1,391
Views
3
CrossRef citations to date
0
Altmetric
Review Articles

Deciphering the role of miRNA in reprogramming plant responses to drought stress

, , , , &
Pages 613-627 | Received 26 Aug 2021, Accepted 12 Feb 2022, Published online: 25 Apr 2022

References

  • Farooq M, Hussain M, Wahid A, et al. Drought stress in plants: an overview. Plant responses to drought stress. Berlin: Springer Science & Business Media; 2012. p. 1–33.
  • He Q, Ju W, Dai S, et al. Drought risk of global terrestrial gross primary productivity over the last 40 years detected by a remote sensing‐driven process model. J Geophys Res Biogeosci. 2021;126(6):e2020JG005944.
  • Zhu JK. Abiotic stress signaling and responses in plants. Cell. 2016;167(2):313–324.
  • Wilkinson S, Kudoyarova GR, Veselov DS, et al. Plant hormone interactions: innovative targets for crop breeding and management. J Exp Bot. 2012;63(9):3499–3509.
  • Kim JI, Murphy AS, Baek D, et al. YUCCA6 over-expression demonstrates auxin function in delaying leaf senescence in Arabidopsis thaliana. J Exp Bot. 2011;62(11):3981–3992.
  • Choi H, Hong J, Ha J, et al. ABFs, a family of ABA-responsive element binding factors. J Biol Chem. 2000;275(3):1723–1730.
  • Rathinasabapathi B. Metabolic engineering for stress tolerance: installing osmoprotectant synthesis pathways. Ann Bot. 2000;86(4):709–716.
  • Sunkar R, Li YF, Jagadeeswaran G. Functions of microRNAs in plant stress responses. Trends Plant Sci. 2012;17(4):196–203.
  • Jatan R, Tiwari S, Asif MH, et al. Genome-wide profiling reveals extensive alterations in Pseudomonas putida-mediated miRNAs expression during drought stress in chickpea (Cicer arietinum L.). Environ Exp Bot. 2019; 157:217–227.
  • Jatan R, Lata C. Role of MicroRNAs in abiotic and biotic stress resistance in plants. Proc Indian National Sci Acad. 2019;85:553–567.
  • Singroha G, Sharma P, Sunkur R. Current status of microRNA‐mediated regulation of drought stress responses in cereals. Physiol Plant. 2021;172(3), 1808–1821.
  • Zhang B. MicroRNA: a new target for improving plant tolerance to abiotic stress. J Exp Bot. 2015;66(7):1749–1761.
  • Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 1993;75(5):843–854.
  • Budak H, Akpinar BA. Plant miRNAs: biogenesis, organization and origins. Funct Integr Genomics. 2015;15(5):523–531.
  • Petersen CP, Bordeleau ME, Pelletier J, et al. Short RNAs repress translation after initiation in mammalian cells. Mol Cell. 2006;21(4):533–542.
  • Pillai RS. MicroRNA function: multiple mechanisms for a tiny RNA? RNA. 2005;11(12):1753–1761.
  • Morozova N, Zinovyev A, Nonne N, et al. Kinetic signatures of microRNA modes of action. RNA. 2012;18(9):1635–1655.
  • Nottrott S, Simard MJ, Richter JD. Human let-7a miRNA blocks protein production on actively translating polyribosomes. Nat Struct Mol Biol. 2006;13(12):1108–1114.
  • Wu WKK, Lee CW, Cho CH, et al. MicroRNA dysregulation in gastric cancer: a new player enters the game. Oncogene. 2010;29(43):5761–5771.
  • Chinnusamy V, Zhu J, Zhou T, et al. Small RNAs: big role in abiotic stress tolerance of plants. Advances in molecular breeding toward drought and salt tolerant crops. Berlin: Springer; 2007. p. 223–260.
  • Liu HH, Tian X, Li YJ, et al. Microarray-based analysis of stress-regulated microRNAs in Arabidopsis thaliana. RNA. 2008;14(5):836–843.
  • Yang T, Wang Y, Teotia S, et al. The interaction between miR160 and miR165/166 in the control of leaf development and drought tolerance in arabidopsis. Sci Rep. 2019;9(1):1–13.
  • Yu L, Zhou L, Liu W, et al. Identification of drought resistant miRNA in Macleaya cordata by high-throughput sequencing. Arch Biochem Biophys. 2020; 684(108300):108300.
