Zhao ZY, Yang L, Mu X, et al. Cajanine promotes osteogenic differentiation and proliferation of human bone marrow mesenchymal stem cells. Adv Clin Exp Med. 2019;28(1):45–50.
  • Gautam J, Khedgikar V, Choudhary D, et al. An isoflavone cladrin prevents high-fat diet-induced bone loss and inhibits the expression of adipogenic gene regulators in 3T3-L1 adipocyte. J Pharm Pharmacol. 2016;68(8):1051–1063.
  • Liu ZM, Chen B, Li S, et al. Effect of whole soy and isoflavones daidzein on bone turnover and inflammatory markers: a 6-month double-blind, randomized controlled trial in Chinese postmenopausal women who are equol producers. Ther Adv Endocrinol Metab. 2020;11:2042018820920555.
  • Im NK, Lee DS, Lee SR, et al. Lupeol isolated from Sorbus commixta suppresses 1α,25-(OH)2D3-mediated osteoclast differentiation and bone loss in vitro and in vivo. J Nat Prod. 2016;79(2):412–420.
  • Shah KK, Tripathi S, Tiwari I, et al. Role of soil microbes in sustainable crop production and soil health: a review. AST. 2021;13(2):109–118.
  • Su SJ, Yeh YT, Shyu HW. The preventive effect of biochanin a on bone loss in ovariectomized rats: involvement in regulation of growth and activity of osteoblasts and osteoclasts. Evid Based Complement Alternat Med. 2013;2013:1–10.
  • Kushwaha P, Khedgikar V, Gautam J, et al. A novel therapeutic approach with caviunin-based isoflavonoid that en routes bone marrow cells to bone formation via BMP2/wnt-β-catenin signaling. Cell Death Dis. 2014;5(9):e1422.
  • Ma C, Xu K, Meng J, et al. Tectorigenin inhibits RANKL-induced osteoclastogenesis via suppression of NF-κB signalling and decreases bone loss in ovariectomized C57BL/6. J Cell Mol Med. 2018;22(10):5121–5131.
  • Khedgikar V, Gautam J, Kushwaha P, et al. A standardized phytopreparation from an Indian medicinal plant (Dalbergia sissoo) has antiresorptive and bone-forming effects on a postmenopausal osteoporosis model of rat. Menopause. 2012;19(12):1336–1346.
  • Al-Snaf PDAE. Chemical constituents and pharmacological effects of Dalbergia sissoo-A review. IOSRPHR. 2017;07(02):59–71.
  • Khedgikar V, Kushwaha P, Ahmad N, et al. Ethanolic extract of Dalbergia sissoo promotes rapid regeneration of cortical bone in drill-hole defect model of rat. Biomed Pharmacother. 2017;86:16–22.
  • Karvande A, Khedgikar V, Kushwaha P, et al. Heartwood extract from Dalbergia sissoo promotes fracture healing and its application in ovariectomy-induced osteoporotic rats. J Pharm Pharmacol. 2017;69(10):1381–1397.
  • Tripathi N, Shrivastava D, Mir BA, et al. Metabolomic and biotechnological approaches to determine therapeutic potential of Withania somnifera (L) Dunal: a review. Phytomedicine. 2018;50:127–136.
  • Khedgikar V, Kushwaha P, Gautam J, et al. Withaferin A: a proteasomal inhibitor promotes healing after injury and exerts anabolic effect on osteoporotic bone. Cell Death Dis. 2013;4(8):e778.
  • Qayoom I, Teotia AK, Meena M, et al. Enhanced bone mineralization using hydroxyapatite-based ceramic bone substitute incorporating Withania somnifera extracts. Biomed Mater. 2020;15(5):055015.
  • Mirakzehi MT, Kermanshahi H, Golian A, et al. The effects of dietary 1,25-dihydroxycholecalciferol and hydroalcoholic extract of Withania somnifera root on bone mineralisation, strength and histological characteristics in broiler chickens. Br Poult Sci. 2013;54(6):789–800.
  • Abiramasundari G, Gowda CM, Sreepriya M. Selective estrogen receptor modulator and prostimulatory effects of phytoestrogen β-ecdysone in Tinospora cordifolia on osteoblast cells. J Ayurveda Integr Med. 2018;9(3):161–168.
