850
Views
3
CrossRef citations to date
0
Altmetric
Review Articles

Graphene as a nano-delivery vehicle in agriculture – current knowledge and future prospects

, ORCID Icon, &
Pages 851-869 | Received 12 Nov 2020, Accepted 29 May 2022, Published online: 11 Jul 2022

References

  • Alston JM, Pardey PG. Agriculture in the global economy. J Econ Perspect. 2014;28(1):121–146.
  • Giraldo JP, Wu H, Newkirk GM, et al. Nanobiotechnology approaches for engineering smart plant sensors. Nat Nanotechnol. 2019;14(6):541–553.
  • Ye L, Zhao X, Bao E, et al. Bio-organic fertilizer with reduced rates of chemical fertilization improves soil fertility and enhances tomato yield and quality. Sci Rep. 2020;10(1):1–11.
  • Sharma N, Singhvi R. Effects of chemical fertilizers and pesticides on human health and environment: a review. Int J Agricul Environ Biotech. 2017;10(6):675–680.
  • Kah M, Tufenkji N, White JC. Nano-enabled strategies to enhance crop nutrition and protection. Nat Nanotechnol. 2019;14(6):532–540.
  • Gorbovskiy K, Kazakov A, Norov A, et al. Properties of complex ammonium nitrate-based fertilizers depending on the degree of phosphoric acid ammoniation. Int J Ind Chem. 2017;8(3):315–327.
  • Nuruzzaman M, Rahman MM, Liu Y, et al. Nanoencapsulation, nano-guard for pesticides: a new window for safe application. J Agric Food Chem. 2016;64(7):1447–1483.
  • Kah M, Kookana RS, Gogos A, et al. A critical evaluation of nanopesticides and nanofertilizers against their conventional analogues. Nat Nanotechnol. 2018;13(8):677–684.
  • Yang F, Zhang S, Song J, et al. Synthetic humic acids solubilize otherwise insoluble phosphates to improve soil fertility. Angew Chem. 2019;131(52):18989–18992.
  • Savci S. Investigation of effect of chemical fertilizers on environment. Apcbee Proc. 2012;1:287–292.
  • Nair LS, Laurencin CT. Polymers as biomaterials for tissue engineering and controlled drug delivery. Adv Biochem Eng Biotechnol. 2006;102:47–90.
  • Akelah A. Applications of functionalized polymers in agriculture. Med J Islamic World Acad Sci. 1990;3(1):49–61.
  • Poxson DJ, Karady M, Gabrielsson R, et al. Regulating plant physiology with organic electronics. Proc Natl Acad Sci USA. 2017;114(18):4597–4602.
  • Michot LJ, Bihannic I, Thomas F, et al. Coagulation of Na-montmorillonite by inorganic cations at neutral pH. A combined transmission X-ray microscopy, small angle and wide angle X-ray scattering study. Langmuir. 2013;29(10):3500–3510.
  • Walters R, Fini EH, Abu-Lebdeh T. Introducing combination of nano-clay and bio-char to enhance asphalt binder's rheological and aging characteristics. Int J Pavement Res Technol. 2014;7(6):451.
  • Biswas B, Warr LN, Hilder EF, et al. Biocompatible functionalisation of nanoclays for improved environmental remediation. Chem Soc Rev. 2019;48(14):3740–3770.
  • Zhang X, Guo D, Xue J, et al. The effect of salt concentration on swelling power, rheological properties and saltiness perception of waxy, normal and high amylose maize starch. Food Funct. 2017;8(10):3792–3802.
  • Han J, Zhao D, Li D, et al. Polymer-based nanomaterials and applications for vaccines and drugs. Polymers. 2018;10(1):31.
  • Ekebafe L, Ogbeifun D, Okieimen F. Polymer applications in agriculture. Biokemistri. 2011;23(2):81–89.
