1,125
Views
8
CrossRef citations to date
0
Altmetric
Review Articles

Cross-linked enzyme aggregates immobilization: preparation, characterization, and applications

, , , , &
Pages 369-383 | Received 24 Aug 2021, Accepted 12 Jan 2022, Published online: 17 Apr 2022

References

  • Cowan DA, Fernandez-Lafuente R. Enhancing the functional properties of thermophilic enzymes by chemical modification and immobilization. Enzyme Microb Technol. 2011;49(4):326–346.
  • Urrutia P, Arrieta R, Alvarez L, et al. Immobilization of lipases in hydrophobic chitosan for selective hydrolysis of fish oil: the impact of support functionalization on lipase activity, selectivity and stability. Int J Biol Macromol. 2018;108:674–686.
  • Chen N, Zhang C, Liu Y, et al. Cysteine-modified poly(glycidyl methacrylate) grafted onto silica nanoparticles: new supports for significantly enhanced performance of immobilized lipase. Biochem Eng J. 2019;145:137–144.
  • Mateo C, Grazu V, Palomo JM, et al. Immobilization of enzymes on heterofunctional epoxy supports. Nat Protoc. 2007;2(5):1022–1033.
  • Bunzel HA, Anderson JLR, Mulholland AJ. Designing better enzymes: insights from directed evolution. Curr Opin Struct Biol. 2021;67:212–218.
  • Han H, Ling Z, Khan A, et al. Improvements of thermophilic enzymes: from genetic modifications to applications. Bioresour Technol. 2019;279:350–361.
  • Ashkan Z, Hemmati R, Homaei A, et al. Immobilization of enzymes on nanoinorganic support materials: an update. Int J Biol Macromol. 2021;168:708–721.
  • Pagar AD, Patil MD, Flood DT, et al. Recent advances in biocatalysis with chemical modification and expanded amino acid alphabet. Chem Rev. 2021;121(10):6173–6245.
  • Wang F, Zhu M, Song Z, et al. Reshaping the binding pocket of lysine hydroxylase for enhanced activity. ACS Catal. 2020;10(23):13946–13956.
  • Primožič M, Kravanja G, Knez Ž, et al. Immobilized laccase in the form of (magnetic) cross-linked enzyme aggregates for sustainable diclofenac (bio)degradation. J Cleaner Prod. 2020;275:124121.
  • Zhen Q, Wang M, Qi W, et al. Preparation of β-mannanase CLEAs using macromolecular cross-linkers. Catal Sci Technol. 2013;3(8):1937–1941.
  • Kartal F, Janssen MHA, Hollmann F, et al. Improved esterification activity of candida rugosa lipase in organic solvent by immobilization as cross-linked enzyme aggregates (CLEAs). J Mol Catal B Enzym. 2011;71(3–4):85–89.
  • Cao L, Langen L. V, Sheldon RA. Immobilised enzymes: carrier-bound or carrier-free? Curr Opin Biotechnol. 2003;14(4):387–394.
  • Roessl U, Nahalka J, Nidetzky B. Carrier-free immobilized enzymes for biocatalysis. Biotechnol Lett. 2010;32(3):341–350.
  • Roy JJ, Abraham TE. Strategies in making cross-linked enzyme crystals. Chem Rev. 2003;104:3705–3721.
  • Cui JD, Jia SR. Optimization protocols and improved strategies of cross-linked enzyme aggregates technology: current development and future challenges. Crit Rev Biotechnol. 2015;35(1):15–28.
  • Ju H, Eunjin J, Han Ryu B, et al. Characterization and preparation of highly stable aggregates of a novel type of hydrolase (BL28) from Bacillus licheniformis. Bioresour Technol. 2013;128:81–86.
  • Yang X, Zheng P, Ni Y, et al. Highly efficient biosynthesis of sucrose-6-acetate with cross-linked aggregates of lipozyme TL 100 L. J Biotechnol. 2012;161(1):27–33.
