252
Views
0
CrossRef citations to date
0
Altmetric
Review Articles

Recent advances in delivering free or nanoencapsulated Curcuma by-products as antimicrobial food additives

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 1257-1283 | Received 11 Jan 2022, Accepted 02 Apr 2022, Published online: 21 Sep 2022

References

  • Li Z, Lin S, An S, et al. Preparation, characterization and anti- aflatoxigenic activity of chitosan packaging films incorporated with turmeric essential oil. Int J Biol Macromol. 2019;131:420–434.
  • Ferreira FD, Mossini SAG, Ferreira FMD, et al. The inhibitory effects of Curcuma longa L. essential oil and Curcumin on Aspergillus flavus link growth and morphology. The Sci World J. 2013;343:804.
  • Chuakul W, Boonpleng A. Ethnomedical uses of Thai zingiberaceous plant. Thai J Phytopharm. 2003;10:33–39.
  • Ravindran PN, Babu KN, Shiva KN. Botany and crop improvement of tumeric. Turmeric the genus curcuma. Boca Raton (FL): CRC Press; 2007. p.15–70.
  • Basak S, Sarma GC, Rangan L. Ethnomedical uses of zingiberaceous plants of northeast India. J Ethnopharmacol. 2010;132(1):286–296.
  • Shi H, Tan B, Ji G, et al. Zedoary oil (Ezhu you) inhibits proliferation of AGS cells. Chin Med. 2013;8:13.
  • Sun W, Wang S, Zhao W, et al. Chemical constituents and biological research on plants in the genus curcuma. Crit Rev Food Sci Nutr. 2017;57(7):1451–1523.
  • Georgiana F, Mureșan AE, Mureșan V, et al. Turmeric (gen. Curcuma) – a spice with beneficial effects for food and health. Hop Med Plants. 2020, pp. 1–2.
  • Xiang H, Zhang L, Yang Z, et al. Chemical compositions, antioxidative, antimicrobial, anti-inflammatory and antitumor activities of Curcuma aromatica salisb essential oils. Ind Crops Prod. 2017;108:6–16.
  • Zhang L, Yang Z, Chen F, et al. Composition and bioactivity assessment of essential oils of curcuma longa L. collected in China. Ind Crops Prod. 2017;109:60–73.
  • Liju VB, Jeena B, Kuttan R. Acute and subchronic toxicity as well as mutagenic evaluation of essential oil from turmeric (Curcuma longa L). Food Chem Toxicol. 2013;53:52–61.
  • Yue GGL, Chan BCL, Hon P, et al. Evaluation of in vitro anti-proliferative and immunomodulatory activities of compounds isolated from Curcuma longa. Food Chem Toxicol. 2010;48(8–9):2011–2020.
  • Borah A, Paw M, Gogoi R, et al. Chemical composition, antioxidant, anti-inflammatory, anti-microbial and in-vitro cytotoxic efficacy of essential oil of Curcuma caesia roxb. leaves: an endangered medicinal plant of North East India. Ind Crop Prod. 2019;129:448–454.
  • Ferreira FD, Carlos K, Arroteia CC, et al. Inhibitory effect of the essential oil of Curcuma longa L. and curcumin on aflatoxin production by Aspergillus flavus link. Food Chem. 2013;136(2):789–793.
  • Zhang L, Yang Z, Wei J, et al. Contrastive analysis of chemical composition of essential oil from twelve Curcuma species distributed in China. Ind Crops Prod. 2017;108:17–25.
  • Zhang L, Yang Z, Wei J, et al. Essential oil composition and bioactivity variation in wild-growing populations of Curcuma phaeocaulis valeton collected from China. Ind Crops Prod. 2017;103:274–282.
  • Sharma M, Sharma R. Synergistic antifungal activity of Curcuma longa (turmeric) and Zingiber officinale (ginger) essential oils against dermatophyte infections. J Essential Oil Bear Plants. 2011;14:38–47.
  • Rajagopal K, Varakumar P, Baliwada A, et al. Activity of phytochemical constituents of Curcuma longa (turmeric) and Andrographis paniculata against coronavirus (COVID-19): an in-silico approach. Future J Pharm Sci. 2020;6:104.
  • Javier AMV, Ocampo VR, Ceballo FA, et al. Insecticidal activity of selected essential oil extracts against common cutworm, Spodoptera litura fabriciusn (Lepidoptera: Noctuidae). Philippine J Sci. 2017;146:247–256.
  • Munir Z, Banche G, Cavallo L, et al. Exploitation of the antibacterial properties of photoactivated curcumin as ‘green’ tool for food preservation. Int J Mol Sci. 2022;23(5):2600.
  • Romoli JCZ, Silva MV, Pante GC, et al. Anti-mycotoxigenic and antifungal activity of ginger, turmeric, thyme and rosemary essential oils in deoxynivalenol (DON) and zearalenone (ZEA) producing Fusarium graminearum. Food Add Cont A. 2022;39(2):362–372.
  • Surendhiran D, Roy VC, Park J, et al. Fabrication of chitosan-based food packaging film impregnated with turmeric essential oil (TEO)-loaded magnetic-silica nanocomposites for surimi preservation. Int J Biol Macromol. 2022;203:650–660.