  • Hussain MR, Devi RR, Maji TK. Controlled release of urea from chitosan microspheres prepared by emulsification and cross-linking method. Iran Polym J. 2012;21(8):473–479.
  • Ni B, Liu M, Lü S. Multifunctional slow-release urea fertilizer from ethylcellulose and superabsorbent coated formulations. Chem Eng J. 2009;155(3):892–898.
  • Milani P, França D, Balieiro AG, et al. Polymers and its applications in agriculture. Polímeros. 2017;27(3):256–266.
  • Puoci F, Iemma F, Spizzirri UG, et al. Polymer in agriculture: a review. Am J Agri Biol Sci. 2008;3(1):299–314.
  • Sikder A, Pearce AK, Parkinson SJ, et al. Recent trends in advanced polymer materials in agriculture related applications. ACS Appl Polym Mater. 2021;3(3):1203–1217.
  • Sharma A, Chetani R. A review on the effect of organic and chemical fertilizers on plants. Int J Res Appl Sci Eng. 2017;5(2):677–680.
  • Lucheta AR, Lambais MR. Sulfur in agriculture. Rev Bras Ciênc Solo. 2012;36(5):1369–1379.
  • Alloway BJ. Soil factors associated with zinc deficiency in crops and humans. Environ Geochem Health. 2009;31(5):537–548.
  • Hazra G. Different types of eco-friendly fertilizers: an overview. SE. 2016;1(1):54.
  • Kao K-C, Tsou C-J, Mou C-Y. Collapsed (kippah) hollow silica nanoparticles. Chem Commun. 2012;48(28):3454–3456.
  • She X, Chen L, Yi Z, et al. Tailored mesoporous silica nanoparticles for controlled drug delivery: platform fabrication, targeted delivery, and computational design and analysis. Mini Rev Med Chem. 2018;18(11):976–989.
  • Tullio S, Chalcraft D. Converting natural nanoclay into modified nanoclay augments the toxic effect of natural nanoclay on aquatic invertebrates. Ecotoxicol Environ Saf. 2020;197:110602.
  • Wagner A, Eldawud R, White A, et al. Toxicity evaluations of nanoclays and thermally degraded byproducts through spectroscopical and microscopical approaches. Biochim Biophys Acta Gen Subj. 2017;1861(1 Pt A):3406–3415.
  • Al-Zahrani S. Utilization of polyethylene and paraffin waxes as controlled delivery systems for different fertilizers. Ind Eng Chem Res. 2000;39(2):367–371.
  • Ibrahim AA, Jibril BY. Controlled release of paraffin wax/rosin-coated fertilizers. Ind Eng Chem Res. 2005;44(7):2288–2291.
  • Hashemzadeh H, Raissi H. Understanding loading, diffusion and releasing of doxorubicin and paclitaxel dual delivery in graphene and graphene oxide carriers as highly efficient drug delivery systems. Appl Surf Sci. 2020;500:144220.
  • Imani R, Mohabatpour F, Mostafavi F. Graphene-based nano-carrier modifications for gene delivery applications. Carbon. 2018;140:569–591.
  • Zhang Q, Wu Z, Li N, et al. Advanced review of graphene-based nanomaterials in drug delivery systems: synthesis, modification, toxicity and application. Mater Sci Eng C Mater Biol Appl. 2017;77:1363–1375.
  • Singh Z, Singh R. Recent approaches in use of graphene derivatives in anticancer drug delivery systems. J Drug Des Res. 2017;4(3):1041–1044.
  • Oren S, Ceylan H, Schnable PS, et al. High‐resolution patterning and transferring of graphene‐based nanomaterials onto tape toward roll‐to‐roll production of tape‐based wearable sensors. Adv Mater Technol. 2017;2(12):1700223.
  • Novoselov KS, Geim A. The rise of graphene. Nat Mater. 2007;6(3):183–191.
  • Giust D, Lucío MI, El-Sagheer AH, et al. Graphene oxide–upconversion nanoparticle based portable sensors for assessing nutritional deficiencies in crops. ACS Nano. 2018;12(6):6273–6279.