  • Kouhi F, Sorkheh K, Ercisli S. MicroRNA expression patterns unveil differential expression of conserved miRNAs and target genes against abiotic stress in safflower. PLoS One. 2020;15(2):e0228850.
  • Chakraborty A, Viswanath A, Malipatil R, et al. Structural and functional characteristics of miRNAs in five strategic millet species and their utility in drought tolerance. Front Genet. 2020;11:1–15.
  • Li H, Dong Y, Yin H, et al. Characterization of the stress associated microRNAs in Glycine max by deep sequencing. BMC Plant Biol. 2011;11(1):170.
  • Gentile A, Dias LI, Mattos RS, et al. MicroRNAs and drought responses in sugarcane. Front Plant Sci. 2015;6(58):58.
  • Sunkar R. MicroRNAs with macro-effects on plant stress responses. Semin Cell Dev Biol. 2010;21(8):805–811.
  • Gao P, Bai X, Yang L, et al. osa-MIR393: a salinity- and alkaline stress-related microRNA gene. Mol Biol Rep. 2011;38(1):237–242.
  • Li SB, Xie ZZ, Hu CG, et al. A review of auxin response factors (ARFs) in plants. Front Plant Sci. 2016;7:47.
  • Visentin I, Pagliarani C, Deva E, et al. A novel strigolactone-miR156 module controls stomatal behaviour during drought recovery. Plant Cell Environ. 2020;43(7):1613–1624.
  • Hamza NB, Sharma N, Tripathi A, et al. MicroRNA expression profiles in response to drought stress in Sorghum bicolor. Gene Expr Patterns. 2016;20(2):88–98.
  • Akdogan G, Tufekci ED, Uranbey S, et al. miRNA-based drought regulation in wheat. Funct Integr Genomics. 2016;16(3):221–233.
  • Dong Z, Han M-H, Fedoroff N. The RNA-binding proteins HYL1 and SE promote accurate in vitro processing of pri-miRNA by DCL1. Proc Natl Acad Sci USA. 2008;105(29):9970–9975.
  • Park W, Li J, Song R, et al. CARPEL FACTORY, a dicer homolog, and HEN1, a novel protein, act in microRNA metabolism in Arabidopsis thaliana. Curr Biol. 2002;12(17):1484–1495.
  • Pareek M, Yogindran S, Mukherjee SK, et al. Plant MicroRNAs: biogenesis, functions, and applications. In: Plant biology and biotechnology. New Delhi: Springer; 2015. p. 639–661.
  • Chen X. MicroRNA biogenesis and function in plants. FEBS Lett. 2005;579(26):5923–5931.
  • Achkar NP, Cambiagno DA, Manavella PA. miRNA biogenesis: a dynamic pathway. Trends Plant Sci. 2016;21(12):1034–1044.
  • Chowdhury MR, Basak J, Bahadur RP. Elucidating the functional role of predicted miRNAs in post-transcriptional gene regulation along with symbiosis in Medicago truncatula. CBIO. 2020;15(2):108–120.
  • Zhang Z, Teotia S, Tang J, et al. Perspectives on microRNAs and phased small interfering RNAs in maize (Zea mays L.): functions and big impact on agronomic traits enhancement. Plants. 2019;8(6):170.
  • Zhou L, Liu Y, Liu Z, et al. Genome-wide identification and analysis of drought-responsive microRNAs in Oryza sativa. J Exp Bot. 2010;61(15):4157–4168.
  • Chen J, Li L. Multiple regression analysis reveals microRNA regulatory networks in Oryza sativa under drought stress. Int J Genomics. 2018;2018:9395261.
  • Sun M, Yang J, Cai X, et al. The opposite roles of OsmiR408 in cold and drought stress responses in Oryza sativa. Mol Breed. 2018;38(10):1–12.
  • Singh DK, Mehra S, Chatterjee S, et al. In silico identification and validation of miRNA and their DIR specific targets in Oryza sativa indica under abiotic stress. Noncoding RNA Res. 2020;5(4):167–177.
  • Arshad M, Feyissa BA, Amyot L, et al. MicroRNA156 improves drought stress tolerance in alfalfa (Medicago sativa) by silencing SPL13. Plant Sci. 2017;258:122–136.
  • Zare S, Nazarian-Firouzabadi F, Ismaili A, et al. Identification of miRNAs and evaluation of candidate genes expression profile associated with drought stress in barley. Plant Gene. 2019;20:100205.