  • Adil M, Mansoori MN, Singh D, et al. Pioglitazone-induced bone loss in diabetic rats and its amelioration by berberine: a portrait of molecular crosstalk. Biomed Pharmacother. 2017;94:1010–1019.
  • Weng SJ, Yan DY, Tang JH, et al. Combined treatment with cinnamaldehyde and β-TCP had an additive effect on bone formation and angiogenesis in critical size calvarial defect in ovariectomized rats. Biomed Pharmacother. 2019;109:573–581.
  • Campos‐Vega R, Oomah BD. Chemistry and classification of phytochemicals. In: Tiwari BK, Brunton NP, Brennan C, editors. Handbook of plant food phytochemicals: sources, stability and extraction. Chichester, West Sussex, UK: John Wiley & Sons; 2013. p. 5–48.
  • Martinez KB, Mackert JD, McIntosh MK, et al. Polyphenols and intestinal health. In: Nutrition and functional foods for healthy aging. London, UK: Academic Press; 2017. p. 191–210.
  • Torre E, Iviglia G, Cassinelli C, et al. Potentials of polyphenols in bone-implant devices. In Polyphenols. London, UK: IntechOpen; 2018 p. 71–98.
  • Tao K, Xiao D, Weng J, et al. Berberine promotes bone marrow-derived mesenchymal stem cells osteogenic differentiation via canonical wnt/β-catenin signaling pathway. Toxicol Lett. 2016;240(1):68–80.
  • Zhu Y, Wang Y, Jia Y, et al. Catalpol promotes the osteogenic differentiation of bone marrow mesenchymal stem cells via the wnt/β-catenin pathway. Stem Cell Res Ther. 2019;10(1):1–4.
  • Tang YH, Yue ZS, Xin DW, et al. β-Ecdysterone promotes autophagy and inhibits apoptosis in osteoporotic rats. Mol Med Rep. 2018;17(1):1591–1598.
  • Rohanizadeh R, Deng Y, Verron E. Therapeutic actions of curcumin in bone disorders. BoneKEy Rep. 2016;5:793.
  • Li G, Bu J, Zhu Y, et al. Curcumin improves bone microarchitecture in glucocorticoid-induced secondary osteoporosis mice through the activation of microRNA-365 via regulating MMP-9. Int J Clin Exp Pathol. 2015;8(12):15684–15695.
  • Chang R, Sun L, Webster TJ. Selective cytotoxicity of curcumin on osteosarcoma cells compared to healthy osteoblasts. Int J Nanomedicine. 2014;9:461–465.
  • Curylofo-Zotti FA, Elburki MS, Oliveira PA, et al. Differential effects of natural curcumin and chemically modified curcumin on inflammation and bone resorption in model of experimental periodontitis. Arch Oral Biol. 2018;91:42–50.
  • Tou JC. Resveratrol supplementation affects bone acquisition and osteoporosis: pre-clinical evidence toward translational diet therapy. Biochim Biophys Acta. 2015;1852(6):1186–1194.
  • Tseng PC, Hou SM, Chen RJ, et al. Resveratrol promotes osteogenesis of human mesenchymal stem cells by upregulating RUNX2 gene expression via the SIRT1/FOXO3A axis. J Bone Miner Res. 2011;26(10):2552–2563.
  • Guo DW, Han YX, Cong L, et al. Resveratrol prevents osteoporosis in ovariectomized rats by regulating microRNA-338-3p. Mol Med Rep. 2015;12(2):2098–2106.
  • Karimian E, Tamm C, Chagin AS, et al. Resveratrol treatment delays growth plate fusion and improves bone growth in female rabbits. PLOS One. 2013;8(6):e67859.
  • Dixit M, Raghuvanshi A, Gupta CP, et al. Medicarpin, a natural pterocarpan, heals cortical bone defect by activation of notch and wnt canonical signaling pathways. PLOS One. 2015;10(12):e0144541.
  • Bhargavan B, Singh D, Gautam AK, et al. Medicarpin, a legume phytoalexin, stimulates osteoblast differentiation and promotes peak bone mass achievement in rats: evidence for estrogen receptor β-mediated osteogenic action of medicarpin. J Nutr Biochem. 2012;23(1):27–38.
  • Kureel J, John AA, Raghuvanshi A, et al. Identification of GRP78 as a molecular target of medicarpin in osteoblast cells by proteomics. Mol Cell Biochem. 2016;418(1–2):71–80.
