720
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Stimuli-responsive biomaterials: smart avenue toward 4D bioprinting

, , , , , , & ORCID Icon show all
Received 02 Sep 2022, Accepted 20 Mar 2023, Published online: 13 Jul 2023

References

  • Gaspar VM, Lavrador P, Borges J, et al. Advanced bottom-up engineering of living architectures. Adv Mater. 2020;32:1903975.
  • Hoffman AS. Stimuli-responsive polymers: biomedical applications and challenges for clinical translation. Adv Drug Deliv Rev. 2013;65:10–16.
  • Zhang B, Gao L, Ma L, et al. 3D Bioprinting: a novel avenue for manufacturing tissues and organs. Engineering. 2019;5:777–794.
  • Khalid MY, Arif ZU, Noroozi R, et al. 4D printing of shape memory polymer composites: a review on fabrication techniques, applications, and future perspectives. J Manuf Process. 2022;81:759–797.
  • Hutmacher DW, Schantz T, Zein I, et al. Mechanical properties and cell cultural response of polycaprolactone scaffolds designed and fabricated via fused deposition modeling. J Biomed Mater Res. 2001;55:203–216.
  • Mullen L, Stamp RC, Brooks WK, et al. Selective laser melting: a regular unit cell approach for the manufacture of porous, titanium, bone in-growth constructs, suitable for orthopedic applications. J Biomed Mater Res B Appl Biomater. 2009;89:325–334.
  • Nakamura M, Iwanaga S, Henmi C, et al. Biomatrices and biomaterials for future developments of bioprinting and biofabrication. Biofabrication. 2010;2:014110.
  • Tian Y, Chen C, Xu X, et al. A review of 3D printing in dentistry: technologies, affecting factors, and applications. Scanning. 2021;2021:9950131.
  • Li YC, Zhang YS, Akpek A, et al. 4D bioprinting: the next-generation technology for biofabrication enabled by stimuli-responsive materials. Biofabrication. 2016;9:012001.
  • Ashammakhi N, Ahadian S, Xu C, et al. Bioinks and bioprinting technologies to make heterogeneous and biomimetic tissue constructs. Mater Today Bio. 2019;1:100008.
  • Morouço P, Azimi B, Milazzo M, et al. Four-dimensional (Bio-)printing: a review on stimuli-responsive mechanisms and their biomedical suitability. Appl. Sci. 2020;10:9143.
  • Gao B, Yang Q, Zhao X, et al. 4D bioprinting for biomedical applications. Trends Biotechnol. 2016;34:746–756.
  • Momeni F, M.Mehdi Hassani.N S, Liu X, et al. A review of 4D printing. Mater Des. 2017;122:42–79.
  • Arif ZU, Khalid MY, Zolfagharian A, et al. 4D bioprinting of smart polymers for biomedical applications: recent progress, challenges, and future perspectives. React Funct Polym. 2022;179:105374.
  • Wan Z, Zhang P, Liu Y, et al. Four-dimensional bioprinting: current developments and applications in bone tissue engineering. Acta Biomater. 2020;101:26–42.
  • Tibbits S. 4D printing: multi-material shape change. Archit Design. 2014;84:116–121.
  • Afzali Naniz M, Askari M, Zolfagharian A, et al. 4D printing: a cutting-edge platform for biomedical applications. Biomed Mater. 2022;17:062001.
  • Haleem A, Javaid M, Singh RP, et al. Significant roles of 4D printing using smart materials in the field of manufacturing. Adv Industr Polym Eng Res. 2021;4:301–311.
  • Moradi M, Karami Moghadam M, Shamsborhan M, et al. The synergic effects of FDM 3D printing parameters on mechanical behaviors of bronze poly lactic acid composites. J Compos Sci. 2020;4:17.
  • Morouço P, Lattanzi W, Alves N. Four-dimensional bioprinting as a new era for tissue engineering and regenerative medicine. Front Bioeng Biotechnol. 2017;5:61.
  • Wang X-F, Lu P-J, Song Y, et al. Nano hydroxyapatite particles promote osteogenesis in a three-dimensional bio-printing construct consisting of alginate/gelatin/hASCs. RSC Adv. 2016;6:6832–6842.
  • Khoo ZX, Teoh JEM, Liu Y, et al. 3D printing of smart materials: a review on recent progresses in 4D printing. Virtual Phys Prototyp. 2015;10:103–122.
  • Moroni L, Boland T, Burdick JA, et al. Biofabrication: a guide to technology and terminology. Trends Biotechnol. 2018;36:384–402.
  • Wang S, Lee JM, Yeong WY. Smart hydrogels for 3D bioprinting. Int J Bioprinting. 2015;1:3–14.