  • Gao H, Cheng C, Fang S, et al. Study on curcumin encapsulated in whole nutritional food model milk: effect of fat content, and partitioning situation. J Func Food. 2022;90:104990.
  • Shen W, Yan M, Wu S, et al. Chitosan nanoparticles embedded with curcumin and its application in pork antioxidant edible coating. Int J Biol Macromol. 2022;204:410–418.
  • Wang Y, Shao J, Zhou C, et al. Food preservation effects of curcumin microcapsules. Food Contr. 2012;27(1):113–117.
  • Dosoky N, Setzer W. Chemical composition and biological activities of essential oils of Curcuma species. Nutrients. 2018;10(9):1196.
  • Ibáñez MD, Blázquez MA. Curcuma longa L. rhizome essential oil from extraction to its Agri-food applications. A review. Plants. 2020;10(1):44.
  • Kim KI, Kim JW, Hong BS. Antitumor, genotoxicity and anticlastogenic activities of polysaccharide from Curcuma zedoaria. Mol Cells. 2005;10:392–398.
  • Srivilai J, Phimnuan P, Jaisabai J, et al. Curcuma aeruginosa roxb essential oil slows hair-growth and lightens skin in axillae, a randomised, double blinded trial. Phytomedicine. 2017;25:29–38.
  • Jirovetz L, Buchbauer G, Puschmann C, et al. Essential oil analysis of Curcuma aeruginosa roxb leaves from South India. J Essent Oil Res. 2000;12(1):47–49.
  • Padalia RC, Verma RS, Sundaresan V, et al. Volatile terpenoid compositions of leaf and rhizome of Curcuma amada roxb from Northern India. J Essent Oil Res. 2013;25(1):17–22.
  • Thongkhwan P, Chaibunga T, Kwanboonjan H, et al. Essential oil constituents of the fresh root and rhizome of Curcuma angustifolia roxb from Thailand. Bull Heal Sci Technol. 2017;15:52–53.
  • Jena S, Ray A, Banerjee A, et al. Chemical composition and antioxidant activity of essential oil from leaves and rhizomes of urcuma angustifolia roxb. Nat Prod Res. 2017;31(18):2188–2191.
  • Cao J, Qi M, Zhang Y, et al. Analysis of volatile compounds in Curcuma wenyujin by headspace solvent microextraction-gas chromatography-mass spectrometry. Analytical Chim Acta. 2006;561(1–2):88–95.
  • Choudhury SN, Rabha LC, Kanjilal PB, et al. Essential oil of Curcuma amada roxb. from northeastern India. J Essent Oil Res. 1996;8(1):79–80.
  • Angel GR, Menon N, Vimala B, et al. Essential oil composition of eight starchy Curcuma species. Ind Crops Prod. 2014;60:233–238.
  • Behura S, Srivastava VK. Essential oils of leaves of Curcuma species. J Essent Oil Res. 2004;16(2):109–110.
  • Xiang H, Zhang L, Xi L, et al. Phytochemical profiles and bioactivities of essential oils extracted from seven curcuma herbs. Ind Crops Product. 2018;111:298–305.
  • Naz S, Ilyas S, Parveen Z, et al. Chemical analysis of essential oils from turmeric (Curcuma longa) rhizome through GC-MS. Asian J Chem. 2010;22:3153–3158.
  • Leela NK, Tava A, Shafi PM, et al. Chemical composition of essential oils of turmeric (Curcuma longa L.). Acta Pharm. 2002;52:137–141.
  • Saccol EMH, Londero ÉP, Bressan CA, et al. Oxidative and biochemical responses in Brycon amazonicus anesthetized and sedated with Myrcia sylvatica (G. 928 Mey.) DC. and Curcuma longa L. essential oils. Vet Anaesth Analg. 2017;44(3):555–566.
  • Manzan ACCM, Toniolo FS, Bredow E, et al. Extraction of essential oil and pigments from Curcuma longa [L.] by steam distillation and extraction with volatile solvents. J Agric Food Chem. 2003;51(23):6802–6807.
  • Zhu J, Lower-Nedza AD, Hong M, et al. Chemical composition and antimicrobial activity of three essential oils 934 from Curcuma wenyujin. Nat Prod Comm. 2013;8:523–526.
  • Jantan I, Saputri FC, Qaisar MN, et al. Correlation between chemical composition of Curcuma domestica and Curcuma xanthorrhiza and their antioxidant effect on human low-density lipoprotein oxidation. Evid Based Complement Alternat Med. 2012;2012:438356.
  • Garg SN, Naquvi AA, Bansal RP, et al. Chemical composition of the essential oil from the leaves of Curcuma zedoaria rosc of Indian origin. J Essent Oil Res. 2005;17(1):29–31.
  • Gopalan B, Goto M, Kodama A, et al. Supercritical carbon dioxide extraction of turmeric (Curcuma longa). J Agric Food Chem. 2000;48(6):2189–2192.
  • El Asbahani A, Miladi K, Badri W, et al. Essential oils: from extraction to encapsulation. Int J Pharm. 2015;483(1–2):220–243.
  • Gavahian M, Farhoosh R, Javidnia K, et al. Effects of electrolyte concentration and ultrasound pretreatment on ohmic-assisted hydrodistillation of essential oils from Mentha piperita L. Int J Food Eng. 2017;13:1–12.