  • Ren S, Li C, Jiao X, et al. Recent progress in multienzymes co-immobilization and multienzyme system applications. Chem Eng J. 2019;373:1254–1278.
  • Kannan S, Marudhamuthu M. Development of chitin cross-linked enzyme aggregates of L-methioninase for upgraded activity, permanence and application as efficient therapeutic formulations. Int J Biol Macromol. 2019;141:218–231.
  • Cui JD, Sun LM, Li LL. A simple technique of preparing stable CLEAs of phenylalanine ammonia lyase using co-aggregation with starch and bovine serum albumin. Appl Biochem Biotechnol. 2013;170(8):1827–1837.
  • Mehde AA. Development of magnetic cross-linked peroxidase aggregates on starch as enhancement template and their application for decolorization. Int J Biol Macromol. 2019;131:721–733.
  • Talekar S, Joshi A, Joshi G, et al. Parameters in preparation and characterization of cross linked enzyme aggregates (CLEAs). RSC Adv. 2013;3(31):12485.
  • Sinirlioglu ZA, Sinirlioglu D, Akbas F. Preparation and characterization of stable cross-linked enzyme aggregates of novel laccase enzyme from Shewanella putrefaciens and using malachite green decolorization. Bioresour Technol. 2013;146:807–811.
  • Jiang Y, Shi L, Huang Y, et al. Preparation of robust biocatalyst based on cross-linked enzyme aggregates entrapped in three-dimensionally ordered macroporous silica. ACS Appl Mater Interfaces. 2014;6(4):2622–2628.
  • Alves NR, Pereira MM, Giordano RLC, et al. Design for preparation of more active cross-linked enzyme aggregates of Burkholderia cepacia lipase using palm fiber residue. Bioprocess Biosyst Eng. 2021;44(1):57–66.
  • Li L, Li G, Cao LC, et al. Characterization of the cross-linked enzyme aggregates of a novel β-galactosidase, a potential catalyst for the synthesis of galacto-oligosaccharides. J Agric Food Chem. 2015;63(3):894–901.
  • Parveen S, Asgher M, Bilal M. Lignin peroxidase-based cross-linked enzyme aggregates (LiP-CLEAs) as robust biocatalytic materials for mitigation of textile dyes-contaminated aqueous solution. Environ Technol Innovation. 2021;21:101226.
  • Ullah H, Pervez S, Ahmed S, et al. Preparation, characterization and stability studies of cross-linked α-amylase aggregates (CLAAs) for continuous liquefaction of starch. Int J Biol Macromol. 2021;173:267–276.
  • Nawawi NN, Hashim Z, Manas NA, et al. A porous-cross linked enzyme aggregates of maltogenic amylase from Bacillus lehensis G1: Robust biocatalyst with improved stability and substrate diffusion. Int J Biol Macromol. 2020;148:1222–1231.
  • Bian H, Cao M, Wen H, et al. Biodegradation of polyvinyl alcohol using cross-linked enzyme aggregates of degrading enzymes from Bacillus niacini. Int J Biol Macromol. 2019;124:10–16.
  • Kunjukunju S, Roy A, Shekhar S, et al. Cross-linked enzyme aggregates of alginate lyase: a systematic engineered approach to controlled degradation of alginate hydrogel. Int J Biol Macromol. 2018;115:176–184.
  • Liao Q, Du X, Jiang W, et al. Cross-linked enzyme aggregates (CLEAs) of halohydrin dehalogenase from Agrobacterium radiobacter AD1: Preparation, characterization and application as a biocatalyst. J Biotechnol. 2018;272-273:48–55.
  • Xu MQ, Li FL, Yu WQ, et al. Combined cross-linked enzyme aggregates of glycerol dehydrogenase and NADH oxidase for high efficiency in situ NAD+ regeneration. Int J Biol Macromol. 2020;144:1013–1021.
  • Erick Araya PU, Romero O, Illanes A, et al. Design of combined crosslinked enzyme aggregates (combi-CLEAs) of β-galactosidase and glucose isomerase for the one-pot production of fructose syrup from lactose. Food Chem. 2019;288:102–107.