  • Yadav RK, Baeg JO, Oh GH, et al. A photocatalyst–enzyme coupled artificial photosynthesis system for solar energy in production of formic acid from CO2. J Am Chem Soc. 2012;134(28):11455–11461.
  • Goto Y, Yoshida N, Umeyama Y, et al. Enhancement of electricity production by graphene oxide in soil microbial fuel cells and plant microbial fuel cells. Front Bioeng Biotechnol. 2015;3:42.
  • Paixão MM, Vianna MTG, Marques M. Graphene and graphene nanocomposites for the removal of aromatic organic compounds from the water: systematic review. Mater Res Express. 2018;5(1):012002.
  • Zhao G, Li J, Ren X, et al. Few-layered graphene oxide nanosheets as superior sorbents for heavy metal ion pollution management. Environ Sci Technol. 2011;45(24):10454–10462.
  • Kong Q, Preis S, Li L, et al. Relations between metal ion characteristics and adsorption performance of graphene oxide: a comprehensive experimental and theoretical study. Sep Purif Technol. 2020;232:115956.
  • Maliyekkal SM, Sreeprasad T, Krishnan D, et al. Graphene: a reusable substrate for unprecedented adsorption of pesticides. Small. 2013;9(2):273–283.
  • Lee C, Wei X, Kysar JW, et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science. 2008;321(5887):385–388.
  • Rodríguez-Pérez L, Herranz MÁ, Martín N. The chemistry of pristine graphene. Chem Commun. 2013;49(36):3721–3735.
  • Dreyer DR, Park S, Bielawski CW, et al. The chemistry of graphene oxide. Chem Soc Rev. 2010;39(1):228–240.
  • Loh KP, Bao Q, Ang PK, et al. The chemistry of graphene. J. Mater. Chem. 2010;20(12):2277–2289.
  • Novoselov KS, Fal V, Colombo L, et al. A roadmap for graphene. Nature. 2012;490(7419):192–200.
  • Pandorf M, Pourzahedi L, Gilbertson L, et al. Graphite nanoparticle addition to fertilizers reduces nitrate leaching in growth of lettuce (Lactuca sativa). Environ. Sci.: Nano. 2020;7(1):127–138.
  • Liu L, Zhu C, Fan M, et al. Oxidation and degradation of graphitic materials by naphthalene-degrading bacteria. Nanoscale. 2015;7(32):13619–13628.
  • Chen M, Qin X, Zeng G. Biodegradation of carbon nanotubes, graphene, and their derivatives. Trends Biotechnol. 2017;35(9):836–846.
  • Chakravarty D, Erande MB, Late DJ. Graphene quantum dots as enhanced plant growth regulators: effects on coriander and garlic plants. J Sci Food Agric. 2015;95(13):2772–2778.
  • Park S, Choi KS, Kim S, et al. Graphene oxide-assisted promotion of plant growth and stability. Nanomaterials. 2020;10(4):758.
  • Pandey K, Anas M, Hicks VK, et al. Improvement of commercially valuable traits of industrial crops by application of carbon-based nanomaterials. Sci Rep. 2019;9(1):1–14.
  • Younes N, Dawood MF, Wardany A. Biosafety assessment of graphene nanosheets on leaf ultrastructure, physiological and yield traits of Capsicum annuum L. and Solanum melongena L. Chemosphere. 2019;228:318–327.
  • Ramakrishna TRB, Killeen DP, Nalder TD, et al. Quantifying graphene oxide reduction using spectroscopic techniques: a chemometric analysis. Appl Spectrosc. 2018;72(12):1764–1773.
  • Liu Z, Liu J, Li D, et al. Probing the tunable surface chemistry of graphene oxide. Chem Commun. 2015;51(54):10969–10972.
  • Majeed W, Bourdo S, Petibone DM, et al. The role of surface chemistry in the cytotoxicity profile of graphene. J Appl Toxicol. 2017;37(4):462–470.
