525
Views
4
CrossRef citations to date
0
Altmetric
Review Articles

Engineering propionyl-CoA pools for de novo biosynthesis of odd-chain fatty acids in microbial cell factories

, , , & ORCID Icon
Pages 1063-1072 | Received 20 Mar 2022, Accepted 28 Jun 2022, Published online: 22 Aug 2022

References

  • Zhu J, Thompson CB. Metabolic regulation of cell growth and proliferation. Nat Rev Mol Cell Biol. 2019;20(7):436–450.
  • Marella ER, Holkenbrink C, Siewers V, et al. Engineering microbial fatty acid metabolism for biofuels and biochemicals. Curr Opin Biotechnol. 2018;50:39–46.
  • Clausen CA, Coleman RD, Yang VW. Fatty acid-based formulations for wood protection against mold and sapstain. For Prod J. 2010;60(3):301–304.
  • Kockritz A, Blumenstein M, Martin A. Catalytic cleavage of methyl oleate or oleic acid. Eur J Lipid Sci Technol. 2010;112(1):58–63.
  • Prada M, Wittenbecher C, Eichelmann F, et al. Association of the odd-chain fatty acid content in lipid groups with type 2 diabetes risk: a targeted analysis of lipidomics data in the EPIC-Potsdam cohort. Clin Nutr. 2021;40(8):4988–4999.
  • Khaw KT, Friesen MD, Riboli E, et al. Plasma phospholipid fatty acid concentration and incident coronary heart disease in men and women: the EPIC-Norfolk prospective study. PLoS Med. 2012;9(7):e1001255.
  • Jenkins B, West J, Koulman A. A review of Odd-Chain fatty acid metabolism and the role of pentadecanoic acid (C15:0) and heptadecanoic acid (C17:0) in health and disease. Molecules. 2015;20(2):2425–2444.
  • Park YK, Ledesma-Amaro R, Nicaud JM. De novo biosynthesis of Odd-Chain fatty acids in Yarrowia lipolytica enabled by modular pathway engineering. Front Bioeng Biotech. 2019;7:484.
  • Heil CS, Wehrheim SS, Paithankar KS, et al. Fatty acid biosynthesis: chain-length regulation and control. ChemBioChem. 2019;20(18):2298–2321.
  • Wu H, San KY. Engineering Escherichia coli for odd straight medium chain free fatty acid production. Appl Microbiol Biotechnol. 2014;98(19):8145–8154.
  • Park YK, Dulermo T, Ledesma-Amaro R, et al. Optimization of odd chain fatty acid production by Yarrowia lipolytica. Biotechnol Biofuels. 2018;11:158.
  • Wu H, San KY. Efficient odd straight medium chain free fatty acid production by metabolically engineered Escherichia coli. Biotechnol Bioeng. 2014;111(11):2209–2219.
  • Bhatia SK, Gurav R, Choi T-R, et al. A clean and green approach for odd chain fatty acids production in rhodococcus sp. YHY01 by medium engineering. Bioresour Technol. 2019;286:121383.
  • Park YK, Bordes F, Letisse F, et al. Engineering precursor pools for increasing production of odd-chain fatty acids in Yarrowia lipolytica. Metab Eng Commun. 2021;12:e00158–e00158.
  • Zidwick MJ, Chen J-S, Rogers∗ P. Organic acid and solvent production: Propionic and butyric acids and ethanol. In: Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F, editors. The prokaryotes: applied bacteriology and biotechnology. Berlin, Heidelberg, Germany: Springer Berlin Heidelberg; 2013. p. 135–167.
  • Park YK, Nicaud JM. Screening a genomic library for genes involved in propionate tolerance in Yarrowia lipolytica. Yeast. 2020;37(1):131–140.
  • Zhang LS, Liang S, Zong MH, et al. Microbial synthesis of functional odd-chain fatty acids: a review. World J Microbiol Biotechnol. 2020;36(3):35.
  • Volker AR, Gogerty DS, Bartholomay C, et al. Fermentative production of short-chain fatty acids in Escherichia coli. Microbiology (Reading). 2014;160(Pt 7):1513–1522.
  • Tseng HC, Prather KLJ. Controlled biosynthesis of odd-chain fuels and chemicals via engineered modular metabolic pathways. Proc Natl Acad Sci USA. 2012;109(44):17925–17930.
  • Nishimura Y, Matsui T, Ishii J, et al. Metabolic engineering of the 2-ketobutyrate biosynthetic pathway for 1-propanol production in Saccharomyces cerevisiae. Microb Cell Factories. 2018;17(1):38.