  • Shaarani SM, Jahim JM, Rahman RA, et al. Silanized maghemite for cross-linked enzyme aggregates of recombinant xylanase from Trichoderma reesei. J Mol Catal B Enzym. 2016;133:65–76.
  • Grajales-Hernandez DA, Velasco-Lozano S, Armendariz-Ruiz MA, et al. Carrier-bound and carrier-free immobilization of type a feruloyl esterase from Aspergillus niger: Searching for an operationally stable heterogeneous biocatalyst for the synthesis of butyl hydroxycinnamates. J Biotechnol. 2020;316:6–16.
  • Grajales-Hernandez D, Armendariz-Ruiz M, Velasco-Lozano S, et al. Chitosan-based CLEAs from Aspergillus niger type a feruloyl esterase: high-productivity biocatalyst for alkyl ferulate synthesis. Appl Microbiol Biotechnol. 2020;104(23):10033–10045.
  • Sellami K, Couvert A, Nasrallah N, et al. Bio-based and cost effective method for phenolic compounds removal using cross-linked enzyme aggregates. J Hazard Mater. 2021;403:124021.
  • Šekuljica NŽ, Prlainović NŽ, Jakovetić SM, et al. Removal of anthraquinone dye by Cross-Linked enzyme aggregates from fresh horseradish extract. Clean Soil Air Water. 2016;44(7):891–900.
  • Velasco-Lozano S, Jackson E, Ripoll M, et al. Stabilization of ω-transaminase from Pseudomonas fluorescens by immobilization techniques . Int J Biol Macromol. 2020;164:4318–4328.
  • Nikolaivits E, Makris G, Topakas E. Immobilization of a cutinase from Fusarium oxysporum and application in pineapple flavor synthesis. J Agric Food Chem. 2017;65(17):3505–3511.
  • Bilal M, Noreen S, Asgher M, et al. Development and characterization ofcross-linked laccase aggregates (Lac-CLEAs) from trametes versicolor IBL-04 as ecofriendly biocatalyst for degradation ofdye-based environmental pollutants. Environ Technol Innovation. 2021;21:101364.
  • Zerva A, Pentari C, Topakas E. Crosslinked enzyme aggregates (CLEAs) of laccases from Pleurotus citrinopileatus induced in olive oil mill wastewater (OOMW). Molecules. 2020;25(9):2221.
  • Li S, Su Y, Liu Y, et al. Preparation and characterization of cross-linked enzyme aggregates (CLEAs) of recombinant thermostable alkylsulfatase (SdsAP) from Pseudomonas sp. S9. Process Biochem. 2016;51(12):2084–2089.
  • Vaidya BK, Kuwar SS, Golegaonkar SB, et al. Preparation of cross-linked enzyme aggregates of l-aminoacylase via co-aggregation with polyethyleneimine. J Mol Catal B Enzym. 2012;74(3-4):184–191.
  • Pico EA, Lopez C, Cruz-Izquierdo A, et al. Easy reuse of magnetic cross-linked enzyme aggregates of lipase B from Candida antarctica to obtain biodiesel from chlorella vulgaris lipids. J Biosci Bioeng. 2018;126(4):451–457.
  • Liu Y, Guo C, Liu CZ. Enhancing the resolution of (R,S)-2-octanol catalyzed by magnetic cross-linked lipase aggregates using an alternating magnetic field. Chem Eng J. 2015;280:36–40.
  • Cui J, Cui L, Jia S, et al. Hybrid Cross-Linked lipase aggregates with magnetic nanoparticles: a robust and recyclable biocatalysis for the epoxidation of oleic acid. J Agric Food Chem. 2016;64(38):7179–7187.
  • Wang M, Wang H, Feng Y, et al. Preparation and characterization of Sugar-Assisted Cross-Linked enzyme aggregates (CLEAs) of recombinant cellobiose 2-epimerase from Caldicellulosiruptor saccharolyticus (CsCE)). J Agric Food Chem. 2018;66(29):7712–7721.