  • Shi GQ, Fu JY, Rong LJ, et al. TaMIR1119, a miRNA family member of wheat (Triticum aestivum), is essential in the regulation of plant drought tolerance. J Integr Agric. 2018;17(11):2369–2378.
  • Guo Y, Zhao S, Zhu C, et al. Identification of drought-responsive miRNAs and physiological characterization of tea plant (Camellia sinensis L.) under drought stress. BMC Plant Biol. 2017;17(1):1–20.
  • López-Galiano MJ, García-Robles I, González-Hernández AI, et al. Expression of miR159 is altered in tomato plants undergoing drought stress. Plants. 2019;8(7):201.
  • Chen L, Meng J, Luan Y. miR1916 plays a role as a negative regulator in drought stress resistance in tomato and tobacco. Biochem Biophys Res Commun. 2019;508(2):597–602.
  • Zhang X, Fan B, Yu Z, et al. Functional analysis of three miRNAs in Agropyron mongolicum keng under drought stress. Agronomy. 2019;9(10):661.
  • Zhou M, Luo H. Role of microRNA319 in creeping bentgrass salinity and drought stress response. Plant Signal Behav. 2014;9(4):1375–1391.
  • Shuai P, Liang D, Zhang Z, et al. Identification of drought-responsive and novel Populus trichocarpa microRNAs by high-throughput sequencing and their targets using degradome analysis. BMC Genomics. 2013;14(1):214–233.
  • Li T, Li H, Zhang Y-X, et al. Identification and analysis of seven H2O2-responsive miRNAs and 32 new miRNAs in the seedlings of rice (Oryza sativa L. ssp. indica). Nucleic Acids Res. 2011;39(7):2821–2833.
  • Jiao Y, Wang Y, Xue D, et al. Regulation of OsSPL14 by OsmiR156 defines ideal plant architecture in rice. Nat Genet. 2010;42(6):541–544.
  • Xia K, Wang R, Ou X, et al. OsTIR1 and OsAFB2 downregulation via OsmiR393 overexpression leads to more tillers, early flowering and less tolerance to salt and drought in rice. PLoS One. 2012;7(1):e30039.
  • Sharma N, Panchal S, Sanan-Mishra N. Protocol for artificial microRNA mediated over-expression of miR820 in indica rice. Am J Plant Sci. 2015;06(12):1951–1961.
  • Kantar M, Unver T, Budak H. Regulation of barley miRNAs upon dehydration stress correlated with target gene expression. Funct Integr Genomics. 2010;10(4):493–507.
  • Deng P, Wang L, Cui L, et al. Global identification of microRNAs and their targets in barley under salinity stress. PLoS One. 2015;10(9):e0137990.
  • Li J, Guo G, Guo W, et al. miRNA164-directed cleavage of ZmNAC1 confers lateral root development in maize (Zea mays L. ).BMC Plant Biol. 2012;12(1):1–14.
  • Sheng L, Chai W, Gong X, et al. Identification and characterization of novel maize miRNAs involved in different genetic background. Int J Biol Sci. 2015;11(7):781–793.
  • Sreenivasulu N, Graner A, Wobus U. Barley genomics: an overview. Int J Plant Genomics. 2008;2008:486258.
  • Kulcheski FR, de Oliveira LV, Molina LG, et al. Identification of novel soybean microRNAs involved in abiotic and biotic stresses. BMC Genomics. 2011;12(1):307–317.
  • Tiwari S, Lata C. Genome engineering in rice: applications, advancements and future perspectives. Molecular approaches in plant biology and environmental challenges. Berlin: Springer Nature; 2019. p. 323–337.
  • Nakashima K, Takasaki H, Mizoi J, et al. NAC transcription factors in plant abiotic stress responses. Biochim Biophys Acta. 2012;1819(2):97–103.
  • Ferreira TH, Gentile A, Vilela RD, et al. microRNAs associated with drought response in the bioenergy crop sugarcane (Saccharum spp.). PLoS One. 2012;7:e46703.
  • Paterson AH, Bowers JE, Bruggmann R, et al. The Sorghum bicolor genome and the diversification of grasses. Nature. 2009;457(7229):551–556.
  • Covarrubias AA, Reyes JL. Post-transcriptional gene regulation of salinity and drought responses by plant microRNAs . Plant Cell Environ. 2010;33(4):481–489.
  • Daszkowska-Golec A, Szarejko I. The molecular basis of ABA-mediated plant response to drought. In: Abiotic stress-plant responses and applications in agriculture. 2013. p. 103–134.
