429
Views
3
CrossRef citations to date
0
Altmetric
Review Articles

Plant lipid phosphate phosphatases: current advances and future outlooks

ORCID Icon, ORCID Icon, ORCID Icon, , ORCID Icon, , & ORCID Icon show all
Pages 384-392 | Received 02 Nov 2021, Accepted 11 Jan 2022, Published online: 17 Apr 2022

References

  • Ohlrogge JB, Browse JG. Lipid biosynthesis. Plant Cell. 1995;7(7):957–970.
  • Kok BPC, Venkatraman G, Capatos D, et al. Unlike two peas in a pod: lipid phosphate phosphatases and phosphatidate phosphatases. Chem Rev. 2012;112(10):5121–5146.
  • Su W, Raza A, Zeng L, et al. Genome-wide analysis and expression patterns of lipid phospholipid phospholipase gene family in Brassica napus L. BMC Genomics. 2021;22(1):548.
  • Anthony RG, Henriques R, Helfer A, et al. A protein kinase target of a PDK1 signalling pathway is involved in root hair growth in Arabidopsis. EMBO J. 2004;23(3):572–581.
  • Li J, Henty-Ridilla JL, Huang S, et al. Capping protein modulates the dynamic behavior of actin filaments in response to phosphatidic acid in Arabidopsis. Plant Cell. 2012;24(9):3742–3754.
  • Li J, Henty-Ridilla JL, Staiger BH, et al. Capping protein integrates multiple MAMP signalling pathways to modulate actin dynamics during plant innate immunity. Nat Commun. 2015;6:7206.
  • Huang S, Gao L, Blanchoin L, et al. Heterodimeric capping protein from Arabidopsis is regulated by phosphatidic acid. Mol Biol Cell. 2006;17(4):1946–1958.
  • Yu L, Nie J, Cao C, et al. Phosphatidic acid mediates salt stress response by regulation of MPK6 in Arabidopsis thaliana. New Phytol. 2010;188(3):762–773.
  • Testerink C, Larsen PB, van der Does D, et al. Phosphatidic acid binds to and inhibits the activity of Arabidopsis CTR1. J Exp Bot. 2007;58(14):3905–3914.
  • Toke DA, Bennett WL, Oshiro J, et al. Isolation and characterization of the Saccharomyces cerevisiae LPP1 gene encoding a Mg2+-independent phosphatidate phosphatase. J Biol Chem. 1998;273(23):14331–14338.
  • Carman GM, Han GS. Roles of phosphatidate phosphatase enzymes in lipid metabolism. Trends Biochem Sci. 2006;31(12):694–699.
  • Furneisen JM, Carman GM. Enzymological properties of the LPP1-encoded lipid phosphatase from Saccharomyces cerevisiae. Biochim Biophys Acta. 2000;1484(1):71–82.
  • Racagni G, Villasuso AL, Pasquaré SJ, et al. Diacylglycerol pyrophosphate inhibits the alpha-amylase secretion stimulated by gibberellic acid in barley aleurone. Physiol Plant. 2008;134(3):381–393.
  • Sun L, Yu Y, Hu W, et al. Ribosomal protein S6 kinase1 coordinates with TOR-Raptor2 to regulate thylakoid membrane biosynthesis in rice. Biochim Biophys Acta. 2016;1861(7):639–649.
  • Pleskot R, Pejchar P, Bezvoda R, et al. Turnover of phosphatidic acid through distinct signaling pathways affects multiple aspects of pollen tube growth in tobacco. Front Plant Sci. 2012;3:54.
  • Sadat MA, Jeon J, Mir AA, et al. Regulation of cellular diacylglycerol through lipid phosphate phosphatases is required for pathogenesis of the rice blast fungus, Magnaporthe oryzae. PLOS One. 2014;9(6):e100726.
  • Franca MGC, Matos AR, D'Arcy-Lameta A, et al. Cloning and characterization of drought-stimulated phosphatidic acid phosphatase genes from Vigna unguiculata. Plant Physiol Biochem. 2008;46(12):1093–1100.
  • Wu WI, Liu Y, Riedel B, et al. Purification and characterization of diacylglycerol pyrophosphate phosphatase from Saccharomyces cerevisiae. J Biol Chem. 1996;271(4):1868–1876.
  • Pierrugues O, Brutesco C, Oshiro J, et al. Lipid phosphate phosphatases in Arabidopsis. Regulation of the AtLPP1 gene in response to stress. J Biol Chem. 2001;276(23):20300–20308.