  • Guauque Torres MP, Foresti ML, Ferreira ML. CLEAs of candida antarctica lipase B (CALB) with a bovine serum albumin (BSA) cofeeder core: study of their catalytic activity. Biochem Eng J. 2014;90:36–43.
  • Torabizadeh H, Montazeri E. Nano co-immobilization of α-amylase and maltogenic amylase by nanomagnetic combi-cross-linked enzyme aggregates method for maltose production from corn starch. Carbohydr Res. 2020;488:107904.
  • Bilal M, Iqbal HM, Hu H, et al. Development of horseradish peroxidase-based cross-linked enzyme aggregates and their environmental exploitation for bioremediation purposes. J Environ Manage. 2017;188:137–143.
  • Taboada-Puig R, Junghanns C, Demarche P, et al. Combined cross-linked enzyme aggregates from versatile peroxidase and glucose oxidase: production, partial characterization and application for the elimination of endocrine disruptors. Bioresour Technol. 2011;102(11):6593–6599.
  • Dong T, Zhao L, Huang Y, et al. Preparation of cross-linked aggregates of aminoacylase from Aspergillus melleus by using bovine serum albumin as an inert additive. Bioresour Technol. 2010;101(16):6569–6571.
  • Gao J, Wang Q, Jiang Y, et al. Formation of nitrile hydratase Cross-Linked enzyme aggregates in mesoporous onion-like silica: preparation and catalytic properties. Ind Eng Chem Res. 2015;54(1):83–90.
  • Mateo C, Palomo JM, van Langen LM, et al. A new, mild cross-linking methodology to prepare cross-linked enzyme aggregates. Biotechnol Bioeng. 2004;86(3):273–276.
  • Jannat M, Yang KL. A millifluidic device with embedded cross-linked enzyme aggregates for degradation of H2O2. ACS Appl Mater Interfaces. 2020;12(5):6768–6775.
  • Abd Rahman NH, Jaafar NR, Shamsul Annuar NA, et al. Efficient substrate accessibility of cross-linked levanase aggregates using dialdehyde starch as a macromolecular cross-linker. Carbohydr Polym. 2021;267:118159.
  • Miletic N, Loos K. Over-stabilization of chemically modified and cross-linked Candida antarctica lipase B using various epoxides and diepoxides. Aust J Chem. 2009;62(8):799–805.
  • Jin W, Xu Y, Yu XW. Formation lipase cross-linked enzyme aggregates on octyl-modified mesocellular foams with oxidized sodium alginate. Colloids Surf B Biointerfaces. 2019;184:110501.
  • Arteche Pujana M, Perez-Alvarez L, Cesteros Iturbe LC, et al. Biodegradable chitosan nanogels crosslinked with genipin. Carbohydr Polym. 2013;94(2):836–842.
  • Avila MY, Narvaez M, Castaneda JP. Effects of genipin corneal crosslinking in rabbit corneas. J Cataract Refract Surg. 2016;42(7):1073–1077.
  • Qian-Qian Y, Kai C, Ling Z, et al. Preparation of Bacillus subtilis alkaline protease aggregates by crosslinking with genepin. Mod Food Sci Technol. 2020;36:95–102.
  • Hong J, Jung D, Park S, et al. Immobilization of laccase via cross-linked enzyme aggregates prepared using genipin as a natural cross-linker. Int J Biol Macromol. 2021;169:541–550.
  • Ouyang J, Pu S, Wang J, et al. Enzymatic hydrolysate of geniposide directly acts as cross-linking agent for enzyme immobilization. Process Biochem. 2020;99:187–195.
  • Velasco-Lozano S, Lopez-Gallego F, Vazquez-Duhalt R, et al. Carrier-free immobilization of lipase from Candida rugosa with polyethyleneimines by carboxyl-activated cross-linking. Biomacromolecules. 2014;15(5):1896–1903.
  • Rehman S, Bhatti HN, Bilal M, et al. Cross-linked enzyme aggregates (CLEAs) of Pencilluim notatum lipase enzyme with improved activity, stability and reusability characteristics. Int J Biol Macromol. 2016;91:1161–1169.