  • Munekata PES, Alcántara C, Zugcic T, et al. Impact of ultrasound-assisted extraction and solvent composition on bioactive compounds and in vitro biological activities of thyme and rosemary. Food Res Int. 2020;134:109242.
  • Elshafie HS, Mancini E, Camele I, et al. In vivo antifungal activity of two essential oils from Mediterranean plants against postharvest brown rot disease of peach fruit. Ind Crops Prod. 2015;66:11–15.
  • Tammar S, Salem N, Rebey IB, et al. Regional effect on essential oil composition and antimicrobial activity of Tymus capitatus L. J Essent Oil Res. 2019;31(2):129–137.
  • El-Jalel LFA, Elkady WM, Gonaid MH, et al. Differences in chemical composition and antimicrobial activity of Thymus capitatus essential oil at different altitudes. Future J Pharma Sci. 2018;4(2):156–160.
  • Mashkani MRD, Larijani K, Mehrafarin A, et al. Changes in the essential oil content and composition of Thymus daenensis celak under different drying methods. Ind Crops Prod. 2018;112:389–395.
  • Kamazer TSAT, Samah OA, Taher M, et al. Antimicrobial activity and essential oils of Curcuma aeruginosa, Curcuma mangga, and Zingiber cassumunar from Malaysia. Asian Pacific J Trop Med. 2012;5(3):202–209.
  • Couce A, Blazquez J. Side effects of antibiotics on genetic variability. FEMS Microbiol Rev. 2009;33(3):531–538.
  • Akarchariya N, Sirilun S, Julsrigival J, et al. Chemical profiling and antimicrobial activity of essential oil from Curcuma aeruginosa roxb, Curcuma glans K. Larsen & J. Mood and Curcuma cf. xanthorrhiza roxb. collected in Thailand. Asian Pacific J Trop Biomed. 2017;7(10):881–885.
  • Uechi S, Miyagi Y, Ishimine Y, et al. Antibacterial activity of essential oils from curcuma sp. (zingiberaceae) cultivated in foodborne pathogenic bacteria. Japanese J Trop Agric. 2000;44:138–140.
  • Singh G, Singh OP, Maurya S. Chemical and biocidal investigations on essential oils of some Indian curcuma species. Prog Cryst Growth Charact Mater. 2002;45(1–2):75–81.
  • Manabi P, Roktim G, Neelav S, et al. Study of anti-oxidant, anti-inflammatory, genotoxicity, and antimicrobial activities and analysis of different constituents found in rhizome essential oil of Curcuma caesia roxb., collected from North East India. Curr Pharm Biotechnol. 2020;21:403–413.
  • Devi LR, Rana VS, Devi SI, et al. Chemical composition and antimicrobial activity of the essential oil of Curcuma leucorhiza roxb. J Essent Oil Res. 2012;24(6):533–538.
  • Parveen Z, Nawaz S, Siddique S, et al. Composition and antimicrobial activity of the essential oil from leaves of Curcuma longa L. Kasur variety. Indian J Pharm Sci. 2013;75(1):117–122.
  • Teles AM, da Silva Rosa TD, Mouchrek AN, et al. Cinnamomum zeylanicum, Origanum vulgare, and Curcuma longa essential oils: chemical composition, antimicrobial and antileishmanial activity. Evid Based Complement Alternat Med. 2019;2019:2421695.
  • Behura C, Ray P, Rath CC, et al. Antifungal activity of essential oils of Curcuma longa against five rice pathogens in vitro. J Essential Oil-bearing Plants. 2000;3:79–84.
  • Verma M, Sharma S. Antifungal activity of six plant essential oils against phytopathogenic fungi Rizopus oryzae, center for rural development and technology, Indian Institute of Technology Delhi Hauz Khas, New Delhi - 110 016, India. Abstract Plant Archives. 2018;18:1–6.
  • Hu Y, Luo J, Kong W, et al. Uncovering the antifungal components from turmeric (Curcuma longa L.) essential oil as Aspergillus flavus fumigants by partial least squares. RSC Adv. 2015;5(52):41967–41976.
  • Jayaprakasha GK, Negi PS, Akrishnan CA, et al. Chemical composition of turmeric oil - A byproduct from turmeric oleoresin industry and its inhibitory activity against different fungi. Z Naturforsch C J Biosci. 2001;56(1–2):40–44.
  • Dhingra OD, Jham GN, Barcelos RC, et al. Isolation and identification of the principal fungitoxic component of turmeric essential oil. J Essent Oil Res. 2007;19(4):387–391.
  • Kumar KN, Venkataramana M, Allen AJ, et al. Role of Curcuma longa L. essential oil in controlling the growth and zearalenone production of Fusarium graminearum. LWT - Food Sci Technol. 2016;69:522–528.
  • Sindhu S, Chempakam B, Leela NK, et al. Chemoprevention by essential oil of turmeric leaves (Curcuma longa L.) on the growth of Aspergillus flavus and aflatoxin production. Food Chem Toxicol. 2011;49(5):1188–1192.
  • Kalagatur NK, Gurunathan S, Kamasani JR, et al. Inhibitory effect of C. zeylanicum, C. longa, O. basilicum, Z. officinale, and C. martini essential oils on growth and ochratoxin a content of A. ochraceous and P. verrucosum in maize grains. Biotechnol Rep (Amst). 2020;27:e00490.