  • Contessi Negrini N, Bonetti L, Contili L, et al. 3D printing of methylcellulose-based hydrogels. Bioprinting. 2018;10:e00024.
  • Spangenberg J, Kilian D, Czichy C, et al. Bioprinting of magnetically deformable scaffolds. ACS Biomater Sci Eng. 2021;7:648–662.
  • Yang Q, Lv X, Gao B, et al. Chapter 4 – Mechanics of hydrogel-based bioprinting: from 3D to 4D. In: Bordas SPA, Balint DS, editors. Advances in applied mechanics. London: Elsevier; 2021. p. 285–318.
  • Milazzo M, Jung GS, Danti S, et al. Mechanics of mineralized collagen fibrils upon transient loads. ACS Nano. 2020;14:8307–8316.
  • Zhu L, Qiu J, Sakai E. A high modulus hydrogel obtained from hydrogen bond reconstruction and its application in vibration damper. RSC Adv. 2017;7:43755–43763.
  • Castilho M, de Ruijter M, Beirne S, et al. Multitechnology biofabrication: a new approach for the manufacturing of functional tissue structures? Trends Biotechnol. 2020;38:1316–1328.
  • Chen M, Zhao F, Li Y, et al. 3D-printed photoluminescent bioactive scaffolds with biomimetic elastomeric surface for enhanced bone tissue engineering. Mater Sci Eng C Mater Biol Appl. 2020;106:110153.
  • Xiong Y, Qi L, Niu Y, et al. Autonomous drug release systems with disease symptom-associated triggers. Adv Intell Syst. 2020;2:1900124.
  • Qu M, Jiang X, Zhou X, et al. Stimuli-responsive delivery of growth factors for tissue engineering. Adv Healthcare Mater. 2020;9:1901714.
  • Mirani B, Pagan E, Currie B, et al. An advanced multifunctional hydrogel-based dressing for wound monitoring and drug delivery. Adv Healthc Mater. 2017;6:1700718.
  • Stoller MD, Park S, Zhu Y, et al. Graphene-based ultracapacitors. Nano Lett. 2008;8:3498–3502.
  • Zhang J, Song L, Zhang Z, et al. Environmentally responsive graphene systems. Small. 2014;10:2151–2164.
  • Karimi M, Ghasemi A, Sahandi Zangabad P, et al. Smart micro/nanoparticles in stimulus-responsive drug/gene delivery systems. Chem Soc Rev. 2016;45:1457–1501.
  • Khetan S, Burdick JA. Patterning hydrogels in three dimensions towards controlling cellular interactions. Soft Matter. 2011;7:830–838.
  • Shadish JA, Benuska GM, DeForest CA. Bioactive site-specifically modified proteins for 4D patterning of gel biomaterials. Nat Mater. 2019;18:1005–1014.
  • Cheng H, Huang Y, Yue H, et al. Electrical stimulation promotes stem cell neural differentiation in tissue engineering. Stem Cells Int. 2021;2021:6697574–6697574.
  • Yamada M, Tanemura K, Okada S, et al. Electrical stimulation modulates fate determination of differentiating embryonic stem cells. Stem Cells. 2007;25:562–570.
  • Iwasa SN, Babona-Pilipos R, Morshead CM. Environmental factors that influence stem cell migration: an “electric field”. Stem Cells Int. 2017;2017:4276927.
  • Schutt CE, Ibsen SD, Benchimol MJ, et al. Manipulating nanoscale features on the surface of dye-loaded microbubbles to increase their ultrasound-modulated fluorescence output. Small. 2014;10:3316–3324.
  • Mobadersany N, Sarkar K. The dynamic of contrast agent and surrounding fluid in the vicinity of a wall for sonoporation. arXiv. 2018.
  • O'Brien WD Jr. Ultrasound-biophysics mechanisms. Prog Biophys Mol Biol. 2007;93:212–255.
  • Nelson TR, Fowlkes JB, Abramowicz JS, et al. Ultrasound biosafety considerations for the practicing sonographer and sonologist. J Ultrasound Med. 2009;28:139–150.
  • Kusuyama J, Bandow K, Shamoto M, et al. Low intensity pulsed ultrasound (LIPUS) influences the multilineage differentiation of mesenchymal stem and progenitor cell lines through ROCK-Cot/Tpl2-MEK-ERK signaling pathway. J Biol Chem. 2014;289:10330–10344.
  • Hwang NS, Varghese S, Elisseeff J. Controlled differentiation of stem cells. Adv Drug Deliv Rev. 2008;60:199–214.