  • Arsenault A, Cabana H, Jones JP. Laccase-based CLEAs: chitosan as a novel cross-linking agent. Enzyme Res. 2011;2011:376015.
  • Yamaguchi H, Kiyota Y, Miyazaki M. Techniques for preparation of cross-linked enzyme aggregates and their applications in bioconversions. Catalysts. 2018;8(5):174.
  • Wendell Q, Sun PD. Protein inactivation in amorphous sucrose and trehalose matrices: e¡ects of phase separation and crystallization. BBA-Gen Subjects. 1998;1425(1):235–244.
  • Sun WQ, Davidson P, Chan HSO. Protein stability in the amorphous carbohydrate matrix: relevance to anhydrobiosis. BBA-Gen Subjects. 1998;1425(1):245–254.
  • Mehde AA, Mehdi WA, Ozacar M, et al. Evaluation of different saccharides and chitin as eco-friendly additive to improve the magnetic cross-linked enzyme aggregates (CLEAs) activities. Int J Biol Macromol. 2018;118(Pt B):2040–2050.
  • Wang M, Qi W, Jia C, et al. Enhancement of activity of cross-linked enzyme aggregates by a sugar-assisted precipitation strategy: technical development and molecular mechanism. J Biotechnol. 2011;156(1):30–38.
  • Garcı́a-Ochoa F, Santos VE, Casas JA, et al. Xanthan gum: production, recovery, and properties. Biotechnolo Adv. 2000;18(7):549–579.
  • Shalviri A, Liu Q, Abdekhodaie MJ, et al. Novel modified starch–xanthan gum hydrogels for controlled drug delivery: synthesis and characterization. Carbohyd Polym. 2010;79(4):898–907.
  • Li XD, Wu J, Jia DC, et al. Preparation of cross-linked glucoamylase aggregates immobilization by using dextrin and xanthan gum as protecting agents. Catalysts. 2016;6(6):77.
  • Amaral-Fonseca M, Kopp W, Giordano R, et al. Preparation of magnetic cross-linked amyloglucosidase aggregates: solving some activity problems. Catalysts. 2018;8(11):496.
  • Abd Rahman NH, Jaafar NR, Abdul Murad AM, et al. Novel cross-linked enzyme aggregates of levanase from Bacillus lehensis G1 for short-chain fructooligosaccharides synthesis: developmental, physicochemical, kinetic and thermodynamic properties. Int J Biol Macromol. 2020;159:577–589.
  • Gulla KC, Gouda MD, Thakur MS, et al. Enhancement of stability of immobilized glucose oxidase by modification of free thiols generated by reducing disulfide bonds and using additives. Biosens Bioelectron. 2004;19(6):621–625.
  • Karimpil JJ, Melo JS, D'Souza SF. Hen egg white as a feeder protein for lipase immobilization. J Mol Catal B Enzym. 2011;71(3–4):113–118.
  • Wilson L, Illanes A, Abian O, et al. Co-Aggregation of penicillin G acylase and polyionic polymers: an easy methodology to prepare enzyme biocatalysts stable in organic media. Biomacromolecules. 2004;5(3):852–857.
  • Lopez-Gallego F, Betancor L, Hidalgo A, et al. Co-aggregation of enzymes and polyethyleneimine: a simple method to prepare stable and immobilized derivatives of glutaryl acylase. Biomacromolecules. 2005;6(4):1839–1842.
  • Zheng J, Chen Y, Yang L, et al. Preparation of cross-linked enzyme aggregates of trehalose synthase via co-aggregation with polyethyleneimine. Appl Biochem Biotechnol. 2014;174(6):2067–2078.
  • Yamaguchi H, Miyazaki M, Asanomi Y, et al. Poly-lysine supported cross-linked enzyme aggregates with efficient enzymatic activity and high operational stability. Catal Sci Technol. 2011;1(7):1256.