  • Dai J-F, Wang G-J, Ma L, et al. Surface properties of graphene: relationship to graphene-polymer composites. Rev Adv Mater Sci. 2015;40(1):60–71.
  • Smerieri M, Celasco E, Carraro G, et al. Enhanced chemical reactivity of pristine graphene interacting strongly with a substrate: chemisorbed carbon monoxide on graphene/nickel (1 1 1). ChemCatChem. 2015;7(15):2328–2331.
  • Georgakilas V, Otyepka M, Bourlinos AB, et al. Functionalization of graphene: covalent and non-covalent approaches, derivatives and applications. Chem Rev. 2012;112(11):6156–6214.
  • Yaghoubi F, Motlagh NSH, Naghib SM, et al. A functionalized graphene oxide with improved cytocompatibility for stimuli-responsive co-delivery of curcumin and doxorubicin in cancer treatment. Sci Rep. 2022;12(1):1–18.
  • Wang J, Chen Z, Chen B. Adsorption of polycyclic aromatic hydrocarbons by graphene and graphene oxide nanosheets. Environ Sci Technol. 2014;48(9):4817–4825.
  • Song S, Wan C, Zhang Y. Non-covalent functionalization of graphene oxide by pyrene-block copolymers for enhancing physical properties of poly (methyl methacrylate). RSC Adv. 2015;5(97):79947–79955.
  • Georgakilas V, Tiwari JN, Kemp KC, et al. Noncovalent functionalization of graphene and graphene oxide for energy materials, biosensing, catalytic, and biomedical applications. Chem Rev. 2016;116(9):5464–5519.
  • Rao Z, Ge H, Liu L, et al. Carboxymethyl cellulose modified graphene oxide as pH-sensitive drug delivery system. Int J Biol Macromol. 2018;107(Pt A):1184–1192.
  • Kumar ASK, Jiang SJ. Chitosan-functionalized graphene oxide: a novel adsorbent an efficient adsorption of arsenic from aqueous solution. J Environ Chem Eng. 2016;4(2):1698–1713.
  • Chen J, Yang L, Li S, et al. Various physiological response to graphene oxide and amine-functionalized graphene oxide in wheat (Triticum aestivum). Molecules. 2018;23(5):1104.
  • Zhang P, Wu X, Guo Z, et al. Stress response and nutrient homeostasis in lettuce (Lactuca sativa) exposed to graphene quantum dots are modulated by particle surface functionalization. Adv Biol. 2021;5(4):2000778.
  • Ren W, Chang H, Teng Y. Sulfonated graphene-induced hormesis is mediated through oxidative stress in the roots of maize seedlings. Sci Total Environ. 2016;572:926–934.
  • Ganjavi AS, Oraei M, Gohari G, et al. Glycine betaine functionalized graphene oxide as a new engineering nanoparticle lessens salt stress impacts in sweet basil (Ocimum basilicum L.). Plant Physiol Biochem. 2021;162:14–26.
  • Mahmoud NE, Abdelhameed RM. Superiority of modified graphene oxide for enhancing the growth, yield, and antioxidant potential of pearl millet (Pennisetum glaucum L.) under salt stress. Plant Stress. 2021;2:100025.
  • Fatehi SF, Oraei M, Gohari G, et al. Proline-functionalized graphene oxide nanoparticles (GO–pro NPs) mitigate salt-induced adverse effects on morpho-physiological traits and essential oils constituents in moldavian balm (Dracocephalum moldavica L). J Plant Growth Regul. 2021:1–15.
  • Xiao X, Wang X, Liu L, et al. Effects of three graphene-based materials on the growth and photosynthesis of Brassica napus L. Ecotoxicol Environ Saf. 2022;234:113383.
  • Amieva EJC, López‐Barroso J, Martínez‐Hernández AL, et al. Graphene‐based materials functionalization with natural polymeric biomolecules. Recent Adv Graphene Res. 2016;1:257–298.