  • Avanço GB, Ferreira FD, Bomfim NS, et al. Curcuma longa L. essential oil composition, antioxidant effect, and effect on Fusarium verticillioides and fumonisin production. Food Contr. 2017;73:806–813.
  • Baharudin M, Hamid SA, Darnis DS. Chemical composition and antibacterial activity of essential oils from three aromatic plants of the zingiberaceae family in Malaysia. J Physical Sci. 2015;26:71–81.
  • Sam LN, Huong LT, Minh PN, et al. Chemical composition and antimicrobial activity of the rhizome essential oil of Curcuma sahuynhensis from vietnam. J Essential Oil Bear Plants. 2020;23(4):803–809.
  • Jena S, Ray A, Pratap AS, et al. Deeper insight into the volatile profile of essential oil of two curcuma species and their antioxidant and antimicrobial activities. Ind Crops Prod. 2020;155:112830.
  • Song L, Zhang F, Yu J, et al. Antifungal effect and possible mechanism of curcumin mediated photodynamic technology against penicillium expansum. Postharvest Biol Technol. 2020;167:111234.
  • Soni KB, Rajan A, Kuttan R. Reversal of aflatoxin induced liver damage by turmeric and curcumin. Cancer Lett. 1992;66(2):115–121.
  • Phanthong P, Lomarat P, Traidej Chomnawang M, et al. Antibacterial activity of essential oils and their active components from Thai spices against foodborne pathogens. Sci Asia. 2013;39(5):472–476.
  • Lee Y, Shim J, Yaya R, et al. Antibacterial activity of xanthorrhizol isolated from Curcuma xanthorrhiza roxb against foodborne pathogens. J Food Prot. 2008;71(9):1926–1930.
  • Singh P, Singh S, Kapoor IPS, et al. Chemical composition and antioxidant activities of essential oil and oleoresins from Curcuma zedoaria rhizomes, part-74. Food Biosci. 2013;3:42–48.
  • Negi PS, Jayaprakasha GK, Rao LJM, et al. Antibacterial activity of turmeric 984 oil:  a byproduct from curcumin manufacture. J Agric Food Chem. 1999;47(10):4297–4300.
  • Prakatthagomol W, Sirithunyalug J, Okonogi S. Comparison of antibacterial activity against food-borne bacteria of Alpinia galanga, Curcuma longa, and Zingiber cassumunar. CMU J Nat Sci. 2012;11:177–182.
  • Antunes SA, da Silva Robazza W, Schittler L, et al. Synergistic and antimicrobial properties of commercial turmeric (Curcuma longa) essential oil against pathogenic bacteria. Food Sci Technol. 2012;32(3):525–530.
  • Camilo CJ, de Carvalho NKG, de Fatima Alves Nonato C, et al. Chemical composition and in vitro biological activities of the essential oils of the rhizomes of zingiber officinale roscoe and Curcuma longa L. (zingiberaceae). Braz J Dev. 2020;6(4):17766–17772.
  • Nguyen MP. Synergistic effect of turmeric (Curcuma longa), galanga (Alpinia galanga) powder and lemongrass (Cymbopogon citratus) essential oil as natural preservative in chilled storage of white hard clam (Meretrix lyrata). Orient J Chem. 2020;36:195–200.
  • Bassole IHN, Juliani HR. Essential oils in combination and their antimicrobial properties. Molecules. 2012;17(4):3989–4006.
  • Hammer KA, Carson CF, Riley TV. Effects of Melaleuca alternifolia (tea tree) essential oil and the major monoterpene component terpinen-4-ol on the development of single- and multistep antibiotic resistance and antimicrobial susceptibility. Antimicrob Agents Chemother. 2012;56(2):909–915.
  • Burt SA, Reinders RD. Antibacterial activity of selected plants against Escherichia coli O157:H7. Lett Appl Microbiol. 2003;36(3):162–167.
  • Pandey AK, Tripathi NN. Post- harvest fungal and insect deterioration of pigeon pea seeds and their management by plant volatiles. J Indian Bot Soc. 2011;90:326–331.
  • Pandey AK, Singh P, Palni UT, et al. Application of Cchenopodium ambrosioides linn. essential oil as botanical fungicide for the management of fungal deterioration in pulse. Biol Agric Hortic. 2013b;29(3):197–208.
  • Tejeswini MG, Sowmya HV, Swarnalatha SP, et al. Antifungal activity of essential oils and their combinations in in vitro and in vivo conditions. Arch Phytopathol Plant Protect. 2014;47(5):564–570.
  • Miedes E, Lorences EP. Apple (Malus domestica) and tomato (Lycopersicum esculentum) fruits cell-wall hemicelluloses and xyloglucan degradation during Penicillium expansum infection. J Agric Food Chem. 2004;52(26):7957–7963.
  • Sonker N, Pandey AK, Singh P, et al. Assessment of Cymbopogon citratus (DC.) stapf essential oil as herbal preservatives based on antifungal, antiaflatoxin and antiochratoxin activities and in vivo efficacy during storage. J Food Sci. 2014;79(4):M628–34.
  • Bosquez-Molina E, Jesús ER-d, Bautista-Baños S, et al. Inhibitory effect of essential oils against Colletotrichum gloeosporioides and Rhizopus stolonifer in stored papaya fruits and their possible application in coatings. Postharvest Biol Technol. 2010;57(2):132–137.