  • Khan SA, Li MZ, Wang SM, et al. Revisiting the role of plant transcription factors in the battle against abiotic stress. Int J Mol Sci. 2018;19(6):1634.
  • Singh P, Dutta P, Chakrabarty D. miRNAs play critical roles in response to abiotic stress by modulating cross-talk of phytohormone signaling. Plant Cell Rep. 2021;40(9):1614–1617.
  • Das R, Mondal SK. Plant miRNAs: biogenesis and its functional validation to combat drought stress with special focus on maize. Plant Gene. 2021;27:100294.
  • Meng Y, Shao C, Wang H, et al. The regulatory activities of plant microRNAs: a more dynamic perspective. Plant Physiol. 2011;157(4):1583–1595.
  • Sunkar R, Zhu J. Micro RNAs and short‐interfering RNAs in plants. J Integr Plant Biol. 2007;49(6):817–826.
  • Baek D, Chun HJ, Kang S, et al. A role for arabidopsis miR399f in salt, drought, and ABA signaling. Mol Cells. 2016;39(2):111–118.
  • El-Kereamy A, Bi Y-M, Ranathunge K, et al. The rice R2R3-MYB transcription factor OsMYB55 is involved in the tolerance to high temperature and modulates amino acid metabolism. PLoS One. 2012;7(12):e52030.
  • Ding Y, Tao Y, Zhu C. Emerging roles of microRNAs in the mediation of drought stress response in plants. J Exp Bot. 2013;64(11):3077–3086.
  • Fard EM, Ghabooli M, Mehri N, et al. ARTICLE iN PRESS regulation of mir159 and mir396 mediated by Piriformospora indica confer drought tolerance in rice. J Plant Mol Breed. 2017;5(1):10–18.
  • Reyes JL, Chua N. ABA induction of miR159 controls transcript levels of two MYB factors during Arabidopsis seed germination. Plant J. 2007;49(4):592–606.
  • Lee JH, Terzaghi W, Deng XW. DWA3, an arabidopsis DWD protein, acts as a negative regulator in ABA signal transduction. Plant Sci. 2011;180(2):352–357.
  • Bakhshi B, Mohseni Fard E, Nikpay N, et al. MicroRNA signatures of drought signaling in rice root. PLoS One. 2016;11(6):e0156814.
  • Tian C, Zuo Z, Qiu JL. Identification and characterization of ABA-responsive microRNAs in rice. J Genet Genomics. 2015;42(7):393–402.
  • Xie F, Zhang B. microRNA evolution and expression analysis in polyploidized cotton genome. Plant Biotechnol J. 2015;13(3):421–434.
  • Li WX, Oono Y, Zhu J, et al. The arabidopsis NFYA5 transcription factor is regulated transcriptionally and posttranscriptionally to promote drought resistance. Plant Cell. 2008;20(8):2238–2251.
  • Samad AFA, Sajad M, Nazaruddin N, et al. MicroRNA and transcription factor: key players in plant regulatory network. Front Plant Sci. 2017;8(565):565.
  • Sorin C, Bussell JD, Camus I, et al. Auxin and light control of adventitious rooting in arabidopsis require ARGONAUTE1. Plant Cell. 2005;17(5):1343–1359.
  • Tang R, Li L, Zhu D, et al. Mouse miRNA-709 directly regulates miRNA-15a/16-1 biogenesis at the posttranscriptional level in the nucleus: evidence for a microRNA hierarchy system. Cell Res. 2012;22(3):504–515.
  • Bouzroud S, Gouiaa S, Hu N, et al. Auxin response factors (ARFs) are potential mediators of auxin action in tomato response to biotic and abiotic stress (Solanum lycopersicum). PLoS One. 2018;13(2):e0193517.
  • Bakhshi B, Salekdeh GH, Bihamta MR, et al. Characterization of three key microRNAs in rice root architecture under drought stress using in silico analysis and quantitative real-time PCR. Biosci, Biotechnol Res Asia. 2014;11(2):555–565.
  • Gleeson M, Constantin M, Carroll BJ, et al. MicroRNAs as regulators of adventitious root development. J Plant Biochem Biotechnol. 2014;23(4):339–347.
  • Yang JH, Han SJ, Yoon EK, et al. Evidence of an auxin signal pathway, microRNA167-ARF8-GH3, and its response to exogenous auxin in cultured rice cells. Nucleic Acids Res. 2006;34(6):1892–1899.