  • Patil AJ, Vickery JL, Scott TB, et al. Aqueous stabilization and self‐assembly of graphene sheets into layered bio‐nanocomposites using DNA. Adv Mater. 2009;21(31):3159–3164.
  • Hu X, Zhou Q. Novel hydrated graphene ribbon unexpectedly promotes aged seed germination and root differentiation. Sci Rep. 2014;4:3782.
  • Pei S, Wei Q, Huang K, et al. Green synthesis of graphene oxide by seconds timescale water electrolytic oxidation. Nat Commun. 2018;9(1):1–9.
  • Lin L, Peng H, Liu Z. Synthesis challenges for graphene industry. Nat Mater. 2019;18(6):520–524.
  • Aunkor M, Mahbubul I, Saidur R, et al. The green reduction of graphene oxide. RSC Adv. 2016;6(33):27807–27828.
  • Salunke BK, Kim BS. Facile synthesis of graphene using a biological method. RSC Adv. 2016;6(21):17158–17162.
  • Peng H, Meng L, Niu L, et al. Simultaneous reduction and surface functionalization of graphene oxide by natural cellulose with the assistance of the ionic liquid. J Phys Chem C. 2012;116(30):16294–16299.
  • Fernández-Merino MJ, Guardia L, Paredes JI, et al. Vitamin C is an ideal substitute for hydrazine in the reduction of graphene oxide suspensions. J Phys Chem C. 2010;114(14):6426–6432.
  • Liu Z, Liu J, Wang T, et al. Switching off the interactions between graphene oxide and doxorubicin using vitamin C: combining simplicity and efficiency in drug delivery. J Mater Chem B. 2018;6(8):1251–1259.
  • Gravagnuolo AM, Morales‐Narváez E, Longobardi S, et al. In situ production of biofunctionalized few‐layer defect‐free microsheets of graphene. Adv Funct Mater. 2015;25(18):2771–2779.
  • Salas EC, Sun Z, Lüttge A, et al. Reduction of graphene oxide via bacterial respiration. ACS Nano. 2010;4(8):4852–4856.
  • Akhavan O, Ghaderi E. Escherichia coli bacteria reduce graphene oxide to bactericidal graphene in a self-limiting manner. Carbon. 2012;50(5):1853–1860.
  • Khanra P, Kuila T, Kim NH, et al. Simultaneous bio-functionalization and reduction of graphene oxide by baker's yeast. Chem Eng J. 2012;183:526–533.
  • Wang G, Qian F, Saltikov CW, et al. Microbial reduction of graphene oxide by shewanella. Nano Res. 2011;4(6):563–570.
  • Chen Y, Niu Y, Tian T, et al. Microbial reduction of graphene oxide by Azotobacter chroococcum. Chem Phys Lett. 2017;677:143–147.
  • Liou TH, Wang PY. Utilization of rice husk wastes in synthesis of graphene oxide-based carbonaceous nanocomposites. Waste Manag. 2020;108:51–61.
  • Hashmi A, Singh AK, Jain B, et al. Muffle atmosphere promoted fabrication of graphene oxide nanoparticle by agricultural waste. Fuller Nanotub Carbon Nanostructures. 2020;28(8):1–636.
  • Somanathan T, Prasad K, Ostrikov KK, et al. Graphene oxide synthesis from agro waste. Nanomaterials. 2015;5(2):826–834.
  • Akhavan O, Bijanzad K, Mirsepah A. Synthesis of graphene from natural and industrial carbonaceous wastes. RSC Adv. 2014;4(39):20441–20448.
  • Mohan AN, Manoj B, Panicker S. Facile synthesis of graphene-tin oxide nanocomposite derived from agricultural waste for enhanced antibacterial activity against Pseudomonas aeruginosa. Sci Rep. 2019;9(1):1–12.