  • Ammar EM, Jin Y, Wang Z, et al. Metabolic engineering of Propionibacterium freudenreichii: effect of expressing phosphoenolpyruvate carboxylase on propionic acid production. Appl Microbiol Biotechnol. 2014;98(18):7761–7772.
  • Strauss G, Fuchs G. Enzymes of a novel autotrophic CO2 fixation pathway in the phototrophic bacterium Chloroflexus aurantiacus, the 3-hydroxypropionate cycle. Eur J Biochem. 1993;215(3):633–643.
  • Candry P, Ulcar B, Petrognani C, et al. Ethanol: propionate ratio drives product selectivity in odd-chain elongation with Clostridium kluyveri and mixed communities. Bioresour Technol. 2020;313:123651.
  • Řezanka T, Kolouchová I, Sigler K. Precursor directed biosynthesis of odd-numbered fatty acids by different yeasts. Folia Microbiol (Praha). 2015;60(5):457–464.
  • Zhang LS, Xu P, Chu MY, et al. Using 1-propanol to significantly enhance the production of valuable odd-chain fatty acids by Rhodococcus opacus PD630. World J Microbiol Biotechnol. 2019;35(11):164.
  • Aldor IS, Kim SW, Prather KLJ, et al. Metabolic engineering of a novel propionate-independent pathway for the production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) in recombinant Salmonella enterica serovar typhimurium. Appl Environ Microbiol. 2002;68(8):3848–3854.
  • Thakker C, Martínez I, Li W, et al. Metabolic engineering of carbon and redox flow in the production of small organic acids. J Ind Microbiol Biotechnol. 2015;42(3):403–422.
  • Liu J, Li J, Shin HD, et al. Protein and metabolic engineering for the production of organic acids. Bioresour Technol. 2017;239:412–421.
  • Sun L, Gong M, Lv X, et al. Current advance in biological production of short-chain organic acid. Appl Microbiol Biotechnol. 2020;104(21):9109–9124.
  • Sun S, Shu L, Lu X, et al. 1,2-Propanediol production from glycerol via an endogenous pathway of Klebsiella pneumoniae. Appl Microbiol Biotechnol. 2021;105(23):9003–9016.
  • Zhang Y, Liu D, Chen Z. Production of C2–C4 diols from renewable bioresources: new metabolic pathways and metabolic engineering strategies. Biotechnol Biofuels. 2017;10(1):299.
  • Nonaka D, Fujiwara R, Hirata Y, et al. Metabolic engineering of 1,2-propanediol production from cellobiose using beta-glucosidase-expressing E. coli. Bioresour Technol. 2021;329:124858.
  • Cotton CA, Bernhardsgrütter I, He H, et al. Underground isoleucine biosynthesis pathways in E. coli. eLife. 2020;9:e54207.
  • Ding W, Meng Q, Dong G, et al. Metabolic engineering of threonine catabolism enables Saccharomyces cerevisiae to produce propionate under aerobic conditions. Biotechnol J. 2022;17(3):e2100579.
  • Shi S, Si T, Liu Z, et al. Metabolic engineering of a synergistic pathway for n-butanol production in Saccharomyces cerevisiae. Sci Rep. 2016;6(1):25675.
  • Yang JE, Choi YJ, Lee SJ, et al. Metabolic engineering of Escherichia coli for biosynthesis of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) from glucose. Appl Microbiol Biotechnol. 2014;98(1):95–104.
  • Crown SB, Marze N, Antoniewicz MR. Catabolism of branched chain amino acids contributes significantly to synthesis of Odd-Chain and Even-Chain fatty acids in 3T3-L1 adipocytes. PLoS One. 2015;10(12):e0145850.
  • Haller T, Buckel T, Rétey J, et al. Discovering new enzymes and metabolic pathways: conversion of succinate to propionate by Escherichia coli. Biochemistry. 2000;39(16):4622–4629.
  • Deborde C, Rolin DB, Boyaval P. In Vivo13C NMR study of the bidirectional reactions of the wood–werkman cycle and around the pyruvate node in Propionibacterium freudenreichii subsp. shermanii and Propionibacterium acidipropionici. Metab Eng. 1999;1(4):309–319.
  • Liu L, Guan N, Zhu G, et al. Pathway engineering of Propionibacterium jensenii for improved production of propionic acid. Sci Rep. 2016;6(1):19963.
  • Navone L, McCubbin T, Gonzalez-Garcia RA, et al. Genome-scale model guided design of propionibacterium for enhanced propionic acid production. Metab Eng Commun. 2018;6:1–12.
  • Li J, Zhu X, Chen J, et al. Construction of a novel anaerobic pathway in Escherichia coli for propionate production. BMC Biotechnol. 2017;17(1):38.