  • Sunkar R, Zhu JK. Novel and stress-regulated microRNAs and other small RNAs from arabidopsis. Plant Cell. 2004;16(8):2001–2019.
  • Zhao B, Liang R, Ge L, et al. Identification of drought-induced microRNAs in rice. Biochem Biophys Res Commun. 2007;354(2):585–590.
  • Dharmasiri S, Estelle M. The role of regulated protein degradation in auxin response. In: Perrot-Rechenmann C, Hagen G, editors. Auxin Molecular Biology. Dordrecht: Springer; 2002. p. 401–409.
  • Marin E, Jouannet V, Herz A, et al. miR390, Arabidopsis TAS3 tasiRNAs, and their AUXIN RESPONSE FACTOR targets define an autoregulatory network quantitatively regulating lateral root growth. Plant Cell. 2010;22(4):1104–1117.
  • Meng Y, Ma X, Chen D, et al. MicroRNA-mediated signaling involved in plant root development. Biochem Biophys Res Commun. 2010;393(3):345–349.
  • Campisi J. Senescent cells, tumor suppression, and organismal aging: good citizens, bad neighbors. Cell. 2005;120(4):513–522.
  • Espinoza C, Medina C, Somerville S, et al. Senescence-associated genes induced during compatible viral interactions with grapevine and arabidopsis. J Exp Bot. 2007;58(12):3197–3212.
  • Palatnik JF, Allen E, Wu X, et al. Control of leaf morphogenesis by microRNAs. Nature. 2003;425(6955):257–263.
  • Doebley J, Stec A, Hubbard L. The evolution of apical dominance in maize. Nature. 1997;386(6624):485–488.
  • Schommer C, Palatnik JF, Aggarwal P, et al. Control of jasmonate biosynthesis and senescence by miR319 targets. PLoS Biol. 2008;6(9):e230.
  • Kong Z, Li M, Yang W, et al. A novel nuclear-localized CCCH-type zinc finger protein, OsDOS, is involved in delaying leaf senescence in rice. Plant Physiol. 2006;141(4):1376–1388.
  • Pomeranz MC, Hah C, Lin PC, et al. The arabidopsis tandem zinc finger protein AtTZF1 traffics between the nucleus and cytoplasmic foci and binds both DNA and RNA. Plant Physiol. 2010;152(1):151–165.
  • Kim JS, Mizoi J, Yoshida T, et al. An ABRE promoter sequence is involved in osmotic stress-responsive expression of the DREB2A gene, which encodes a transcription factor regulating drought-inducible genes in arabidopsis. Plant Cell Physiol. 2011;52(12):2136–2146.
  • Xu X, Bai H, Liu C, et al. Genome-wide analysis of microRNAs and their target genes related to leaf senescence of rice. PLoS One. 2014;9(12):e114313.
  • Guo Y, Cai Z, Gan S. Transcriptome of Arabidopsis leaf senescence. Plant Cell Environ. 2004;27(5):521–549.
  • Hinderhofer K, Zentgraf U. Identification of a transcription factor specifically expressed at the onset of leaf senescence. Planta. 2001;213(3):469–473.
  • Masselink H, Vastenhouw N, Bernards R. B-myb rescues ras-induced premature senescence, which requires its transactivation domain. Cancer Lett. 2001;171(1):87–101.
  • Boo YC, Jung J. Water deficit-induced oxidative stress and antioxidative defenses in rice plants. J Plant Physiol. 1999;155(2):255–261.
  • Cruz de Carvalho MH. Drought stress and reactive oxygen species: production, scavenging and signaling. Plant Signal Behav. 2008;3(3):156–165.
  • Mittler R. Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci. 2002;7(9):405–410.
  • Wei L, Zhang D, Xiang F, et al. Differentially expressed miRNAs potentially involved in the regulation of defense mechanism to drought stress in maize seedlings. Int J Plant Sci. 2009;170(8):979–989.
  • Andrés-Colás N, Carrió-Seguí A, Abdel-Ghany SE, et al. Expression of the intracellular COPT3-mediated Cu transport is temporally regulated by the TCP16 transcription factor. Front Plant Sci. 2018;9:910.
  • Fahad S, Bajwa AA, Nazir U, et al. Crop production under drought and heat stress: plant responses and management options. Front Plant Sci. 2017;8:1147.
  • Kaplan F, Guy CL. beta-Amylase induction and the protective role of maltose during temperature shock. Plant Physiol. 2004;135(3):1674–1684.
