835
Views
2
CrossRef citations to date
0
Altmetric
Review Articles

Biotechnological applications of mangrove plants and their isolated compounds in medicine-a mechanistic overview

ORCID Icon, ORCID Icon & ORCID Icon
Pages 393-414 | Received 16 Jan 2021, Accepted 12 Jan 2022, Published online: 13 Mar 2022

References

  • Mahdi JG. Medicinal potential of willow: a chemical perspective of aspirin discovery. J Saudi Chem Soc. 2010;14(3):317–322.
  • Niazian M. Application of genetics and biotechnology for improving medicinal plants. Planta. 2019;249(4):953–973.
  • Malve H. Exploring the ocean for new drug developments: marine pharmacology. J Pharm Bioallied Sci. 2016;8(2):83–91.
  • Boopathy N, Kathiresan K. Anticancer drugs from marine flora: an overview. J Oncol. 2010;2010:214186.
  • Jimenez PC, Wilke DV, Costa-Lotufo LV. Marine drugs for cancer: surfacing biotechnological innovations from the oceans. Clinics. 2018;73(suppl 1):e482s.
  • Kesik-Brodacka M. Progress in biopharmaceutical development. Biotechnol Appl Biochem. 2018;65(3):306–322.
  • Sadeer NB, Fawzi MM, Gokhan Z, et al. Ethnopharmacology, phytochemistry, and global distribution of mangroves―a comprehensive review. Mar Drugs. 2019;17(4):231.
  • Gayathri GA, Mahalingam G. Vaccines from mangrove microbes. In: Patra JK, Mishra RR, Thatoi H, editors. Biotechnological utilization of mangrove resources. Massachusetts; United States: Academic Press; 2020.
  • Mauricio MD, Guerra-Ojeda S, Marchio P, et al. Nanoparticles in medicine: a focus on vascular oxidative stress. Oxid Med Cell Longev. 2018;2018:6231482.
  • Borm PJA, Robbins D, Haubold S, et al. The potential risks of nanomaterials: a review carried out for ECETOC. Part Fibre Toxicol. 2006;3(1):11.
  • Stapleton PA, Nurkiewicz TR. Vascular distribution of nanomaterials. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2014;6(4):338–348.
  • Mahomoodally MF, Sadeer N, Edoo M, et al. The potential application of novel drug delivery systems for phytopharmaceuticals and natural extracts–current status and future perspectives. MRMC. 2021;21(18):2731–2746.
  • Salata OV. Applications of nanoparticles in biology and medicine. J Nanobiotechnol. 2004;2(1):3.
  • Das SK, Thatoi H. Mangrove plant: mediated green synthesis of nanoparticles and their pharmaceutical applications: an overview. In: Patra JK, Mishra RR, Thatoi H, editors. Biotechnological utilization of mangrove resources. Massachusetts; United States: Academic Press; 2020.
  • Kumar S, Rajeshkumar S, et al. Plant-based synthesis of nanoparticles and their impact. In: Tripathi DK, Ahmad P, Sharma S, editors. Nanomaterials in plants, algae, and microorganisms. United States: Academic Press; 2018. p. 33–57.
  • Gouda S, Das G, Sen SK, et al. Mangroves, a potential source for green nanoparticle synthesis: a review. IJMS. 2015;44(5):635–645.
  • Chiavaroli A, Sinan KI, Zengin G, et al. Identification of chemical profiles and biological properties of Rhizophora racemosa G. Mey. extracts obtained by different methods and solvents. Antioxidants. 2020;9(6):533.
  • Sadeer NB, Rocchetti G, Senizza B, et al. Untargeted metabolomic profiling, multivariate analysis and biological evaluation of the true mangrove (Rhizophora mucronata lam.). Antioxidants. 2019;8(10):489.
  • Sadeer NB, Sinan KI, Cziáky Z, et al. Assessment of the pharmacological properties and phytochemical profile of Bruguiera gymnorhiza (L.) lam using in vitro studies, in silico docking, and multivariate analysis. Biomolecules. 2020;10(5):731.
  • Mittal AK, Chisti Y, Banerjee UC. Synthesis of metallic nanoparticles using plant extracts. Biotechnol Adv. 2013;31(2):346–356.
  • Ali MY, Anuradha V, Yogananth N, et al. Green synthesis of silver nanoparticle by Acanthus ilicifolius mangrove plant against armigeressubalbatus and aedesaegypti mosquito larvae. Int J Nano Dimens. 2015;6(2):197–204.