  • Mary HPA, Susheela GK, Jayasree S, et al. Phytochemical characterization and antimicrobial activity of Curcuma xanthorrhiza roxb. Asian Pacific J Trop Biomed. 2012;2(2):S637–S40.
  • Ramsdam MG, Singh AK, Singh VK, et al. Antifungal and antioxidant activity of plant based essential oils on Aspergillus flavus link (trichocomaceae) isolated from stored maize grains of Meghalaya. Arch Phytopath Plant Prot. 2021;54(17–18):1405–1420.
  • Senouci H, Benyelles NG, Dib MEA, et al. Chemical composition and combinatory antifungal activities of Ammoides verticillata, Allium sativum and Curcuma longa essential oils against four fungi responsible for tomato diseases. Comb Chem High Throughput Screen. 2020;23(3):196–204.
  • Singh RP, Jain DA. Evaluation of antimicrobial activity of curcuminoids isolated from turmeric. Int J Pharm Life Sci. 2012;3:1368–1376.
  • Wang B, Liu F, Li Q, et al. Antifungal activity of zedoary turmeric oil against Phytophthora capsici through damaging cell membrane. Pestic Biochem Physiol. 2019;159:59–67.
  • Osherov N, May GS. The molecular mechanisms of conidial germination. FEMS Microbiol Lett. 2001;199(2):153–160.
  • Ultee A, Bennik MHJ, Moezelaar R. The phenolic hydroxyl group of carvacrol is essential for action against the food-borne pathogen Bacillus cereus. Appl Environ Microbiol. 2002;68(4):1561–1568.
  • Liu Y, Zhang M, Xie R, et al. The methyltransferase AflSet1 is involved in fungal morphogenesis, AFB1 biosynthesis, and virulence of Aspergillus flavus. Front Microbiol. 2020;11:234.
  • Farag RS, Daw ZY, Hewedi FM, et al. Antimicrobial activity of some Egyptian spice essential oils. J Food Prot. 1989;52(9):665–667.
  • Gowda NKS, Malathi V, Suganthi RU. Effect of some chemical and herbal compounds on growth of Aspergillus parasiticus and aflatoxin production. Animal Feed Sci Technol. 2004;116(3-4):281–291.
  • Reddy KRN, Reddy CS, Muralidharan K. Potential of botanicals and biocontrol agents on growth and aflatoxin production by Aspergillus flavus infecting rice grains. Food Contr. 2009;20(2):173–178.
  • Hu Y, Zhang J, Kong W, et al. Mechanisms of antifungal and anti-aflatoxigenic properties of essential oil derived from turmeric (Curcuma longa L.) on Aspergillus flavus. Food Chem. 2017;220:1–8.
  • Niemenmaa O, Galkin S, Hatakka A. Ergosterol contents of some wood-rotting basidiomycete fungi grown in liquid and solid culture conditions. Int Biodete Biodegrad. 2008;62(2):125–134.
  • Parveen M, Hasan MK, Takahashi J, et al. Response of Saccharomyces cerevisiae to a monoterpene: evaluation of antifungal potential by DNA microarray analysis. J Antimicrob Chemother. 2004;54(1):46–55.
  • Chen C, Long L, Zhang F, et al. Antifungal activity, main active components and mechanism of Curcuma longa extract against Fusarium graminearum. PLoS One. 2018;13(3):e0194284.
  • Sharifi S, Fathi N, Memar MY, et al. Anti-microbial activity of curcumin nanoformulations: new trends and future perspectives. Phytother Res. 2020;34:1926–1946.
  • Xu X, Liu A, Hu S, et al. Synthetic phenolic antioxidants: metabolism, hazards and mechanism of action. Food Chem. 2021;353:129488.
  • Silva MM, Reboredo FH, Lidon FC. Food colour additives: a synoptical overview on their chemical properties, applications in food products, and health side effects. Foods. 2022;11(3):379.
  • El-Ramady H, Faizy SED, Abdalla N, et al. Selenium and Nano-Selenium biofortification for human health: opportunities and challenges. Soil Syst. 2020;4(3):57.
  • Reddy PH. Amyloid precursor protein-mediated free radicals and oxidative damage: implications for the development and progression of Alzheimer’s disease. J Neurochem. 2006;96(1):1–13.
  • Theanphong O, Mingvanish W, Kirdmanee C. Chemical constituents and biological activities of essential oil from Curcuma aeruginosa roxb rhizome. IJHS. 2015;13:6–1133.
  • George M, Britto SJ, Arulappan MT, et al. Phytochemical, antioxidant and antibacterial studies on the essential oil of the rhizome of Curcuma amada roxb. Int J Curr Res. 2015;7:18098–18104.
  • Shahwar D, Raza MA, Bukhari S, et al. Ferric reducing antioxidant power of essential oils extracted from Eucalyptus and curcuma species. Asian Pac J Trop Biomed. 2012;2(3):S1633–S36.
  • Al-Reza SM, Rahman A, Parvin T, et al. Chemical composition and antibacterial activities of essential oil and organic extracts of Curcuma aromatica salisb. J Food Saf. 2011;31(4):433–438.
  • Hosseini H, Tajiani Z, Jafari SM. Improving the shelf-life of food products by nano/micro-encapsulated ingredients. Food quality and shelf life; galanakis, CM. 1178 ed. London: Elsevier Inc.; 2019. p.159–200.