  • Gonzalez-Garcia RA, McCubbin T, Wille A, et al. Awakening sleeping beauty: production of propionic acid in Escherichia coli through the sbm operon requires the activity of a methylmalonyl-CoA epimerase. Microb Cell Fact. 2017;16(1):121.
  • Han J, Hou J, Zhang F, et al. Multiple propionyl coenzyme A-supplying pathways for production of the bioplastic poly(3-hydroxybutyrate-co-3-hydroxyvalerate) in Haloferax mediterranei. Appl Environ Microbiol. 2013;79(9):2922–2931.
  • Krink-Koutsoubelis N, Loechner AC, Lechner A, et al. Engineered production of Short-Chain Acyl-Coenzyme a esters in Saccharomyces cerevisiae. ACS Synth Biol. 2018;7(4):1105–1115.
  • Liu Z, Liu T. Production of acrylic acid and propionic acid by constructing a portion of the 3-hydroxypropionate/4-hydroxybutyrate cycle from Metallosphaera sedula in Escherichia coli. J Ind Microbiol Biotechnol. 2016;43(12):1659–1670.
  • de Fouchécour F, Sánchez-Castañeda AK, Saulou-Bérion C, et al. Process engineering for microbial production of 3-hydroxypropionic acid. Biotechnol Adv. 2018;36(4):1207–1222.
  • Zhao P, Tian P. Biosynthesis pathways and strategies for improving 3-hydroxypropionic acid production in bacteria. World J Microbiol Biotechnol. 2021;37(7):117.
  • Zhang X, Mao Y, Wang B, et al. Screening, expression, purification and characterization of CoA-transferases for lactoyl-CoA generation. J Ind Microbiol Biotechnol. 2019;46(7):899–909.
  • Peyraud R, Kiefer P, Christen P, et al. Demonstration of the ethylmalonyl-CoA pathway by using 13C metabolomics. Proc Natl Acad Sci USA. 2009;106(12):4846–4851.
  • Herter S, Busch A, Fuchs G. L-Malyl-coenzyme a lyase/beta-methylmalyl-coenzyme a lyase from Chloroflexus aurantiacus, a bifunctional enzyme involved in autotrophic CO2 fixation. J Bacteriol. 2002;184(21):5999–6006.
  • Zarzycki J, Brecht V, Müller M, et al. Identifying the missing steps of the autotrophic 3-hydroxypropionate CO2 fixation cycle in Chloroflexus aurantiacus. Proc Natl Acad Sci USA. 2009;106(50):21317–21322.
  • Sasikaran J, Ziemski M, Zadora PK, et al. Bacterial itaconate degradation promotes pathogenicity. Nat Chem Biol. 2014;10(5):371–377.
  • Chen M, Huang X, Zhong C, et al. Identification of an itaconic acid degrading pathway in itaconic acid producing Aspergillus terreus. Appl Microbiol Biotechnol. 2016;100(17):7541–7548.
  • Li W, Wu H, Li M, et al. Effect of NADPH availability on free fatty acid production in Escherichia coli. Biotechnol Bioeng. 2018;115(2):444–452.
  • Wernig F, Baumann L, Boles E, et al. Production of octanoic acid in Saccharomyces cerevisiae: investigation of new precursor supply engineering strategies and intrinsic limitations. Biotechnol Bioeng. 2021;118(8):3046–3057.
  • Diallo M, Simons AD, van der Wal H, et al. l-Rhamnose metabolism in Clostridium beijerinckii strain DSM 6423. Appl Environ Microbiol. 2019;85(5):e02656–02618.
  • Hwang HJ, Lee SY, Kim SM, et al. Fermentation of seaweed sugars by lactobacillus species and the potential of seaweed as a biomass feedstock. Biotechnol Bioproc E. 2011;16(6):1231–1239.
  • Rahim SANM, Lee CS, Abnisa F, et al. A review of recent developments on kinetics parameters for glycerol electrochemical conversion – a by-product of biodiesel. Sci Total Environ. 2020;705:135137.
  • Liu Z, Wang K, Chen Y, et al. Third-generation biorefineries as the means to produce fuels and chemicals from CO2. Nat Catal. 2020;3(3):274–288.
  • Siebert D, Wendisch VF. Metabolic pathway engineering for production of 1,2-propanediol and 1-propanol by Corynebacterium glutamicum. Biotechnol Biofuels. 2015;8(1):91.
  • Zhang C, Qi J, Li Y, et al. Production of α-ketobutyrate using engineered Escherichia coli via temperature shift. Biotechnol Bioeng. 2016;113(9):2054–2059.
  • Beber ME, Gollub MG, Mozaffari D, et al. eQuilibrator 3.0: a database solution for thermodynamic constant estimation. Nucleic Acids Res. 2022;50(D1):D603–D609.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.