  • Bakshi M, Ghosh S, Chaudhuri P. Green synthesis, characterization and antimicrobial potential of sliver nanoparticles using three mangrove plants from Indian Sundarbans. BioNanoSci. 2015;5(3):162–170.
  • Gnanadesigan M, Anand M, Ravikumar S, et al. Antibacterial potential of biosynthesised silver nanoparticles using Avicennia marina mangrove plant. Appl Nanosci. 2012;2(2):143–147.
  • Naidu KSB, Murugan N, Adam JK, et al. Biogenic synthesis of silver nanoparticles from Avicennia marina seed extract and its antibacterial potential. BioNanoScience. 2019;9(2):266–273.
  • Ramalingam V, Dhinesh P, Sundaramahalingam S, et al. Green fabrication of iron oxide nanoparticles using grey mangrove Avicennia marina for antibiofilm activity and in vitro toxicity. Surf Interfaces. 2019;15:70–77.
  • Balakrishnan S, Srinivasan M, Mohanraj J. Biosynthesis of silver nanoparticles from mangrove plant (Avicennia marina) extract and their potential mosquito larvicidal property. J Parasit Dis. 2016;40(3):991–996.
  • Abdi V, Sourinejad I, Yousefzadi M, et al. Mangrove-mediated synthesis of silver nanoparticles using native Avicennia marina plant extract from Southern Iran. Chem Eng Commun. 2018;205(8):1069–1076.
  • Asghar MA, Asghar MA. Green synthesized and characterized copper nanoparticles using various new plants extracts aggravate microbial cell membrane damage after interaction with lipopolysaccharide. Int J Biol Macromol. 2020;160:1168–1176.
  • Nabikhan A, Rathinam S, Kandasamy K. Biogenic gold nanoparticles for reduction of 4-nitrophenol to 4-aminophenol: an eco-friendly bioremediation. IET Nanobiotechnol. 2018;12(4):479–483.
  • Tian S, Saravanan K, Mothana RA, et al. Anti-cancer activity of biosynthesized silver nanoparticles using Avicennia marina against A549 lung cancer cells through ROS/mitochondrial damages. Saudi J Biol Sci. 2020;27(11):3018–3024.
  • Karpagavinayagam PE, PrincessPrasanna A, Vedhi C. Eco-friendly synthesis of nickel oxide nanoparticles using Avicennia marina leaf extract: morphological characterization and electrochemical application. Mater Today. 2020;48:136–142.
  • Varunkumar K, Anusha C, Saranya T, et al. Avicennia marina engineered nanoparticles induce apoptosis in adenocarcinoma lung cancer cell line through p53 mediated signaling pathways. Process Biochem. 2020;94:349–358.
  • Kumaran NS. In vitro anti-inflammatory activity of silver nanoparticle synthesized Avicennia marina (forssk.) vierh.: a green synthetic approach. nt. J Green Pharm. 2018;12(03).
  • Das SK, Behera S, Patra JK, et al. Green synthesis of sliver nanoparticles using Avicennia officinalis and Xylocarpus granatum extracts and in vitro evaluation of antioxidant, antidiabetic and anti-inflammatory activities. J Clust Sci. 2019;30(4):1103–1113.
  • Bhuvaneswari R, Xavier RJ, Arumugam M. Facile synthesis of multifunctional silver nanoparticles using mangrove plant Excoecaria agallocha L. for its antibacterial, antioxidant and cytotoxic effects. J Parasit Dis. 2017;41(1):180–187.
  • Banerjee K, Das S, Choudhury P, et al. A novel approach of synthesizing and evaluating the anticancer potential of silver oxide nanoparticles in vitro. Chemotherapy. 2017;62(5):279–289.
  • Kumar V, Ammani K, Jobina R, et al. Larvicidal activity of green synthesized silver nanoparticles using Excoecaria agallocha L. (euphorbiaceae) leaf extract against Aedes aegypti. IET Nanobiotechnol. 2016;10(6):382–388.
  • Kaliamurthi S, Selvaraj G, Ramanathan  . Influence of leaf broth concentration of Excoecaria agallocha as a process variable in silver nanoparticles synthesis. J Nanomed Res. 2014;1:1–5.