  • Taneja I, Raghuvanshi A, Raju KS, et al. Bioavailability, tissue distribution and excretion studies of a potential anti-osteoporotic agent, medicarpin, in female rats using validated LC–MS/MS method. J Pharm Biomed Anal. 2020;180:112978.
  • Domazetovic V, Marcucci G, Iantomasi T, et al. Oxidative stress in bone remodeling: role of antioxidants. Clin Cases Miner Bone Metab. 2017;14(2):209–216.
  • Epsley S, Tadros S, Farid A, et al. The effect of inflammation on bone. Front Physiol. 2021;1:1695.
  • Karieb S, Fox SW. Phytoestrogens directly inhibit TNF-α-induced bone resorption in RAW264.7 cells by suppressing c-fos-induced NFATc1 expression. J Cell Biochem. 2011;112(2):476–487.
  • Zhao L, Wang Y, Wang Z, et al. Effects of dietary resveratrol on excess-iron-induced bone loss via antioxidative character. J Nutr Biochem. 2015;26(11):1174–1182.
  • Jin S, Park JY, Hong JM, et al. Inhibitory effect of (−)-epigallocatechin gallate on titanium particle-induced TNF-α release and in vivo osteolysis. Exp Mol Med. 2011;43(7):411–418.
  • Guo C, Hou GQ, Li XD, et al. Quercetin triggers apoptosis of lipopolysaccharide (LPS)-induced osteoclasts and inhibits bone resorption in RAW264.7 cells. Cell Physiol Biochem. 2012;30(1):123–136.
  • Hinenoya H, Katsuyama H, Nohno T. Genistein affects osteoblastic MC3T3-E1 cells both through estrogen receptor and BMP-Smad signaling pathways. Kawasaki Med J. 2013;39:21–31.
  • Papoutsi Z, Kassi E, Tsiapara A, et al. Evaluation of estrogenic/antiestrogenic activity of ellagic acid via the estrogen receptor subtypes ERalpha and ERbeta. J Agric Food Chem. 2005;53(20):7715–7720.
  • Song L, Zhao J, Zhang X, et al. Icariin induces osteoblast proliferation, differentiation and mineralization through estrogen receptor-mediated ERK and JNK signal activation. Eur J Pharmacol. 2013;714(1–3):15–22.
  • Gautam J, Khedgikar V, Kushwaha P, et al. Formononetin, an isoflavone, activates AMP-activated protein kinase/β-catenin signalling to inhibit adipogenesis and rescues C57BL/6 mice from high-fat diet-induced obesity and bone loss. Br J Nutr. 2017;117(5):645–661.
  • Guerra JM, Hanes MA, Rasa C, et al. Modulation of bone turnover by Cissus quadrangularis after ovariectomy in rats. J Bone Miner Metab. 2019;37(5):780–795.
  • Hou X, Rooklin D, Fang H, et al. Resveratrol serves as a protein-substrate interaction stabilizer in human SIRT1 activation. Sci Rep. 2016;6(1):38186–38189.
  • Wang W, Zhang LM, Guo C, et al. Resveratrol promotes osteoblastic differentiation in a rat model of postmenopausal osteoporosis by regulating autophagy. Nutr Metab. 2020;17(1):1–10.
  • Rahman M, Beg S, Verma A, et al. Phytoconstituents as pharmacotherapeutics in rheumatoid arthritis: challenges and scope of nano/submicromedicine in its effective delivery. J Pharm Pharmacol. 2017;69(1):1–4.
  • Valentino A, Di Cristo F, Bosetti M, et al. Bioactivity and delivery strategies of phytochemical compounds in bone tissue regeneration. Appl Sci. 2021;11(11):5122.
  • Ambwani S, Tandon R, Ambwani TK, et al. Current knowledge on nanodelivery systems and their beneficial applications in enhancing the efficacy of herbal drugs. J Exp Biol Agric Sci. 2018;6(1):87–107.
  • Gupta A, Dev A, Nigam VK, et al. A review on next-generation nano-antimicrobials in orthopedics: prospects and concerns. In: Prasad R, Siddhardha B, Dyavaiah M, editors. Nanostructures for antimicrobial and antibiofilm applications. Cham: Springer; 2020. p. 33–62.