  • Lazarević-Pašti T, Anićijević V, Baljozović M, et al. The impact of the structure of graphene-based materials on the removal of organophosphorus pesticides from water. Environ Sci Nano. 2018;5(6):1482–1494.
  • Andelkovic IB, Kabiri S, Da Silva RC, et al. Optimisation of phosphate loading on graphene oxide–Fe (iii) composites–possibilities for engineering slow release fertilisers. New J Chem. 2019;43(22):8580–8589.
  • Kabiri S, Degryse F, Tran DN, et al. Graphene oxide: a new carrier for slow release of plant micronutrients. ACS Appl Mater Interfaces. 2017;9(49):43325–43335.
  • Yan H, Tao X, Yang Z, et al. Effects of the oxidation degree of graphene oxide on the adsorption of methylene blue. J Hazard Mater. 2014;268:191–198.
  • Yu B, Chen L, Wu R, et al. Effect of reduction degree on the adsorption properties of graphene sponge for dyes. Mater Res Express. 2017;4(4):045008.
  • Zhao L, Yang S-T, Feng S, et al. Preparation and application of carboxylated graphene oxide sponge in dye removal. IJERPH. 2017;14(11):1301.
  • Xu Z, Wang S, Li Y, et al. Covalent functionalization of graphene oxide with biocompatible poly (ethylene glycol) for delivery of paclitaxel. ACS Appl Mater Interfaces. 2014;6(19):17268–17276.
  • Hu H, Yu J, Li Y, et al. Engineering of a novel pluronic F127/graphene nanohybrid for pH responsive drug delivery. J Biomed Mater Res A. 2012;100(1):141–148.
  • Zhang X, Nan X, Shi W, et al. Polydopamine-functionalized nanographene oxide: a versatile nanocarrier for chemotherapy and photothermal therapy. Nanotechnology. 2017;28(29):295102.
  • Guo Y-D, Su J-F, Mu R, et al. Microstructure and properties of self-assembly graphene microcapsules: effect of the pH value. Nanomaterials. 2019;9(4):587.
  • Morales-Narváez E, Sgobbi LF, Machado SAS, et al. Graphene-encapsulated materials: synthesis, applications and trends. Prog Mater Sci. 2017;86:1–24.
  • Kurapati R, Raichur AM. Graphene oxide based multilayer capsules with unique permeability properties: facile encapsulation of multiple drugs. Chem Commun. 2012;48(48):6013–6015.
  • Chen Y, Guo F, Qiu Y, et al. Encapsulation of particle ensembles in graphene nanosacks as a new route to multifunctional materials. ACS Nano. 2013;7(5):3744–3753.
  • Zhang M, Gao B, Chen J, et al. Slow-release fertilizer encapsulated by graphene oxide films. Chem Eng J. 2014;255:107–113.
  • Batool M, Hussain D, Akrem A, et al. Graphene quantum dots as cysteine protease nanocarriers against stored grain insect pests. Sci Rep. 2020;10(1):1–11.
  • Tuček J, Sofer Z, Bouša D, et al. Air-stable superparamagnetic metal nanoparticles entrapped in graphene oxide matrix. Nat Commun. 2016;7:12879.
  • Huang C, Xia T, Niu J, et al. Transformation of 14C‐labeled graphene to 14CO2 in the shoots of a rice plant. Angew. Chem. 2018;130(31):9907–9911.
  • Wang Q, Li C, Wang Y, et al. Phytotoxicity of graphene family nanomaterials and its mechanisms: a review. Front Chem. 2019;7:292.
  • Pérez-de-Luque A. Interaction of nanomaterials with plants: what do we need for real applications in agriculture? Front Environ Sci. 2017;5:12.
  • Chen R, Ratnikova TA, Stone MB, et al. Differential uptake of carbon nanoparticles by plant and mammalian cells. Small. 2010;6(5):612–617.
  • Santana I, Wu H, Hu P, et al. Targeted delivery of nanomaterials with chemical cargoes in plants enabled by a biorecognition motif. Nat Commun. 2020;11(1):1–12.