  • Thatoi P, Kerry RG, Gouda S, et al. Photo-mediated green synthesis of silver and zinc oxide nanoparticles using aqueous extracts of two mangrove plant species, Heritiera fomes and Sonneratia apetala and investigation of their biomedical applications. J Photochem Photobiol B. 2016;163:311–318.
  • Alshehri MA, Aziz AT, Trivedi S, et al. One-step synthesis of Ag nanoparticles using aqueous extracts from Sundarbans mangroves revealed high toxicity on major mosquito vectors and microbial pathogens. J Clust Sci. 2020;31(1):177–184.
  • Umashankari J, Inbakandan D, Ajithkumar TT, et al. Mangrove plant, Rhizophora mucronata (lamk, 1804) mediated one pot green synthesis of silver nanoparticles and its antibacterial activity against aquatic pathogens. Aquat Biosyst. 2012;8(1):11.
  • Singh M, Kumar M, Kalaivani R, et al. Metallic silver nanoparticle: a therapeutic agent in combination with antifungal drug against human fungal pathogen. Bioprocess Biosyst Eng. 2013;36(4):407–415.
  • Nathan VK, Ammini P, Vijayan J. Photocatalytic degradation of synthetic dyes using iron (III) oxide nanoparticles (Fe2O3-Nps) synthesised using Rhizophora mucronata Lam. IET Nanobiotechnol. 2019;13(2):120–123.
  • Jayaseelan C, Rahuman AA, Rajakumar G, et al. Synthesis of pediculocidal and larvicidal silver nanoparticles by leaf extract from heartleaf moonseed plant, Tinospora cordifolia miers. Parasitol Res. 2011;109(1):185–194.
  • Nabikhan A, Kandasamy K, Raj A, et al. Synthesis of antimicrobial silver nanoparticles by callus and leaf extracts from saltmarsh plant, Sesuvium portulacastrum L. Colloids Surf B Biointerfaces. 2010;79(2):488–493.
  • Beolotto V, Oliva M, Marioli J, et al. Antimicrobial natural products against bacterial biofilms. In: Kon KMR, editors. Antibiotic resistance. London: United Kingdom: Academic Press; 2016.
  • Ramteke L, Jadhav B, Gawali P. Biogenic copper nanoparticles from the aqueous stem extract of Ceriops tagal. World J Pharm Res. 2018;7(18):933–947.
  • Rajeshkumar S, Menon S, Venkat Kumar S, et al. Antibacterial and antioxidant potential of biosynthesized copper nanoparticles mediated through Cissus arnotiana plant extract. J Photochem Photobiol B. 2019;197:111531.
  • Sriramulu M, Shanmugam S, Ponnusamy VK. Agaricus bisporus mediated biosynthesis of copper nanoparticles and its biological effects: an in-vitro study. Colloids Interface Sci Commun. 2020;35:100254.
  • Zangeneh MM, Ghaneialvar H, Akbaribazm M, et al. Novel synthesis of Falcaria vulgaris leaf extract conjugated copper nanoparticles with potent cytotoxicity, antioxidant, antifungal, antibacterial, and cutaneous wound healing activities under in vitro and in vivo condition. J Photochem Photobiol B. 2019;197:111556.
  • Dhas S, Mukerjhee A, Chandrasekaran N. Phytosynthesis of silver nanoparticles using Ceriops tagal and its antimicrobial potential against human pathogens. Int J Pharm Pharm. 2013;5(3):349–352.
  • Chugh H, Sood D, Chandra I, et al. Role of gold and silver nanoparticles in cancer nano-medicine. Artif Cells Nanomed Biotechnol. 2018;46(sup1):1210–1220.
  • Arias LS, Pessan JP, Vieira APM, et al. Iron oxide nanoparticles for biomedical applications: a perspective on synthesis, drugs, antimicrobial activity, and toxicity. Antibiotics. 2018;7(2):46.
  • Nagababu P, Rao VU. Pharmacological assessment, green synthesis and characterization of silver nanoparticles of Sonneratia apetala buch.-ham. leaves. J Appl Pharm Sci. 2017;7(08):175–182.
  • Lamphear BJ, Streatfield SJ, Jilka JM, et al. Delivery of subunit vaccines in maize seed. J Control Release. 2002;85(1-3):169–180.
  • Laere E, Ling APK, Wong YP, et al. Plant-based vaccines: production and challenges. J Bot. 2016;2016:1–11.