  • Conte R, Marturano V, Peluso G, et al. Recent advances in nanoparticle-mediated delivery of anti-inflammatory phytocompounds. IJMS. 2017;18(4):709.
  • Conte R, Di Salle A, Riccitiello F, et al. Biodegradable polymers in dental tissue engineering and regeneration. AIMS Mater Sci. 2018;5(6):1073–1101.
  • Lima LL, Bierhalz AC, Moraes ÂM. Influence of the chemical composition and structure design of electrospun matrices on the release kinetics of Aloe vera extract rich in aloin. Polym Degrad Stab. 2020;179:109233.
  • Sau TK, Biswas A, Ray P. Metal nanoparticles in nanomedicine: advantages and scope. In: Thota S, Crans DC, editors Metal nanoparticles: synthesis and applications in pharmaceutical sciences. Chichester, West Sussex, UK: John Wiley & Sons; 2018. p. 101–153.
  • Ijaz I, Gilani E, Nazir A, et al. Detail review on chemical, physical and green synthesis, classification, characterizations and applications of nanoparticles. Green Chem Lett Rev. 2020;13(3):223–245.
  • Gupta A, Padmanabhan P, Singh S. Resveratrol isomeric switching during bioreduction of gold nanoparticles: a gateway for cis-resveratrol. Nanotechnology. 2020;31(46):465603.
  • Zhu L, Chen S, Liu K, et al. 3D poly (L-lactide)/chitosan micro/nano fibrous scaffolds functionalized with quercetin-polydopamine for enhanced osteogenic and anti-inflammatory activities. Chem Eng J. 2020;391:123524.
  • Rao K, Aziz S, Roome T, et al. Gum acacia stabilized silver nanoparticles based nano-cargo for enhanced anti-arthritic potentials of hesperidin in adjuvant induced arthritic rats. Artif Cells Nanomed Biotechnol. 2018;46(sup1):597–607.
  • Wang D, Cui L, Chang X, et al. Biosynthesis and characterization of zinc oxide nanoparticles from artemisia annua and investigate their effect on proliferation, osteogenic differentiation and mineralization in human osteoblast-like MG-63 cells. J Photochem Photobiol B. 2020;202:111652.
  • Sisubalan N, Ramkumar VS, Pugazhendhi A, et al. ROS-mediated cytotoxic activity of ZnO and CeO2 nanoparticles synthesized using the Rubia cordifolia L. leaf extract on MG-63 human osteosarcoma cell lines. Environ Sci Pollut Res Int. 2018;25(11):10482–10492.
  • Sun X, Zhang J, Wang Z, et al. Licorice isoliquiritigenin-encapsulated mesoporous silica nanoparticles for osteoclast inhibition and bone loss prevention. Theranostics. 2019;9(18):5183–5199.
  • Zielińska A, Carreiró F, Oliveira AM, et al. Polymeric nanoparticles: production, characterization, toxicology and ecotoxicology. Molecules. 2020;25(16):3731.
  • Watkins R, Wu L, Zhang C, et al. Natural product-based nanomedicine: recent advances and issues. Int J Nanomed. 2015;10:6055–6074.
  • Zhang J, Peng CA. Enhanced proliferation and differentiation of mesenchymal stem cells by astaxanthin-encapsulated polymeric micelles. PLOS One. 2019;14(5):e0216755.
  • Zhou Y, Liu SQ, Peng H, et al. In vivo anti-apoptosis activity of novel berberine-loaded chitosan nanoparticles effectively ameliorates osteoarthritis. Int Immunopharmacol. 2015;28(1):34–43.
  • Rutledge KE, Cheng Q, Jabbarzadeh E. Modulation of inflammatory response and induction of bone formation based on combinatorial effects of resveratrol. J Nanomed Nanotechnol. 2016;7(1):350.
  • Santos AC, Veiga FJ, Sequeira JA, et al. First-time oral administration of resveratrol-loaded layer-by-layer nanoparticles to rats – a pharmacokinetics study. Analyst. 2019;144(6):2062–2079.
  • Artiga-Artigas M, Lanjari-Pérez Y, Martín-Belloso O. Curcumin-loaded nanoemulsions stability as affected by the nature and concentration of surfactant. Food Chem. 2018;266:466–474.