  • Hu P, An J, Faulkner MM, et al. Nanoparticle charge and size control foliar delivery efficiency to plant cells and organelles. ACS Nano. 2020;14(7):7970–7986.
  • Skoda M, Dudek I, Jarosz A, et al. Graphene: one material, many possibilities—application difficulties in biological systems. J Nanomater. 2014;2014:1–11.
  • Yuvaraj M, Subramanian KS. Carbon sphere-zinc sulphate nanohybrids for smart delivery of zinc in rice (Oryza sativa L). Sci Rep. 2021;11(1):1–13.
  • Watts-Williams SJ, Nguyen TD, Kabiri S, et al. Potential of zinc-loaded graphene oxide and arbuscular mycorrhizal fungi to improve the growth and zinc nutrition of hordeum vulgare and Medicago truncatula. Appl Soil Ecol. 2020;150:103464.
  • Kabiri S, Baird R, Tran DN, et al. Cogranulation of low rates of graphene and graphene oxide with macronutrient fertilizers remarkably improves their physical properties. ACS Sustainable Chem Eng. 2018;6(1):1299–1309.
  • Kabiri S, Andelkovic IB, Da Silva RC, et al. Engineered phosphate fertilizers with dual-release properties. Ind Eng Chem Res. 2020;59(13):5512–5524.
  • Andelkovic IB, Kabiri S, Tavakkoli E, et al. Graphene oxide-Fe (III) composite containing phosphate–a novel slow release fertilizer for improved agriculture management. J Clean Prod. 2018;185:97–104.
  • He Y, Hu R, Zhong Y, et al. Graphene oxide as a water transporter promoting germination of plants in soil. Nano Res. 2018;11(4):1928–1937.
  • Sun P, Liu H, Wang K, et al. Ultrafast liquid water transport through graphene-based nanochannels measured by isotope labelling. Chem Commun. 2015;51(15):3251–3254.
  • Wang X, Xie H, Wang Z, et al. Graphene oxide as a pesticide delivery vector for enhancing acaricidal activity against spider mites. Colloids Surf B Biointerfaces. 2019;173:632–638.
  • Sharma S, Singh S, Ganguli AK, et al. Anti-drift nano-stickers made of graphene oxide for targeted pesticide delivery and crop pest control. Carbon. 2017;115:781–790.
  • Tong Y, Shao L, Li X, et al. Adhesive and stimulus-responsive polydopamine-coated graphene oxide system for pesticide-loss control. J Agric Food Chem. 2018;66(11):2616–2622.
  • Song S, Wan M, Feng W, et al. Graphene oxide as the potential vector of hydrophobic pesticides: ultrahigh pesticide loading capacity and improved antipest activity. ACS Agric Sci Technol. 2021;1(3):182–191.
  • Gao X, Shi F, Peng F, et al. Formulation of nanopesticide with graphene oxide as the nanocarrier of pyrethroid pesticide and its application in spider mite control. RSC Adv. 2021;11(57):36089–36097.
  • Peng F, Wang X, Zhang W, et al. Nanopesticide formulation from pyraclostrobin and graphene oxide as a nanocarrier and application in controlling plant fungal pathogens. Nanomaterials. 2022;12(7):1112.
  • Wang X, Xie H, Wang Z, et al. Graphene oxide as a multifunctional synergist of insecticides against lepidopteran insect. Environ Sci Nano. 2019;6(1):75–84.
  • Hu P, Zhu L, Zheng F, et al. Graphene oxide as a pesticide carrier for enhancing fungicide activity against Magnaporthe oryzae. New J Chem. 2021;45(5):2649–2658.
  • Hasanuddin NI, Dzulkifli NN, Sarijo SH, et al. Physicochemical characterization and controlled release formulation on intercalated 2-Methyl-4-chlorophenoxy acetic Acid-Graphite oxide (MCPA-GO) nanocomposite. Indones J Chem. 2020;20(2):299.