  • Ye J, Li A, Chu T, et al. Poly-lysine supported cross-linked enzyme aggregates of penicillin G acylase and its application in synthesis of β-lactam antibiotics. Int J Biol Macromol. 2019;140:423–428.
  • Fernandez-Lorente G, Palomo JM, Mateo C, et al. Glutaraldehyde Cross-Linking of lipases adsorbed on aminated supports in the presence of detergents leads to improved performance. Biomacromolecules. 2006;7(9):2610–2615.
  • Gupta P, Dutt K, Misra S, et al. Characterization of cross-linked immobilized lipase from thermophilic mould thermomyces lanuginosa using glutaraldehyde. Bioresour Technol. 2009;100(18):4074–4076.
  • Zhang WW, Yang XL, Jia JQ, et al. Surfactant-activated magnetic cross-linked enzyme aggregates (magnetic CLEAs) of thermomyces lanuginosus lipase for biodiesel production. J Mol Catal B Enzym. 2015;115:83–89.
  • De Rose SA, Novak H, Dowd A, et al. Stabilization of a lipolytic enzyme for commercial application. Catalysts. 2017;7(12):91.
  • Cui J, Zhao Y, Feng Y, et al. Encapsulation of spherical cross-linked phenylalanine ammonia lyase aggregates in mesoporous biosilica. J Agric Food Chem. 2017;65(3):618–625.
  • Saikia K, Rathankumar AK, Vaithyanathan VK, et al. Preparation of highly diffusible porous cross-linked lipase B from Candida antarctica conjugates: Advances in mass transfer and application in transesterification of 5-Hydroxymethylfurfural. Int J Biol Macromol. 2021;170:583–592.
  • Morshed MN, Behary N, Bouazizi N, et al. An overview on biocatalysts immobilization on textiles: Preparation, progress and application in wastewater treatment. Chemosphere. 2021;279:130481.
  • Torabizadeh H, Mikani M. Kinetic and thermodynamic features of nanomagnetic cross-linked enzyme aggregates of naringinase nanobiocatalyst in naringin hydrolysis. Int J Biol Macromol. 2018;119:717–725.
  • Rodrigues RC, Ortiz C, Berenguer-Murcia A, et al. Modifying enzyme activity and selectivity by immobilization. Chem Soc Rev. 2013;42(15):6290–6307.
  • Hojnik Podrepšek G, Knez Ž, Leitgeb M. Activation of cellulase cross-linked enzyme aggregates (CLEAs) in scCO2. J Supercrit Fluids. 2019;154:104629.
  • Ademakinwa AN. A heat-resistant intracellular laccase immobilized via cross-linked enzyme aggregate preparation: characterization, application in bisphenol a removal and phytotoxicity evaluation. J Hazard Mater. 2021;419:126480.
  • Nguyen LT, Yang KL. Combined cross-linked enzyme aggregates of horseradish peroxidase and glucose oxidase for catalyzing Cascade chemical reactions. Enzyme Microb Technol. 2017;100:52–59.
  • Rai SK, Kumar V, Yadav SK. Development of recyclable magnetic cross-linked enzyme aggregates for the synthesis of high value rare sugar d-tagatose in aqueous phase catalysis. Catal Sci Technol. 2021;11(6):2186–2194.
  • Peng F, Ou XY, Guo ZW, et al. Co-immobilization of multiple enzymes by self-assembly and chemical crosslinking for cofactor regeneration and robust biocatalysis. Int J Biol Macromol. 2020;162:445–453.
  • Kulkarni AN, Kadam SK, Jeon BH, et al. Enhanced application of cross-linked enzyme aggregates of lichen dermatocarpon vellereceum released extracellular enzymes for degradation of textile dyes. Int Biodeter Biodegr. 2020;153:105044.
  • Wang H, Han S, Wang J, et al. Preparation and synthetic dye decolorization ability of magnetic cross-linked enzyme aggregates of laccase from Bacillus amyloliquefaciens. Bioprocess Biosyst Eng. 2021;44(4):727–735.