  • Zhang L, Yang Z, Huang Z, et al. Variation in essential oil and bioactive compounds of Curcuma kwangsiensis collected from natural habitats. Chem Biodivrs. 2017;14:e1700020.
  • Islamadina R, Can A, Rohman A. Chemometrics application for grouping and determinating volatile compound which related to antioxidant activity of turmeric essential oil (Curcuma longa). J Food Pharm. Sci. 2020;8:1–41.
  • Pino JA, Fon-fay FM, Falco AS, et al. Chemical composition and biological activities of essential oil from turmeric (Curcuma longa L.) rhizomes grown in. Amazonian Ecuador Rev CENIC. 2018;49:1–8.
  • Sacchetti G, Maietti S, Muzzoli M, et al. Comparative evaluation of 11 essential oils of different origin as functional antioxidants, antiradicals and antimicrobials in foods. Food Chem. 2005;91(4):621–632.
  • Priya R, Prathapan A, Raghu KG, et al. Nirmala menon A. Chemical composition and in vitro antioxidative potential of essential oil isolated from Curcuma longa L. leaves. Asian Pac J Trop Biomed. 2012;2(2):S695–S99.
  • Tsai SY, Huang SJ, Chyau CC, et al. Composition and antioxidant properties of essential oils from Curcuma rhizome. Asian J Arts Sci. 2011;2:57–66.
  • Zhao J, Zhang JS, Yang B, et al. Free radical scavenging activity and characterization of sesquiterpenoids in four species of curcuma using a TLC bioautography assay and GC–MS analysis. Molecules. 2010;15(11):7547–7557.
  • Liang H, Wang Q, Ding C, et al. Chemical composition, antioxidant and antibacterial activities of essential oil of Curcuma phaeocaulis valeton. Bangladesh J Bot. 2020;49(3):531–540.
  • Atun S, Aznam N, Arianingrum R, et al. Characterization of curcuminoid from Curcuma xanthorrhiza and its activity test as antioxidant and antibacterial. Molekul. 2020;15(2):79–87.
  • Mau J, Lai EYC, Wang NP, et al. Composition and antioxidant activity of the essential oil from Curcuma zedoaria. Food Chem. 2003;82(4):583–591.
  • Singh G, Kapoor IPS, Singh P, et al. Comparative study of chemical composition and antioxidant activity of fresh and dry rhizomes of turmeric (Curcuma longa linn.). Food Chem Toxicol. 2010;48(4):1026–1031.
  • Santos-Sánchez NF, Salas-Coronado R, Valadez-Blanco R, et al. Natural antioxidant extracts as food preservatives. Acta Sci Pol Technol Aliment. 2017;16(4):361–370.
  • Hamdi OAA, Ye LJ, Kamarudin MNA, et al. Neuroprotective and antioxidant constituents from Curcuma zedoaria rhizomes. Rec Nat Prod. 2015;9:349–355.
  • Rosidi A. The difference of curcumin and antioxidant activity in Curcuma xanthorrhiza at different regions. J Adv Pharm Educ. 2020;10:14–18.
  • Ibanez MD, Blazquez MA. Ginger and turmeric essential oils for weed control and food crop protection. Plants. 2019;8:59.
  • Soumya T, Jayasree PR, Deepak M, et al. Chemical composition, antioxidant and antiproliferative activities of essential oil from rhizome and leaves of Curcuma mutabilis Skorničk, M. Sabu & Prasanthk, endemic to Western Ghats of India. Nat Prod Res. 2020;34(16):2336–2340.
  • Chuacharoen T, Sabliov CM. Comparative effects of curcumin when delivered in a nanoemulsion or nanoparticle form for food applications: study on stability and lipid oxidation inhibition. LWT. 2019;113:108319.
  • Donsí F, Annunziata M, Sessa M, et al. Nanoencapsulation of essential oils to enhance their antimicrobial activity in foods. Food Sci Technol. 2011;44(9):1908–1914.
  • Katiraee F, Ashrafai Helan J, Emami SJ, et al. An investigation of the inhibitory effects of dendrosomal nanocurcumin on Candida albicans and systemic candidiasis in BALB/c mice. Curr Med Mycol. 2016;2(1):7–12.
  • Chen C, Johnston TD, Jeon H, et al. An in vitro study of liposomal curcumin: stability, toxicity and biological activity in human lymphocytes and Epstein-Barr virus transformed human B-cells. Int J Pharm. 2009;366(1–2):133–139.
  • Paul S, Mohanram K, Kannan I. Antifungal activity of curcumin silver nanoparticles against fluconazole-resistant clinical isolates of Candida species. Ayu. 2018;39(3):182–186.
  • McClements DJ, Rao J. Food-grade nanoemulsions: formulation, fabrication, properties, performance, biological fate, and potential toxicity. Crit Rev Food Sci Nutr. 2011;51(4):285–330.
  • Salvia-Trujillo L, Martín-Belloso O, McClements D. Excipient nanoemulsions for improving oral bioavailability of bioactives. Nanomaterials. 2016;6(1):17.
  • Jiang T, Wei L, Catherine C. Recent advances in encapsulation of curcumin in nanoemulsions: a review of encapsulation technologies, bioaccessibility and applications. Food Res Int. 2020;132:109035.