  • Lew WZ, Huang YC, Huang KY, et al. Static magnetic fields enhance dental pulp stem cell proliferation by activating the p38 mitogen-activated protein kinase pathway as its putative mechanism. J Tissue Eng Regen Med. 2018;12:19–29.
  • Galli C, Pedrazzi G, Mattioli-Belmonte M, et al. The use of pulsed electromagnetic fields to promote bone responses to biomaterials in vitro and in vivo. Int J Biomater. 2018;2018:8935750.
  • Chavda VP, K Hossain M, Beladiya J, et al. Nucleic acid vaccines for COVID-19: a paradigm shift in the vaccine development arena. Biologics. 2021;1:337–356.
  • Ahmadi S, Rabiee N, Bagherzadeh M, et al. Stimulus-responsive sequential release systems for drug and gene delivery. Nano Today. 2020;34:100914.
  • Pacifici N, Bolandparvaz A, Lewis JS. Stimuli-responsive biomaterials for vaccines and immunotherapeutic applications. Adv Ther. 2020;3:2000129–2000129.
  • Yang Q, Gao B, Xu F. Recent advances in 4D bioprinting. Biotechnol J. 2020;15:e1900086.
  • Kirillova A, Maxson R, Stoychev G, et al. 4D biofabrication using shape-morphing hydrogels. Adv Mater. 2017;29:1703443.
  • Bodaghi M, Damanpack AR, Liao WH. Self-expanding/shrinking structures by 4D printing. Smart Mater Struct. 2016;25:105034.
  • Wei H, Zhang Q, Yao Y, et al. Direct-write fabrication of 4D active shape-changing structures based on a shape memory polymer and its nanocomposite. ACS Appl Mater Interfaces. 2017;9:876–883.
  • Zhang C, Cai D, Liao P, et al. 4D Printing of shape-memory polymeric scaffolds for adaptive biomedical implantation. Acta Biomater. 2021;122:101–110.
  • Saska S, Pilatti L, Blay A, et al. Bioresorbable polymers: advanced materials and 4D printing for tissue engineering. Polymers. 2021;13:563.
  • Zheng Y, Liu J, Lu X, et al. Shape memory biomaterials and their clinical applications., in: Narayan R, editor, Biomedical materials. Cham: Springer International Publishing; 2021. p. 195–255.
  • Gil-Castell O, Ontoria-Oviedo I, Badia JD, et al. Conductive polycaprolactone/gelatin/polyaniline nanofibres as functional scaffolds for cardiac tissue regeneration. React Funct Polym. 2022;170:105064.
  • Qu M, Wang C, Zhou X, et al. Multi-dimensional printing for bone tissue engineering. Adv Healthcare Mater. 2021;10:2001986.
  • Adel IM, ElMeligy MF, Elkasabgy NA. Conventional and recent trends of scaffolds fabrication: a superior mode for tissue engineering. Pharmaceutics. 2022;14:306.
  • Haleem A, Javaid M, Vaishya R. 4D printing and its applications in orthopaedics. J Clin Orthop Trauma. 2018;9:275–276.
  • Agarwal T, Chiesa I, Presutti D, et al. Recent advances in bioprinting technologies for engineering different cartilage-based tissues. Mater Sci Eng C Mater Biol Appl. 2021;123:112005.
  • Kim SH, Seo YB, Yeon YK, et al. 4D-bioprinted silk hydrogels for tissue engineering. Biomaterials. 2020;260:120281.
  • Huang Z, Chi-Pong Tsui G, Deng Y, et al. Two-photon polymerization nanolithography technology for fabrication of stimulus-responsive micro/nano-structures for biomedical applications. Nanotechnol Rev. 2020;9:1118–1136.
  • Liu D, Zhang H, Fontana F, et al. Current developments and applications of microfluidic technology toward clinical translation of nanomedicines. Adv Drug Deliv Rev. 2018;128:54–83.
  • Wong AD, Searson PC. Live-cell imaging of invasion and intravasation in an artificial microvessel platform. Cancer Res. 2014;74:4937–4945.
  • Sackmann EK, Fulton AL, Beebe DJ. The present and future role of microfluidics in biomedical research. Nature. 2014;507:181–189.
  • Shrirao AB, Kung FH, Yip D, et al. A versatile method of patterning proteins and cells. J Vis Exp. 2017;120:55513.
  • Chung BG, Flanagan LA, W Rhee S, et al. Human neural stem cell growth and differentiation in a gradient-generating microfluidic device. Lab Chip. 2005;5:401–406.
  • Karimi M, Bahrami S, Mirshekari H, et al. Microfluidic systems for stem cell-based neural tissue engineering. Lab Chip. 2016;16:2551–2571.