  • Ninan S, Dineshkumar B, Krishnakumar K. Neem oil-loaded cross-linked biodegradable polymeric capsules: its larvicidal activity against Culex quinquefasciatuss larvae. Trop Parasitol. 2019;9(1):7–11.
  • Alalaiwe A, Carpinone P, Alshahrani S, et al. Influence of chitosan coating on the oral bioavailability of gold nanoparticles in rats. Saudi Pharm J. 2019;27(2):171–175.
  • Thongtham N, Chai‐In P, Unger O, et al. Fabrication of chitosan/collagen/hydroxyapatite scaffolds with encapsulated Cissus quadrangularis extract. Polym Adv Technol. 2020;31(7):1496–1507.
  • Duan Y, Dhar A, Patel C, et al. A brief review on solid lipid nanoparticles: part and parcel of contemporary drug delivery systems. RSC Adv. 2020;10(45):26777–26791.
  • Ganesan P, Narayanasamy D. Lipid nanoparticles: different preparation techniques, characterization, hurdles, and strategies for the production of solid lipid nanoparticles and nanostructured lipid carriers for oral drug delivery. Sustain Chem Pharm. 2017;6:37–56.
  • Ali H, Singh SK. Biological voyage of solid lipid nanoparticles: a proficient carrier in nanomedicine. Ther Deliv. 2016;7(10):691–709.
  • Gilani SJ, Bin-Jumah MN, Imam SS, et al. Formulation and optimization of nano lipid based oral delivery systems for arthritis. Coatings. 2021;11(5):548.
  • Sarkar N, Bose S. Liposome-encapsulated curcumin-loaded 3D printed scaffold for bone tissue engineering. ACS Appl Mater Interfaces. 2019;11(19):17184–17192.
  • Sudhakar CK, Jain S, Charyulu RN. A comparison study of liposomes, transfersomes and ethosomes bearing lamivudine. Int J Pharm Sci Res. 2016;7(10):4214.
  • Ascenso A, Raposo S, Batista C, et al. Development, characterization, and skin delivery studies of related ultradeformable vesicles: transfersomes, ethosomes, and transethosomes. Int J Nanomedicine. 2015;10:5837–5851.
  • Ahmad N, Banala VT, Kushwaha P, et al. Quercetin-loaded solid lipid nanoparticles improve osteoprotective activity in an ovariectomized rat model: a preventive strategy for post-menopausal osteoporosis. RSC Adv. 2016;6(100):97613–97628.
  • Abd El-Fattah AI, Fathy MM, Ali ZY, et al. Enhanced therapeutic benefit of quercetin-loaded phytosome nanoparticles in ovariectomized rats. Chem Biol Interact. 2017;271:30–38.
  • Hsu CK, Liao MH, Tai YT, et al. Nanoparticles prepared from the water extract of Gusuibu (Drynaria fortunei J. Sm.) protects osteoblasts against insults and promotes cell maturation. Int J Nanomedicine. 2011;6:1405.
  • Botelho MA, Barros G, Queiroz DB, et al. Nanotechnology in phytotherapy: antiinflammatory effect of a nanostructured thymol gel from Lippia sidoides in acute periodontitis in rats. Phytother Res. 2016;30(1):152–159.
  • Menon AH, Soundarya SP, Sanjay V, et al. Sustained release of chrysin from chitosan-based scaffolds promotes mesenchymal stem cell proliferation and osteoblast differentiation. Carbohydr Polym. 2018;195:356–367.
  • Shadamarshan RP, Balaji H, Rao HS, et al. Fabrication of PCL/PVP electrospun fibers loaded with trans-anethole for bone regeneration in vitro. Colloids Surf B Biointerfaces. 2018;171:698–706.
  • Zupančič Š, Baumgartner S, Lavrič Z, et al. Local delivery of resveratrol using polycaprolactone nanofibers for treatment of periodontal disease. J Drug Deliv Sci Technol. 2015;30:408–416.
  • Riccitiello F, De Luise A, Conte R, et al. Effect of resveratrol release kinetic from electrospun nanofibers on osteoblast and osteoclast differentiation. Eur Polym J. 2018;99:289–297.
  • Zhang J, Doll BA, Beckman EJ, et al. Biodegradable polyurethane‐ascorbic acid scaffold for bone tissue engineering. J Biomed Mater Res. 2003;67A(2):389–400.