  • Thatoi H, Behera BC, Mishra RR, et al. Biodiversity and biotechnological potential of microorganisms from mangrove ecosystems: a review. Ann Microbiol. 2013;63(1):1–19.
  • Baskaran R, Mohan PM, Sivakumar K, et al. Antimicrobial activity and phylogenetic analysis of Streptomyces parvulus Dosmb-D105 isolated from the mangrove sediments of Andaman Islands. Acta Microbiol Immunol Hung. 2016;63(1):27–46.
  • Yang SQ, Li XM, Xu GM, et al. Antibacterial anthraquinone derivatives isolated from a mangrove-derived endophytic fungus Aspergillus nidulans by ethanol stress strategy. J Antibiot. 2018;71(9):778–784.
  • Xu D, Ma M, Liu Y, et al. PreQ0 base, an unusual metabolite with anti-cancer activity from Streptomyces qinglanensis 172205. Anticancer Agents Med Chem. 2015;15(3):285–290.
  • Rahman M, Ahmed A, Shahid I. Phytochemical and pharmacological properties of Bruguiera gymnorrhiza roots extract. Int J Pharm Res. 2011;3:63–67.
  • Abeysinghe PD. Antibacterial activity of some medicinal mangroves against antibiotic resistant pathogenic bacteria. Indian J Pharm Sci. 2010;72(2):167–172.
  • Song JG, Su JC, Song QY, et al. Cleistocaltones a and B, antiviral phloroglucinol-terpenoid adducts from Cleistocalyx operculatus. Org Lett. 2019;21(23):9579–9583.
  • Pu JY, He L, Wu SY, et al. Anti-virus research of triterpenoids in licorice. Bing Du Xue Bao. 2013;29(6):673–679.
  • Varghese FS, Thaa B, Amrun SN, et al. The antiviral alkaloid berberine reduces chikungunya virus-induced mitogen-activated protein kinase signaling. J Virol. 2016;90(21):9743–9757.
  • Chan HT, Daniell H. Plant-made oral vaccines against human infectious diseases-Are we there yet? Plant Biotechnol J. 2015;13(8):1056–1070.
  • Kirk DD, McIntosh K. Social acceptance of plant-made vaccines: indications from a public survey. AgBioForum. 2005;8(4):228–234.
  • Volesky B, Luong JHT, Aunstrup K. Microbial enzymes: Production, purification, and isolation. Crit Rev Biotechnol. 1984;2(2):119–146.
  • Das D, Goyal A. Pharmaceutical enzymes. In: Kaur S, Singh GD, Soccol CR, editors. Biotransformation of waste biomass into high value biochemicals. New York; United States: Springer; 2014.
  • Sengupta A, Anwesha B, Verma SK, et al. Industrial applications of enzymes derived from Indian mangroves. In: Patra JK, Mishra RR, Thatoi H, editors. Biotechnological utilization of mangrove resources. Massachusetts; United States: Academic Press; 2020.
  • Joel EL, Bhimba BV. Production of alpha amylase by mangrove associated fungi Pestalotiopsis microspora strain VB5 and Aspergillus oryzae strain VB6. IJMS. 2012;41(3):279–283.
  • Agarwal P. Alpha-amylase inhibition can treat diabetes mellitus. Res Rev J Med Health Sci. 2016;5:09–27.
  • Janeček Š, Svensson B, MacGregor EA. α-Amylase: an enzyme specificity found in various families of glycoside hydrolases. Cell Mol Life Sci. 2014;71(7):1149–1170.
  • Raghukumar C, Raghukumar S, Chinnaraj A, et al. Laccase and other lignocellulose modifying enzymes of marine fungi isolated from the Coast of India. Bot Mar. 1994;37(6):515–524.
  • Job N, Manomi S, Philip R. Isolation and characterisation of endophytic fungi from Avicennia officinalis. Int J Res Biomed Biotechnol. 2015;5(1):4–8.
  • Pillaiyar T, Manickam M, Namasivayam V. Skin whitening agents: medicinal chemistry perspective of tyrosinase inhibitors. J Enzyme Inhib Med Chem. 2017;32(1):403–425.
  • Bialecka-Florjanczyk E, Fabiszewska AU, Krzyczkowska J, et al. Synthetic and natural lipase inhibitors. Mini Rev Med Chem. 2018;18(8):672–683.