  • Ren G, Sun Z, Wang Z, et al. Nanoemulsion formation by the phase inversion temperature method using polyoxypropylene surfactants. J Colloid Interface Sci. 2019;540:177–184.
  • Abbas S, Karangwa E, Bashari M, et al. Fabrication of polymeric nanocapsules from curcumin-loaded nanoemulsion templates by self-assembly. Ultrason Sonochem. 2015;23:81–92.
  • Jintapattanakit A, Hasan HM, Junyaprasert VB. Vegetable oil-based nanoemulsions containing curcuminoids: formation optimization by phase inversion temperature method. J Drug Del Sci Technol. 2018;44:289–297.
  • Calligaris S, Valoppi F, Barba L, et al. Development of transparent curcumin loaded microemulsions by phase inversion temperature (PIT) method: effect of lipid type and physical state on curcumin stability. Food Biophys. 2017;12(1):45–51.
  • Lahidjani LK, Ahari H, Sharifan A. Influence of curcumin loaded nanoemulsion fabricated through emulsion phase inversion on the shelf life of Oncorhynchus mykiss stored at 4 °C. J Food Process Preserv. 2020;44(8):e14592.
  • Foujdar R, Chopra HK, Bera MB. Optimization and production of turmeric extract-based nanoemulsion (TEBN) and its application in preservation of fatty fish fillet. J Food Process Preserv. 2018;42(9):e13750.
  • Phuoc, Minh N. Incorporation of turmeric oil into chitosan edible coating in preservation of rambutan fruit, Nephelium lappaceum. J Entomol Rese. 2020;44(1):179–182.
  • Yusof NM, Jai J, Hamzah F, et al. Evaluation of the effect of Curcuma longa L. essential oil in chitosan-starch edible coating presented at 7th Nanoscience and Nanotechnology Symposium (NNS). Bandung City, Bristol: IOP Publishing; 2018.
  • Ceylan Z, Meral R, Kose S, et al. Characterized nano-size curcumin and rosemary oil for the limitation microbial spoilage of rainbow trout fillets. LWT. 2020;134:109965.
  • Khan MR, Muhammad BS, Zaffar M. Development of edible gelatin composite films enriched with polyphenol loaded nanoemulsions as chicken meat packaging material. CyTA J Food. 2020;18(1):137–146.
  • Yadi S, Made I, Soebrata S, et al. The use of curcumin-loaded chitosan nanoparticles to control anthracnose disease on papaya. J Sci Technol. 2020;27:1–12.
  • Joung HJ, Choi MJ, Kim JT, et al. Development of food-grade curcumin nanoemulsion and its potential application to food beverage system: antioxidant property and in vitro digestion. J Food Sci. 2016;81(3):N745–N753.
  • Hashim AF, Hamed SF, Abdel Hamid HA, et al. Antioxidant and antibacterial activities of omega-3 rich oils/curcumin nanoemulsions loaded in chitosan and alginate-based microbeads. Int J Biol Macromol. 2019;140:682–696.
  • Blanco-Padilla A, López-Rubio A, Loarca-PIña G, et al. Characterization, release and antioxidant activity of curcumin-loaded amaranth pullulan electrospun fibers. LWT-Food Sci Technol. 2015;63(2):1137–1144.
  • Xue J, Wang T, Hu Q, et al. Insight into natural biopolymeremulsified solid lipid nanoparticles for encapsulation of curcumin: effect of loading methods. Food Hydrocolloids. 2018;79:110–116.
  • Sadati Behbahani ES, Ghaedi M, Abbaspour M, et al. Curcumin loaded nanostructured lipid carriers: in vitro digestion and release studies. Polyhedron. 2019;164:113–122.
  • Park SJ, Hong SJ, Garcia CV, et al. Stability evaluation of turmeric extract nanoemulsion powder after application in milk as a food model. J Food Eng. 2019;259:12–20.
  • Páez-Hernández G, Mondragón-Cortez P, Espinosa-Andrews H. Developing curcumin nanoemulsions by high-intensity methods: impact of ultrasonication and microfluidization parameters. LWT. 2019;111:291–300.
  • Abbas S, Bashari M, Akhtar W, et al. Process optimization of ultrasound assisted curcumin nanoemulsions stabilized by OSA-modified starch. Ultrason Sonochem. 2014;21(4):1265–1274.
  • Sari TP, Mann B, Kumar R, et al. Preparation and characterization of nanoemulsion encapsulating curcumin. Food Hydrocolloids. 2015;43:540–546.
  • Palla CA, Aguilera-Garrido A, Carrin ME, et al. Preparation of highly stable oleogel-based nanoemulsions for encapsulation and controlled release of curcumin. Food Chem. 2022;378:132132.
  • Wei H, Wu C, Fang P. A novel method for the microencapsulation of curcumin by high-pressure processing for enhancing the stability and preservation. Int J Pharma. 2022;613:121403.
  • Mistry PH, Mohapatra SK, Dash AK. Effect of high-pressure homogenization and stabilizers on the physicochemical properties of curcumin-loaded glycerol monooleate/chitosan nanostructures. Nanomedicine (Lond). 2012;7(12):1863–1876.
  • Ma P, Zeng Q, Tai K, et al. Preparation of curcumin-loaded emulsion using high pressure homogenization: impact of oil phase and concentration on physicochemical stability. LWT. 2017;84:34–46.