  • Wang XH, Guo YW, Tolba E, et al. Two-armed activation of bone mineral deposition by the flavones baicalin and baicalein, encapsulated in polyphosphate microparticles. Am J Chin Med. 2017;45(3):533–555.
  • Kamali A, Oryan A, Hosseini S, et al. Cannabidiol-loaded microspheres incorporated into osteoconductive scaffold enhance mesenchymal stem cell recruitment and regeneration of critical-sized bone defects. Mater Sci Eng C Mater Biol Appl. 2019;101:64–75.
  • Dabouian A, Bakhshi H, Irani S, et al. β-Carotene: a natural osteogen to fabricate osteoinductive electrospun scaffolds. RSC Adv. 2018;8(18):9941–9945.
  • Chaudhari KR, Kumar A, Khandelwal VK, et al. Bone metastasis targeting: a novel approach to reach bone using zoledronate anchored PLGA nanoparticle as carrier system loaded with docetaxel. J Control Release. 2012;158(3):470–478.
  • Zhu S, Zhu L, Yu J, et al. Anti-osteoclastogenic effect of epigallocatechin gallate-functionalized gold nanoparticles in vitro and in vivo. Int J Nanomedicine. 2019;14:5017–5032.
  • Cui P, Qu F, Sreeharsha N, et al. Antiarthritic effect of chitosan nanoparticle loaded with embelin against adjuvant-induced arthritis in Wistar rats. IUBMB Life. 2020;72(5):1054–1064.
  • Santos C, Gomes P, Duarte JA, et al. Development of hydroxyapatite nanoparticles loaded with folic acid to induce osteoblastic differentiation. Int J Pharm. 2017;516(1–2):185–195.
  • Liu L, Qi XJ, Zhong ZK, et al. Nanomedicine-based combination of gambogic acid and retinoic acid chlorochalcone for enhanced anticancer efficacy in osteosarcoma. Biomed Pharmacother. 2016;83:79–84.
  • Shen X, Yu P, Chen H, et al. Icariin controlled release on a silk fibroin/mesoporous bioactive glass nanoparticles scaffold for promoting stem cell osteogenic differentiation. RSC Adv. 2020;10(20):12105–12112.
  • Kumar A, Gupta GK, Khedgikar V, et al. In vivo efficacy studies of layer-by-layer nano-matrix bearing kaempferol for the conditions of osteoporosis: a study in ovariectomized rat model. Eur J Pharm Biopharm. 2012;82(3):508–517.
  • Lai M, Jin Z, Yan M, et al. The controlled naringin release from TiO2 nanotubes to regulate osteoblast differentiation. J Biomater Appl. 2018;33(5):673–680.
  • Bhalekar MR, Madgulkar AR, Desale PS, et al. Formulation of piperine solid lipid nanoparticles (SLN) for treatment of rheumatoid arthritis. Drug Dev Ind Pharm. 2017;43(6):1003–1010.
  • Kamath MS, Ahmed SS, Dhanasekaran M, et al. Polycaprolactone scaffold engineered for sustained release of resveratrol: therapeutic enhancement in bone tissue engineering. Int J Nanomed. 2014;9:183.
  • Gul A, Kunwar B, Mazhar M, et al. Rutin and rutin-conjugated gold nanoparticles ameliorate collagen-induced arthritis in rats through inhibition of NF-κB and iNOS activation. Int Immunopharmacol. 2018;59:310–317.
  • Li J, Wang Q, Zhi W, et al. Immobilization of salvianolic acid B-loaded chitosan microspheres distributed three-dimensionally and homogeneously on the porous surface of hydroxyapatite scaffolds. Biomed Mater. 2016;11(5):055014.
  • Balagangadharan K, Trivedi R, Vairamani M, et al. Sinapic acid-loaded chitosan nanoparticles in polycaprolactone electrospun fibers for bone regeneration in vitro and in vivo. Carbohydr Polym. 2019;216:1–6.
  • Shen Q, Zhang X, Qi J, et al. Sinomenine hydrochloride loaded thermosensitive liposomes combined with microwave hyperthermia for the treatment of rheumatoid arthritis. Int J Pharm. 2020;576:119001.
  • Zhang X, Lu X, Geng W, et al. Role of glycol chitosan-incorporated ursolic acid nanoparticles in the treatment of osteosarcoma. Trop J Pharm Res. 2015;14(9):1581–1588.