  • Usha R, Mala K, Venil C, et al. Screening of actinomycetes from mangrove ecosystem for L-asparaginase activity and optimization by response surface methodology. Pol J Microbiol. 2011;60(3):213–221.
  • Bibi F, Ullah I, Alvi S, et al. Isolation, diversity, and biotechnological potential of rhizo-and endophytic bacteria associated with mangrove plants from Saudi Arabia. Genet Mol Res. 2017;16(2): gmr16029657.
  • Mayanglambam CS, Singh AK, Singh S, et al. Enzymes from mangrove endophytes and their biotechnological/industrial applications. In: Patra JK, Mishra RR, Thatoi H, editors. Biotechnological utilization of mangrove resources. Massachusetts; United States: Academic Press; 2020.
  • Castro RA, Quecine MC, Lacava PT, et al. Isolation and enzyme bioprospection of endophytic bacteria associated with plants of Brazilian mangrove ecosystem. Springerplus. 2014;3(1):382.
  • Soares JFL, Dias ACF, Fasanella CC, et al. Endo- and exoglucanase activities in bacteria from mangrove sediment . Braz J Microbiol. 2013;44(3):969–976.
  • Sahoo K, Dhal N, Das R. Production of amylase enzyme from mangrove fungal isolates. Afr J Biotechnol. 2014;13(46):4338–4346.
  • Mtui G, Masalu R. Extracellular enzymes from brown-rot fungus Laetiporus sulphureus isolated from mangrove forests of coastal Tanzania. Sci Res Essays. 2008;3(4):154–161.
  • Immaculatejeyasanta K, Madhanraj P, Jamila P, et al. Case study on the extra cellular enzyme of marine fungi associated with mangrove driftwood of Muthupet mangrove, Tamil Nadu, India. J Pharm Res. 2011;4(5):1385–1387.
  • Rohrmann S, Molitoris HP. Morphological and physiological adaptions of the cyphellaceous fungus Halocyphina villosa (aphyllophorales) to its marine habitat. Bot Mar. 1986;29:539–547.
  • Kathiresan K, Saravanakumar K, Anburaj R, et al. Microbial enzyme activity in decomposing leaves of mangroves. Int J Adv Biotechnol Res. 2011;2(3):382–389.
  • Patel I, Kracher D, Ma S, et al. Salt-responsive lytic polysaccharide monooxygenases from the mangrove fungus Pestalotiopsis sp. NCi6. Biotechnol Biofuels. 2016; 9(1):108.
  • Purkait R, Purkayastha R. Pectolytic enzyme activities of some foliar fungi isolated from mangrove plants and their response to tannin. Indian Phytopathol. 1996;49(4):366–372.
  • Pointing SB, Buswell JA, Jones EBG, et al. Extracellular cellulolytic enzyme profiles of five lignicolous mangrove fungi. Mycol Res. 1999;103(6):696–700.
  • Luo W, Lilian LPV, Jones EBG. Screening of marine fungi for lignocellulose-degrading enzyme activities. Bot Mar. 2005;48(5):379–386.
  • Maria GL, Sridhar KR, Raviraja NS. Antimicrobial and enzyme activity of mangrove endophytic fungi of southwest Coast of India. J Agric Sci Technol. 2005;1(1):67–80.
  • Kathiresan K, Manivannan S. Alpha-amylase production by Penicillium fellutanum isolated from mangrove rhizosphere soil. Afr J Biotechnol. 2006;5(10):829–832.
  • Prakash M. Isolation and screening of degrading enzymes from mangrove derived fungi. Int J Curr Microbiol App Sci. 2013;2(5):127–129.
  • Shome R, Shome B. Microbial L–asparaginase from mangroves of Andaman Islands. IJMS. 2001;30(3):183–184.
  • Behera BC, Mishra RR, Singh SK, et al. Cellulase from Bacillus licheniformis and Brucella sp. isolated from mangrove soils of Mahanadi river Delta, Odisha, India. Biocatal Biotransform. 2016;34(1):44–53.
  • Chantarasiri A. Aquatic bacillus cereus JD0404 isolated from the muddy sediments of mangrove swamps in Thailand and characterization of its cellulolytic activity. Egypt J Aquat Res. 2015;41(3):257–264.
  • Thenmozhi C, Sankar R, Karuppiah V, et al. L-asparaginase production by mangrove derived bacillus cereus MAB5: optimization by response surface methodology. Asian Pac J Trop Med. 2011;4(6):486–491.