  • Toke DA, McClintick ML, Carman GM. Mutagenesis of the phosphatase sequence motif in diacylglycerol pyrophosphate phosphatase from Saccharomyces cerevisiae. Biochemistry. 1999;38(44):14606–14613.
  • Han GS, Johnston CN, Chen X, et al. Regulation of the Saccharomyces cerevisiae DPP1-encoded diacylglycerol pyrophosphate phosphatase by zinc. J Biol Chem. 2001;276(13):10126–10133.
  • Oshiro J, Han GS, Iwanyshyn WM, et al. Regulation of the yeast DPP1-encoded diacylglycerol pyrophosphate phosphatase by transcription factor Gis1p. J Biol Chem. 2003;278(34):31495–31503.
  • Wayne Albers RRW. Chapter 2 – cell membrane structures and functions. In: Brady ST, Siegel GJ, Albers RW, editors. Basic neurochemistry. 8th ed. New York: Academic Press; 2012. p. 26–39.
  • Mewes HW, Albermann K, Bähr M, et al. Overview of the yeast genome. Nature. 1997;387(6632 Suppl.):7–65.
  • Naranjo-Ortiz MA, Gabaldón T. Fungal evolution: major ecological adaptations and evolutionary transitions. Biol Rev Camb Philos Soc. 2019;94(4):1443–1476.
  • Huh W-K, Falvo JV, Gerke LC, et al. Global analysis of protein localization in budding yeast. Nature. 2003;425(6959):686–691.
  • Katagiri T, Ishiyama K, Kato T, et al. An important role of phosphatidic acid in ABA signaling during germination in Arabidopsis thaliana. Plant J. 2005;43(1):107–117.
  • Balsera M, Stengel A, Soll J, et al. Tic62: a protein family from metabolism to protein translocation. BMC Evol Biol. 2007;7:43.
  • Haslam RP, Sayanova O, Kim HJ, et al. Synthetic redesign of plant lipid metabolism. Plant J. 2016;87(1):76–86.
  • Gilbert A, Sangurdekar DP, Srienc F. Rapid strain improvement through optimized evolution in the cytostat. Biotechnol Bioeng. 2009;103(3):500–512.
  • Yu C-W, Lin Y-T, Li H-M. Increased ratio of galactolipid MGDG:DGDG induces jasmonic acid overproduction and changes chloroplast shape. New Phytol. 2020;228(4):1327–1335.
  • Kobayashi K. Role of membrane glycerolipids in photosynthesis, thylakoid biogenesis and chloroplast development. J Plant Res. 2016;129(4):565–580.
  • Zhu Y, Wang K, Wu C, et al. Effect of ethylene on cell wall and lipid metabolism during alleviation of postharvest chilling injury in peach. Cells. 2019;8(12):1612.
  • Ritchie S, Gilroy S. Abscisic acid signal transduction in the barley aleurone is mediated by phospholipase D activity. Proc Natl Acad Sci U S A. 1998;95(5):2697–2702.
  • Luo X, Dai Y, Zheng C, et al. The ABI4-RbohD/VTC2 regulatory module promotes reactive oxygen species (ROS) accumulation to decrease seed germination under salinity stress. New Phytol. 2021;229(2):950–962.
  • Barrero JM, Talbot MJ, White RG, et al. Anatomical and transcriptomic studies of the coleorhiza reveal the importance of this tissue in regulating dormancy in barley. Plant Physiol. 2009;150(2):1006–1021.
  • Paradis S, Laura Villasuso A, Aguayo SS, et al. Arabidopsis thaliana lipid phosphate phosphatase 2 is involved in abscisic acid signalling in leaves. Plant Physiol Biochem. 2011;49(3):357–362.
  • Zhang W, Qin C, Zhao J, et al. Phospholipase D alpha 1-derived phosphatidic acid interacts with ABI1 phosphatase 2C and regulates abscisic acid signaling. Proc Natl Acad Sci U S A. 2004;101(25):9508–9513.
  • Hooks SB, Ragan SP, Lynch KR. Identification of a novel human phosphatidic acid phosphatase type 2 isoform. FEBS Lett. 1998;427(2):188–192.
  • Gutiérrez-Martínez E, Fernández-Ulibarri I, Lázaro-Diéguez F, et al. Lipid phosphate phosphatase 3 participates in transport carrier formation and protein trafficking in the early secretory pathway. J Cell Sci. 2013;126(Pt 12):2641–2655.
  • Touat-Hamici Z, Weidmann H, Blum Y, et al. Role of lipid phosphate phosphatase 3 in human aortic endothelial cell function. Cardiovasc Res. 2016;112(3):702–713.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.