  • Silva HD, Beldikova E, Poejo J, et al. Evaluating the effect of chitosan layer on bioaccessibility and cellular uptake of curcumin nanoemulsions. J Food Eng. 2019;243:89–100.
  • Raviadaran R, Chandran D, Shin LH, et al. Optimization of palm oil in water nanoemulsion with curcumin using microfluidizer and response surface methodology. LWT. 2018;96:58–65.
  • Artiga-Artigas M, Lanjari-Pérez Y, Martín-Belloso O. Curcumin-loaded nanoemulsions stability as affected by the nature and concentration of surfactant. Food Chem. 2018;266:466–474.
  • Ye Z, Cao C, Liu Y, et al. Triglyceride structure modulates gastrointestinal digestion fates of lipids: a comparative study between typical edible oils and triglycerides using fully designed in vitro digestion model. J Agric Food Chem. 2018;66(24):6227–6238.
  • Maes C, Bouquillon S, Fauconnier ML. Encapsulation of essential oils for the development of bio-sourced pesticides with controlled release: a review. Molecules. 2019;24(14):2539.
  • Anand P, Kunnumakkara AB, Newman RA, et al. Bioavailability of curcumin: problems and promises. Mol Pharm. 2007;4(6):807–818.
  • Shen L, Ji HF. Bidirectional interactions between dietary curcumin and gut microbiota. Crit Rev Food Sci Nutr. 2019;59(18):2896–2902.
  • Taylor TM, Davidson PM, Bruce BD, et al. Liposomal nanocapsules in food science and agriculture. Crit Rev Food Sci Nutr. 2005;45(7–8):587–605.
  • Aditya NP, Aditya S, Yang H-J, et al. Co-delivery of hydrophobic curcumin and hydrophilic catechin by a water-in-oil-in-water double emulsion. Food Chem. 2015;173:7–13.
  • Xu W, Huang L, Jin W, et al. Encapsulation and release behavior of curcumin based on nanoemulsions-filled alginate hydrogel beads. Int J Biol Macromol. 2019;134:210–215.
  • Zhang L, Zhang M, Devahastin S, et al. Fabrication of curcumin encapsulated in casein-ethyl cellulose complexes and its antibacterial activity when applied in combination with blue LED irradiation. Food Chem. 2022;134:108702.
  • Wang F, Liu Y, Jiang Z, et al. Synergistic antimicrobial activities of natural essential oils with chitosan films. J Agric Food Chem. 2011;59(23):12411–12419.
  • Lin Y, Liu J, Gao Y, et al. Insight into the phase inversion of a turmeric oil nanoemulsion in antifungal process. Int J Food Sci Technol. 2021;56(2):785–793.
  • Huang Q, Chen C, Liu C, et al. Curcumin and its two analogues improve oxidative stability of fish oil under long-term storage. Eur J Lipid Sci Technol. 2017;119(10):1600105.
  • Fernandez-Marin R, Fernandes SCM, Sanchez AA, et al. Halochromic and antioxidant capacity of smart films of chitosan/chitin nanocrystals with curcuma oil and anthocyanins. Food Hydro. 2022;123:107119.
  • Funk JL, Jennifer BF, Janice NO, et al. Anti-arthritic effects and toxicity of the essential oils of turmeric (Curcuma longa L.). J Agric Food Chem. 2010;58(2):842–849.
  • Bampidis V, Azimonti G, Bastos ML, et al. Scientific opinion on the safety and efficacy of turmeric extract, turmeric oil, turmeric oleoresin and turmeric tincture from Curcuma longa L. rhizome 1323 when used as sensory additives in feed for all animal species. EFSA J. 2020;18:6146.
  • Yin J, Wei L, Wang N, et al. Efficacy and safety of adjuvant curcumin therapy in ulcerative colitis: a systematic review and Meta-analysis. J Ethnopharmacol. 2022;289:115041.
  • Verma K, Tarafdar A, Mishra V, et al. Nanoencapsulated curcumin emulsion utilizing milk cream as a potential vehicle by microfluidization: bioaccessibility, cytotoxicity and physico-functional properties. Food Res Int. 2021;148:110611.
  • Jayaprakasha GK, Murthy NC, Patil BS. Enhanced Colon cancer chemoprevention of curcumin by nanoencapsulation with whey protein. Eur J Pharmacol. 2016;789:291–300.
  • Akolade JO, Oloyede OB, Onyenekwe PC. Encapsulation in chitosan-based polyelectrolyte complexes enhances antidiabetic activity of curcumin. J Fun Foods. 2017;35:584–594.
  • Vecchione R, Quagliariello V, Calabria D, et al. Curcumin bioavailability from oil in water nano-emulsions: in vitro and in vivo study on the dimensional, compositional and interactional dependence. J Contr Rel. 2016;233:88–100.
  • Sasaki H, Sunagawa Y, Takahashi K, et al. Innovative preparation of curcumin for improved oral bioavailability. Biol Pharm Bull. 2011;34(5):660–665.
  • Sebastia S, Soriano JM, Barquinero JF, et al. In vitro cytogenetic and genotoxic effects of curcumin on human peripheral blood lymphocytes. Food Chem Toxicol. 2012;50(9):3229–3233.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.