  • Peng T, Sun H, Du Y, et al. Characterization and expression patterns of microRNAs involved in rice grain filling. PLoS One. 2013;8(1):e54148.
  • Sengupta A, Chakraborty M, Saha J, et al. Polyamines: osmoprotectants in plant abiotic stress adaptation. In: Osmolytes and plants acclimation to changing environment: Emerging omics technologies. p. 97–127.
  • Minocha R, Majumdar R, Minocha SC. Polyamines and abiotic stress in plants: a complex relationship1. Front Plant Sci. 2014;5:175.
  • Umate P, Tuteja N. microRNA access to the target helicases from rice. Plant Signal Behav. 2010;5(10):1171–1175.
  • Macovei A, Tuteja N. Different expression of miRNAs targeting helicases in rice in response to low and high dose rate γ-ray treatments. Plant Signal Behav. 2013;8(8):e25128.
  • Berezikov E. Evolution of microRNA diversity and regulation in animals. Nat Rev Genet. 2011;12(12):846–860.
  • Cui J, You C, Chen X. The evolution of microRNAs in plants. Curr Opin Plant Biol. 2017;35:61–67.
  • Allen E, Xie Z, Gustafson AM, et al. Evolution of microRNA genes by inverted duplication of target gene sequences in Arabidopsis thaliana. Nat Genet. 2004;36(12):1282–1290.
  • De Felippes FF, Schneeberger K, Dezulian T, et al. Evolution of Arabidopsis thaliana microRNAs from random sequences. RNA. 2008;14(12):2455–2459.
  • Piriyapongsa J, Jordan IK. Dual coding of siRNAs and miRNAs by plant transposable elements. RNA. 2008;14(5):814–821.
  • Fahlgren N, Jogdeo S, Kasschau KD, et al. MicroRNA gene evolution in Arabidopsis lyrata and Arabidopsis thaliana. Plant Cell. 2010;22(4):1074–1089.
  • Chen F, Fasoli M, Tornielli GB, et al. The evolutionary history and diverse physiological roles of the grapevine calcium-dependent protein kinase gene family. PLoS One. 2013;8(12):e80818.
  • Palatnik JF, Wollmann H, Schommer C, et al. Sequence and expression differences underlie functional specialization of Arabidopsis microRNAs miR159 and miR319. Dev Cell. 2007;13(1):115–125.
  • Buch DU, Sharma OA, Pable AA, et al. Characterization of microRNA genes from pigeonpea (Cajanus cajan L.) and understanding their involvement in drought stress. J Biotechnol. 2020;321:23–34.
  • Morea EGO, da Silva EM, e Silva GFF, et al. Functional and evolutionary analyses of the miR156 and miR529 families in land plants. BMC Plant Biol. 2016;16(1):1–13.
  • Maher C, Stein L, Ware D. Evolution of arabidopsis microRNA families through duplication events. Genome Res. 2006;16(4):510–519.
  • Guddeti S, Li AL, Leseberg CH, et al. Molecular evolution of the rice miR395 gene family. Cell Res. 2005;15(8):631–638.
  • Town CD, Cheung F, Maiti R, et al. Comparative genomics of Brassica oleracea and Arabidopsis thaliana reveal gene loss, fragmentation, and dispersal after polyploidy. Plant Cell. 2006;18(6):1348–1359.
  • Cannon SB, Mitra A, Baumgarten A, et al. The roles of segmental and tandem gene duplication in the evolution of large gene families in Arabidopsis thaliana. BMC Plant Biol. 2004;4(1):10–21.
  • Prince VE, Pickett FB. Splitting pairs: the diverging fates of duplicated genes. Nat Rev Genet. 2002;3(11):827–837.
  • De la Rosa C, Covarrubias AA, Reyes JL. A dicistronic precursor encoding miR398 and the legume-specific miR2119 coregulates CSD1 and ADH1 mRNAs in response to water deficit . Plant Cell Environ. 2019;42(1):133–144.
  • Arenas-Huertero C, Pérez B, Rabanal F, et al. Conserved and novel miRNAs in the legume Phaseolus vulgaris in response to stress. Plant Mol Biol. 2009;70(4):385–401.
  • De la Rosa C, Lozano L, Castillo-Ramírez S, et al. Origin and evolutionary dynamics of the miR2119 and ADH1 regulatory module in legumes. Genome Biol Evol. 2020;12(12):2355–2369.