  • Audipudi A, Pallavi R, Dnrs G. Characterization of L-asparaginase producing bacteria from mangrove soil. Int J Chemtech Res. 2013;5:109–112.
  • Das A, Bhattacharya S, Mohammed AYH, et al. In vitro antimicrobial activity and characterization of mangrove isolates of streptomycetes effective against bacteria and fungi of nosocomial origin. Braz Arch Biol Technol. 2014;57(3):349–356.
  • Sadeesh KR, Rajesh R, Gokulakrishnan S, et al. Screening and characterization of fibrinolytic protease producing Bacillus circulans from mangrove sediments Pitchavaram, South East Coast of India. Int Lett Nat Sci. 2015;1:10–16.
  • Venugopal M, Saramma AV. An alkaline protease from Bacillus circulans BM15, newly isolated from a mangrove station: characterization and application in laundry detergent formulations. Indian J Microbiol. 2007;47(4):298–303.
  • Gurudeeban S, Satyavani K, Ramanathan T. Production of extra cellular-amylase using Bacillus megaterium isolated from white mangrove (Avicennia marina). Asian J Biotechnol. 2011;3(3):310–316.
  • Bhagat C, Tank S, Ghelani A, et al. Bioremediation of CO2 and characterization of carbonic anhydrase from mangrove bacteria. J Environ Sci Technol. 2013;7(1):76–83.
  • Kathiresan K, Gomathi V, Anburaj R, et al. Impact of mangrove vegetation on seasonal carbon burial and other sediment characteristics in the Vellar-Coleroon estuary, India. J for Res. 2014;25(4):787–794.
  • Kanchana R, Correia D, Sarkar S, et al. Production and partial characterization of cholesterol oxidase from Micrococcus sp. isolated from Goa, India. Int J Appl Biol Pharma Tech. 2011;2:393–398.
  • Kiranmayi MU, Poda S, Vijayalakshmi M. Production and optimization of L-asparaginase by an actinobacterium isolated from Nizampatnam mangrove ecosystem. J Environ Biol. 2014;35(5):799–805.
  • Batool T, Makky EA, Jalal M, et al. A comprehensive review on L-asparaginase and its applications. Appl Biochem Biotechnol. 2016;178(5):900–923.
  • Numan M, Bashir S, Mumtaz R, et al. Therapeutic applications of bacterial pigments: a review of current status and future opportunities. 3 Biotech. 2018;8(4):207–207.
  • Gopal B, Chauhan M. Biodiversity and its conservation in the Sundarbans mangrove ecosystem. Aquat Sci. 2006;68(3):338–354.
  • Chidambaram V, Rajamanickam U, Ponnuswamy RD. Biotechnological potential of microbial pigments from mangrove ecosystems: a review. In: Patra JK, Mishra RR, Thatoi H, editors. Biotechnological utilization of mangrove resources. Massachusetts; United States: Academic Press; 2020.
  • Ghizelini AM, Mendonça-Hagler LCS, Macrae A. Microbial diversity in Brazilian mangrove sediments - a mini review. Braz J Microbiol. 2012;43(4):1242–1254.
  • Kumar NR, Nair S. Vibrio rhizosphaerae sp. nov., a red-pigmented bacterium that antagonizes phytopathogenic bacteria. Int J Syst Evol Microbiol. 2007;57(Pt 10):2241–2246.
  • Saha ML, Afrin S, Sony SK. Pigment producing soil bacteria of Sundarbans mangrove Forest. Bangladesh J Bot. 2017;46(2):717–724.
  • Dufossé L, Fouillaud M, Caro Y, et al. Filamentous fungi are large-scale producers of pigments and colorants for the food industry. Curr Opin Biotechnol. 2014;26:56–61.
  • Tan BL, Norhaizan ME. Carotenoids: how effective are they to prevent age-related diseases? Molecules. 2019;24(9):1801.
  • Grushevskaya HV, Krylova NG. Carbon nanotubes as a high-performance platform for target delivery of anticancer Quinones. Curr Pharm Des. 2018;24(43):5207–5218.
  • Babitha S. Microbial pigments. In: P SnN, editors. Biotechnology for agro-industrial residues utilisation. Dordrecht; Netherlands: Springer; 2009.