  • Sadeghzadeh S, Ghobadi NZ, Ghasemi S, et al. Removal of bisphenol a in aqueous solution using magnetic cross-linked laccase aggregates from Trametes hirsuta. Bioresour Technol. 2020; 306:123169.
  • Liu N, Liang G, Dong X, et al. Stabilized magnetic enzyme aggregates on graphene oxide for high performance phenol and bisphenol a removal. Chem Eng J. 2016; 306:1026–1034.
  • Stavila E, Alberda van Ekenstein GO, Loos K. Enzyme-catalyzed synthesis of aliphatic-aromatic oligoamides. Biomacromolecules. 2013;14(5):1600–1606.
  • Zerva A, Antonopoulou I, Enman J, et al. Optimization of transesterification reactions with CLEA-Immobilized feruloyl esterases from thermothelomyces thermophila and talaromyces wortmannii. Molecules. 2018;23(9):2403.
  • Kulkarni NH, Muley AB, Bedade DK, et al. Cross-linked enzyme aggregates of arylamidase from Cupriavidus oxalaticus ICTDB921: process optimization, characterization, and application for mitigation of acrylamide in industrial wastewater. Bioprocess Biosyst Eng. 2020;43(3):457–471.
  • Perwez M, Ahmed Mazumder J, Sardar M. Preparation and characterization of reusable magnetic combi-CLEA of cellulase and hemicellulase. Enzyme Microb Technol. 2019;131:109389.
  • Bhattacharya AS, Bhattacharya A, Pletschke BI. Synergism of fungal and bacterial cellulases and hemicellulases: a novel perspective for enhanced bio-ethanol production. Biotechnol Lett. 2015;37(6):1117–1129.
  • Bayraktar H, Onal S. Cross-linked α-galactosidase aggregates: optimization, characterization and application in the hydrolysis of raffinose-type oligosaccharides in soymilk. J Sci Food Agric. 2019;99(10):4748–4760.
  • Tavernini L, Ottone C, Illanes A, et al. Entrapment of enzyme aggregates in chitosan beads for aroma release in white wines. Int J Biol Macromol. 2020;154:1082–1090.
  • Mafra A, Ulrich L, Kornecki J, et al. Combi-CLEAs of glucose oxidase and catalase for conversion of glucose to gluconic acid eliminating the hydrogen peroxide to maintain enzyme activity in a bubble column reactor. Catalysts. 2019;9(8):657.
  • Nawawi NN, Hashim Z, Rahman RA, et al. Entrapment of porous cross-linked enzyme aggregates of maltogenic amylase from Bacillus lehensis G1 into calcium alginate for maltooligosaccharides synthesis. Int J Biol Macromol. 2020;150:80–89.
  • Galliani M, Santi M, Del Grosso A, et al. Cross-Linked enzyme aggregates as versatile tool for enzyme delivery: application to polymeric nanoparticles. Bioconjug Chem. 2018;29(7):2225–2231.
  • Xu S, Liu Y, Yu Y, et al. PAN/PVDF chelating membrane for simultaneous removal of heavy metal and organic pollutants from mimic industrial wastewater. Sep Purif Technol. 2020;235:116185.
  • Xu L, Xu S, Zhang Q, et al. Chlorinated-Methylsiloxanes in shengli oilfield: Their generation in Oil-Production wastewater treatment plant and presence in the surrounding soils. Environ Sci Technol. 2019;53(7):3558–3567.
  • Aziz A, Ali N, Khan A, et al. Chitosan‑zinc sulfide nanoparticles, characterization and their photocatalytic degradation efficiency for azo dyes. Int J Biol Macromol. 2020;153:502–512.
  • Schwab LW, Kloosterman WMJ, Konieczny J, et al. Papain catalyzed synthesis of protected amino acid amides. J Renew Mater. 2013;1(1):73–78.
  • Stavila E, Arsyi RZ, Petrovic DM, et al. Fusarium solani pisi cutinase-catalyzed synthesis of polyamides. Eur Polym J. 2013;49(4):834–842.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.