  • Arora N, Mishra SP, Nitnavare RB, et al. Morpho-physiological traits and leaf surface chemicals as markers conferring resistance to sorghum shoot fly (atherigona soccata rondani). Field Crops Res. 2021;261:108029.
  • Liu Q, Wang H, Hu H, et al. Genome-wide identification and evolutionary analysis of positively selected miRNA genes in domesticated rice. Mol Genet Genomics. 2015;290(2):593–602.
  • Anjum SA, Wang LC, Farooq M, et al. Brassinolide application improves the drought tolerance in maize through modulation of enzymatic antioxidants and leaf gas exchange. J Agron Crop Sci. 2011;197(3):177–185.
  • Nadeem SM, Ahmad M, Zahir ZA, et al. The role of mycorrhizae and plant growth promoting rhizobacteria (PGPR) in improving crop productivity under stressful environments. Biotechnol Adv. 2014;32(2):429–448
  • Finkel OM, Castrillo G, Herrera Paredes S, et al. Understanding and exploiting plant beneficial microbes. Curr Opin Plant Biol. 2017;38:155–163.
  • Li Q, Wang W, Wang W, et al. Wheat F-box protein gene TaFBA1 is involved in plant tolerance to heat stress. Front Plant Sci. 2018;9:521.
  • Ahsan M, Zafar AY, Iqbal J, et al. Enhanced expression of AtNHX1, in transgenic groundnut (Arachis hypogaea L.) improves salt and drought tolerence. Mol Biotechnol. 2011;49(3):250–256.
  • Patil BS, Crosby K, Byrne D, et al. The intersection of plant breeding, human health, and nutritional security: lessons learned and future perspectives. HortScience. 2014;49(2):116–127.
  • Gratten J, Visscher PM. Genetic pleiotropy in complex traits and diseases: implications for genomic medicine. Genome Med. 2016;8(1):1–3.
  • Martignago D, Bernardini B, Polticelli F, et al. The four FAD-dependent histone demethylases of arabidopsis are differently involved in the control of flowering time. Front Plant Sci. 2019;10:669.
  • Tang J, Chu C. MicroRNAs in crop improvement: fine-tuners for complex traits. Nat Plants. 2017;3:17077.
  • Zhou J, Deng K, Cheng Y, et al. CRISPR-Cas9 based genome editing reveals new insights into microRNA function and regulation in rice. Front Plant Sci. 2017;8:1598.
  • Li J, Lei P, Ding S, et al. An enzyme-free surface plasmon resonance biosensor for real-time detecting microRNA based on allosteric effect of mismatched catalytic hairpin assembly. Biosens Bioelectron. 2016;77:435–441.
  • Manavella PA, Koenig D, Weigel D. Plant secondary siRNA production determined by microRNA-duplex structure. Proc Natl Acad Sci USA. 2012;109(7):2461–2466.
  • Carbonell A, Carrington JC. Antiviral roles of plant ARGONAUTES. Curr Opin Plant Biol. 2015;27:111–117.
  • Carbonell A, Takeda A, Fahlgren N, et al. New generation of artificial microRNA and synthetic trans-acting small interfering RNA vectors for efficient gene silencing in arabidopsis. Plant Physiol. 2014;165(1):15–29.
  • Gasparis S, Kała M, Przyborowski M, et al. Artificial MicroRNA-based specific gene silencing of grain hardness genes in polyploid cereals appeared to be not stable over transgenic plant generations. Front Plant Sci. 2016;7:2017.
  • Prasad A, Sharma N, Prasad M. Noncoding but coding: pri-miRNA into the action. Trends Plant Sci. 2020;26:204–206.
  • Yogindran S, Rajam MV. Host-derived artificial miRNA-mediated silencing of ecdysone receptor gene provides enhanced resistance to Helicoverpa armigera in tomato. Genomics. 2021;113(1 Pt 2):736–747.
  • Liu X, Hao L, Li D, et al. Long non-coding RNAs and their biological roles in plants. Genomics Proteomics Bioinformatics. 2015;13(3):137–147.
  • Liu Y, Li G, Zhang J. The role of long non-coding RNA H19 in musculoskeletal system: a new player in an old game. Exp Cell Res. 2017;360(2):61–65.
  • Zhang JX, Song W, Chen ZH, et al. Prognostic and predictive value of a microRNA signature in stage II Colon cancer: a microRNA expression analysis. Lancet Oncol. 2013;14(13):1295–1306.