  • Xie L, Tang H, Song J, et al. Chrysophanol: a review of its pharmacology, toxicity and pharmacokinetics. J Pharm Pharmacol. 2019;71(10):1475–1487.
  • Kharangate-Lad A, Bhosle S. Studies on siderophore and pigment produced by an adhered bacterial strain Halobacillus trueperi MXM-16 from the mangrove ecosystem of Goa, India. Indian J Microbiol. 2016;56(4):461–466.
  • Yasmeen S, Muvva V, Munaganti R. Isolation and characterization of bioactive streptomyces from mangrove eco-system of Machilipatnam, Krishna district, Andhra Pradesh. Asian J Pharm Clin Res. 2017;9(9):258.
  • Abidin ZAZ, Chowdhury AJK, Malek NA, et al. Diversity, antimicrobial capabilities, and biosynthetic potential of mangrove actinomycetes from coastal waters in Pahang, Malaysia. J Coast Res. 2018;82:174–179.
  • Nicoletti R, Salvatore MM, Andolfi A. Secondary metabolites of mangrove-associated strains of talaromyces. Mar Drugs. 2018;16(1):12.
  • Chakraborty I, Redkar P, Munjal M, et al. Isolation and characterization of pigment producing marine actinobacteria from mangrove soil and applications of bio-pigments. Der Pharmacia Lettre. 2015;7:93–100.
  • Chintapenta LK, Rath CC, Maringinti B, et al. Pigment production from a mangrove penicillium. Afr J Biotechnol. 2014;13(26):2668–2674.
  • Li D-L, Li X-M, Wang B-G. Natural anthraquinone derivatives from a marine mangrove plant-derived endophytic fungus Eurotium rubrum: structural elucidation and DPPH radical scavenging activity. J Microbiol Biotechnol. 2009;19(7):675–680.
  • Kathiresan K, Boopathy NS, Kavitha S. Coastal vegetation—an underexplored source of anticancer drugs. NPR. 2006;5(2):115–119.
  • Barik R, Sarkar R, Biswas P, et al. 5,7-dihydroxy-2-(3-hydroxy-4, 5-dimethoxy-phenyl)-chromen-4-one-a flavone from Bruguiera gymnorrhiza displaying anti-inflammatory properties. Indian J Pharmacol. 2016;48(3):304–311.
  • Sur TK, Hazra A, Hazra AK, et al. Antioxidant and hepatoprotective properties of Indian Sunderbans mangrove Bruguiera gymnorrhiza L. Leave. J Basic Clin Pharm. 2016;7:75–79.
  • Bandaranayake WM. Bioactivities, bioactive compounds and chemical constituents of mangrove plants. Wetl Ecol Manag. 2002;10(6):421–452.
  • Suganthy N, Devi KP. In vitro antioxidant and anti-cholinesterase activities of Rhizophora mucronata. Pharm Biol. 2016;54(1):118–129.
  • Rohini R, Das A. Antidiarrheal and anti-inflammatory activities of lupeol, quercetin, beta-sitosterol, adene-5-en-3-ol and caffeic acid isolated from Rhizophora mucronata bark. Der Pharm Lett. 2010;2:95–101.
  • Manilal A, Merdekios B, Idhayadhulla A, et al. An in vitro antagonistic efficacy validation of Rhizophora mucronata. Asian Pac J Trop Dis. 2015;5(1):28–32.
  • Noronha VT, Paula AJ, Durán G, et al. Silver nanoparticles in dentistry. Dent Mater. 2017;33(10):1110–1126.
  • Gurunathan S, Qasim M, Park C, et al. Cytotoxic potential and molecular pathway analysis of silver nanoparticles in human Colon cancer cells HCT116. IJMS. 2018;19(8):2269.
  • Fayez H, El-Motaleb MA, Selim AA. Synergistic cytotoxicity of shikonin-silver nanoparticles as an opportunity for lung cancer. J Labelled Comp Radiopharm. 2020;63(1):25–32.
  • Yuan YG, Zhang S, Hwang JY, et al. Silver nanoparticles potentiates cytotoxicity and apoptotic potential of camptothecin in human cervical cancer cells. Oxid Med Cell Longev. 2018;2018:6121328.
  • Xiao H, Chen Y, Alnaggar M. Silver nanoparticles induce cell death of Colon cancer cells through impairing cytoskeleton and membrane nanostructure. Micron. 2019;126:102750.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.