  • Sultana F, Neog MK, Rasool M. Withaferin-A, a steroidal lactone encapsulated mannose decorated liposomes ameliorates rheumatoid arthritis by intriguing the macrophage repolarization in adjuvant-induced arthritic rats. Colloids Surf B Biointerfaces. 2017;155:349–365.
  • Shanmugavel S, Reddy VJ, Ramakrishna S, et al. Precipitation of hydroxyapatite on electrospun polycaprolactone/aloe vera/silk fibroin nanofibrous scaffolds for bone tissue engineering. J Biomater Appl. 2014;29(1):46–58.
  • Kim DK, Kim JI, Hwang TI, et al. Bioengineered osteoinductive Broussonetia kazinoki/silk fibroin composite scaffolds for bone tissue regeneration. ACS Appl Mater Interfaces. 2017;9(2):1384–1394.
  • Shi LB, Tang PF, Zhang W, et al. Green synthesis of CuO nanoparticles using Cassia auriculata leaf extract and in vitro evaluation of their biocompatibility with rheumatoid arthritis macrophages (RAW 264.7). Trop J Pharm Res. 2017;16(1):185–192.
  • Suganya S, Venugopal J, Ramakrishna S, et al. Herbally derived polymeric nanofibrous scaffolds for bone tissue regeneration. J Appl Polym Sci. 2014;131(3):39835.
  • Kumar GS, Muthu D, Karunakaran G, et al. Curcuma longa tuber extract mediated synthesis of hydroxyapatite nanorods using biowaste as a calcium source for the treatment of bone infections. J Sol Gel Sci Technol. 2018;86(3):610–616.
  • Deng Y, Ma F, Ruiz-Ortega LI, et al. Fabrication of strontium Eucommia ulmoides polysaccharides and in vitro evaluation of their osteoimmunomodulatory property. Int J Biol Macromol. 2019;140:727–735.
  • Kumar BS, Deepachitra R, Prabu P, et al. Osteoinductive potential of biocomposite cylinders impregnated with Glycyrrhiza glabra for bone tissue engineering. Ceram Int. 2015;41(6):7704–7712.
  • Francis S, Nair KM, Paul N, et al. Green synthesized metal nanoparticles as a selective inhibitor of human osteosarcoma and pathogenic microorganisms. Mater Today Chem. 2019;13:128–138.
  • Pajoumshariati S, Yavari SK, Shokrgozar MA. Physical and biological modification of polycaprolactone electrospun nanofiber by Panax ginseng extract for bone tissue engineering application. Ann Biomed Eng. 2016;44(5):1808–1820.
  • Mani A, Vasanthi C, Gopal V, et al. Role of phyto-stabilised silver nanoparticles in suppressing adjuvant induced arthritis in rats. Int Immunopharmacol. 2016;41:17–23.
  • Cheng J, Wang X, Qiu L, et al. Green synthesized zinc oxide nanoparticles regulates the apoptotic expression in bone cancer cells MG-63 cells. J Photochem Photobiol B. 2020;202:111644.
  • Zia I, Mirza S, Jolly R, et al. Trigonella foenum graecum seed polysaccharide coupled nano hydroxyapatite-chitosan: a ternary nanocomposite for bone tissue engineering. Int J Biol Macromol. 2019;124:88–101.
  • Zadegan S, Nourmohammadi J, Vahidi B, et al. An investigation into osteogenic differentiation effects of silk fibroin-nettle (Urtica dioica L.) nanofibers. Int J Biol Macromol. 2019;133:795–803.
  • Venugopal E, Sahanand KS, Bhattacharyya A, et al. Electrospun PCL nanofibers blended with Wattakaka volubilis active phytochemicals for bone and cartilage tissue engineering. Nanomedicine. 2019;21:102044.
  • Shubhika K. Nanotechnology and medicine–the upside and the downside. Int J Drug Dev Res. 2012;5:1–10.
  • Du B, Yu M, Zheng J. Transport and interactions of nanoparticles in the kidneys. Nat Rev Mater. 2018;3(10):358–374.
  • Lushchak O, Karpenko R, Zayahckivska A, et al. Lipid-based nano-delivery of phytobioactive compounds in anti-aging medicine. In: Lai W, editor Systemic delivery technologies in anti-aging medicine: methods and applications. Cham: Springer; 2020. p. 221–245.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.