  • Thomson DW, Dinger ME. Endogenous microRNA sponges: evidence and controversy. Nat Rev Genet. 2016;17(5):272–283.
  • Franco-Zorrilla JM, Valli A, Todesco M, et al. Target mimicry provides a new mechanism for regulation of microRNA activity. Nat Genet. 2007;39(8):1033–1037.
  • Ye S, Yang L, Zhao X, et al. Bioinformatics method to predict two regulation mechanism: TF-miRNA-mRNA and lncRNA-miRNA-mRNA in pancreatic cancer. Cell Biochem Biophys. 2014;70(3):1849–1858.
  • Wu C, Gong Y, Sun A, et al. The human MTHFR rs4846049 polymorphism increases coronary heart disease risk through modifying miRNA binding. Nutr Metab Cardiovasc Dis. 2013;23(7):693–698.
  • Banks IR, Zhang Y, Wiggins BE, et al. RNA decoys: an emerging component of plant regulatory networks? Plant Signal Behav. 2012;7(9):1188–1193.
  • Ivashuta S, Banks IR, Wiggins BE, et al. Regulation of gene expression in plants through miRNA inactivation. PLoS One. 2011;6(6):e21330.
  • Yan K, Gao J, Yang T, et al. MicroRNA-34a inhibits the proliferation and metastasis of osteosarcoma cells both in vitro and in vivo. PLoS One. 2012;7(3):e33778.
  • Osakabe Y, Watanabe T, Sugano SS, et al. Optimization of CRISPR/Cas9 genome editing to modify abiotic stress responses in plants. Sci Rep. 2016;6(1):26610–26685.
  • Chang H, Yi B, Ma R, et al. CRISPR/cas9, a novel genomic tool to knock down microRNA in vitro and in vivo. Sci Rep. 2016;6(1):22312–22312.
  • Yue Yu G, Liu XS, Huang XR, et al. Non-coding rnas as biomarkers and therapeutic targets for diabetic kidney disease. Front Pharmacol. 2020;11:2342.
  • Chung S, Lee YG, Karpurapu M, et al. Depletion of microRNA-451 in response to allergen exposure accentuates asthmatic inflammation by regulating Sirtuin2. Am J Physiol Lung Cell Mol Physiol. 2020;318(5):L921–30.
  • Iqbal MA, Arora S, Prakasam G, et al. MicroRNA in lung cancer: role, mechanisms, pathways and therapeutic relevance. Mol Aspects Med. 2019;70:3–20.
  • Mondal TK, Ganie SA. Identification and characterization of salt responsive miRNA-SSR markers in rice (Oryza sativa). Gene. 2014;535(2):204–209.
  • Mehta M, Satija S, Paudel KR, et al. Targeting respiratory diseases using miRNA inhibitor based nanotherapeutics: current status and future perspectives. Nanomedicine. 2021;31:102303.
  • Sharma P, Mehta G, Muthusamy SK, et al. Development and validation of heat-responsive candidate gene and miRNA gene based SSR markers to analysis genetic diversity in wheat for heat tolerance breeding. Mol Biol Rep. 2021;48(1):381–393.
  • Yadav CB, Muthamilarasan M, Pandey G, et al. Development of novel microRNA-based genetic markers in foxtail millet for genotyping applications in related grass species. Mol Breeding. 2014;34(4):2219–2224.
  • Pang M, Xing C, Adams N, et al. Comparative expression of miRNA genes and miRNA-based AFLP marker analysis in cultivated tetraploid cottons. J Plant Physiol. 2011;168(8):824–830.
  • Luan M, Xu M, Lu Y, et al. Family-wide survey of miR169s and NF-YAs and their expression profiles response to abiotic stress in maize roots. PLoS One. 2014;9(3):e91369.
  • Wang M, Wang Q, Zhang B. Response of miRNAs and their targets to salt and drought stresses in cotton (Gossypium hirsutum L.). Gene. 2013;530(1):26–32.
  • Sun G, Stewart CN, Jr Xiao P, et al. MicroRNA expression analysis in the cellulosic biofuel crop switchgrass (Panicum virgatum) under abiotic stress. PLoS One. 2012;7(3):e32017.
  • Xie Z, Allen E, Fahlgren N, et al. Expression of arabidopsis MIRNA genes. Plant Physiol. 2005;138(4):2145–2154.
  • Li J, Fu F, Ming AN, et al. Differential expression of microRNAs in response to drought stress in maize. J Integr Agric. 2013;12(8):1414–1422.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.