  • Sharma S, Biswal BK, Kumari D, et al. Ecofriendly fruit switches: graphene oxide-based wrapper for programmed fruit preservative delivery to extend shelf life. ACS Appl Mater Interfaces. 2018;10(22):18478–18488.
  • Bullock CJ, Bussy C. Biocompatibility considerations in the design of graphene biomedical materials. Adv Mater Interfaces. 2019;6(11):1900229.
  • Liao C, Li Y, Tjong SC. Graphene nanomaterials: synthesis, biocompatibility, and cytotoxicity. IJMS. 2018;19(11):3564.
  • Fadeel B, Bussy C, Merino S, et al. Safety assessment of graphene-based materials: focus on human health and the environment. ACS Nano. 2018;12(11):10582–10620.
  • Pinto AM, Gonçalves C, Sousa DM, et al. Smaller particle size and higher oxidation improves biocompatibility of graphene-based materials. Carbon. 2016;99:318–329.
  • Chen J, Mu Q, Tian X. Phytotoxicity of graphene oxide on rice plants is concentration-dependent. Mat Express. 2019;9(6):635–640.
  • Liu S, Wei H, Li Z, et al. Effects of graphene on germination and seedling morphology in rice. J Nanosci Nanotechnol. 2015;15(4):2695–2701.
  • Shen S, Liu Y, Wang F, et al. Graphene oxide regulates root development and influences IAA concentration in rice. J Plant Growth Regul. 2019;38(1):241–248.
  • Ren W, Ren G, Teng Y, et al. Time-dependent effect of graphene on the structure, abundance, and function of the soil bacterial community. J Hazard Mater. 2015;297:286–294.
  • Hao Y, Ma C, Zhang Z, et al. Carbon nanomaterials alter plant physiology and soil bacterial community composition in a rice-soil-bacterial ecosystem. Environ Pollut. 2018;232:123–136.
  • Ruiz ON, Fernando KA, Wang B, et al. Graphene oxide: a nonspecific enhancer of cellular growth. ACS Nano. 2011;5(10):8100–8107.
  • Rong Y, Wang Y, Guan Y, et al. Pyrosequencing reveals soil enzyme activities and bacterial communities impacted by graphene and its oxides. J Agric Food Chem. 2017;65(42):9191–9199.
  • Forstner C, Orton TG, Skarshewski A, et al. Effects of graphene oxide and graphite on soil bacterial and fungal diversity. Sci Total Environ. 2019;671:140–148.
  • Du J, Hu X, Zhou Q. Graphene oxide regulates the bacterial community and exhibits property changes in soil. RSC Adv. 2015;5(34):27009–27017.
  • Chen M, Sun Y, Liang J, et al. Understanding the influence of carbon nanomaterials on microbial communities. Environ Int. 2019;126:690–698.
  • Tabish TA, Memon FA, Gomez DE, et al. A facile synthesis of porous graphene for efficient water and wastewater treatment. Sci Rep. 2018;8(1):1–14.
  • Zare-Zardini H, Taheri-Kafrani A, Amiri A, et al. New generation of drug delivery systems based on ginsenoside Rh2-, lysine-and arginine-treated highly porous graphene for improving anticancer activity. Sci Rep. 2018;8(1):1–15.
  • Li T, Gao B, Tong Z, et al. Chitosan and graphene oxide nanocomposites as coatings for controlled-release fertilizer. Water Air Soil Pollut. 2019;230(7):1–9.
  • Liu J, Zhao Q, Zhang X. Structure and slow release property of chlorpyrifos/graphene oxide-ZnAl-layered double hydroxide composite. Appl Clay Sci. 2017;145:44–52.
  • An D, Liu B, Yang L, et al. Fabrication of graphene oxide/polymer latex composite film coated on KNO3 fertilizer to extend its release duration. Chem Eng J. 2017;311:318–325.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.