  • Kim D, Jo A, Imani KBC, et al. Microfluidic Fabrication of multistimuli-responsive tubular hydrogels for cellular scaffolds. Langmuir. 2018;34:4351–4359.
  • Steinhilber D, Rossow T, Wedepohl S, et al. A microgel construction kit for bioorthogonal encapsulation and pH-controlled release of living cells. Angew Chem Int Ed Engl. 2013;52:13538–13543.
  • Lim D, Lee E, Kim H, et al. Multi stimuli-responsive hydrogel microfibers containing magnetite nanoparticles prepared using microcapillary devices. Soft Matter. 2015;11:1606–1613.
  • ter Schiphorst J, Saez J, Diamond D, et al. Light-responsive polymers for microfluidic applications. Lab Chip. 2018;18:699–709.
  • Murphy SV, Atala A. 3D bioprinting of tissues and organs. Nat Biotechnol. 2014;32:773–785.
  • Cui X, Boland T, D'Lima DD, et al. Thermal inkjet printing in tissue engineering and regenerative medicine. Recent Pat Drug Deliv Formul. 2012;6:149–155.
  • Iwami K, Noda T, Ishida K, et al. Bio rapid prototyping by extruding/aspirating/refilling thermoreversible hydrogel. Biofabrication. 2010;2:014108.
  • Guillotin B, Souquet A, Catros S, et al. Laser assisted bioprinting of engineered tissue with high cell density and microscale organization. Biomaterials. 2010;31:7250–7256.
  • Wang Z, Abdulla R, Parker B, et al. A simple and high-resolution stereolithography-based 3D bioprinting system using visible light crosslinkable bioinks. Biofabrication. 2015;7:045009.
  • Bedell ML, Navara AM, Du Y, et al. Polymeric systems for bioprinting. Chem Rev. 2020;120:10744–10792.
  • Liu J, Erol O, Pantula A, et al. Dual-gel 4D printing of bioinspired tubes. ACS Appl Mater Interfaces. 2019;11:8492–8498.
  • Norotte C, Marga FS, Niklason LE, et al. Scaffold-free vascular tissue engineering using bioprinting. Biomaterials. 2009;30:5910–5917.
  • Ionov L. 4D biofabrication: materials, methods, and applications. Adv Healthc Mater. 2018;7:e1800412.
  • Kolesky DB, Truby RL, S Gladman A, et al. 3D bioprinting of vascularized, heterogeneous cell-laden tissue constructs. Adv Mater. 2014;26:3124–3130.
  • Gladman AS, Matsumoto EA, Nuzzo RG, et al. Biomimetic 4D printing. Nat Mater. 2016;15:413–418.
  • Villar G, Graham AD, Bayley H. A tissue-like printed material. Science. 2013;340:48–52.
  • Zhang X, Chen L, Lim KH, et al. The pathway to intelligence: using stimuli-responsive materials as building blocks for constructing smart and functional systems. Adv Mater. 2019;31:1804540.
  • Koetting MC, Peters JT, Steichen SD, et al. Stimulus-responsive hydrogels: theory, modern advances, and applications. Mater Sci Eng R Rep. 2015;93:1–49.
  • Bertassoni LE, Cardoso JC, Manoharan V, et al. Direct-write bioprinting of cell-laden methacrylated gelatin hydrogels. Biofabrication. 2014;6:024105.
  • Chang CC, Boland ED, Williams SK, et al. Direct-write bioprinting three-dimensional biohybrid systems for future regenerative therapies. J Biomed Mater Res B Appl Biomater. 2011;98:160–170.
  • Askari M, Naniz MA, Kouhi M, et al. Recent progress in extrusion 3D bioprinting of hydrogel biomaterials for tissue regeneration: a comprehensive review with focus on advanced fabrication techniques. Biomater Sci. 2021;9:535–573.
  • Sun X, Agate S, Salem KS, et al. Hydrogel-based sensor networks: compositions, properties, and applications-a review. ACS Appl Bio Mater. 2021;4:140–162.
  • Mishra R, Ramasamy K, Majeed A. pH-responsive poly (DMAPMA-co-HEMA)-based hydrogels for prolonged release of 5-fluorouracil. J Appl Polym Sci. 2012;126: e 98–E107.
  • Raafat AI. Gelatin based pH-sensitive hydrogels for colon-specific oral drug delivery: synthesis, characterization, and in vitro release study. J Appl Polym Sci. 2010;118:2642–2649.
  • Gupta P, Vermani K, Garg S. Hydrogels: from controlled release to pH-responsive drug delivery. Drug Discov Today. 2002;7:569–579.
  • Sen M, Uzun C, Güven O. Controlled release of terbinafine hydrochloride from pH sensitive poly (acrylamide/maleic acid) hydrogels. Int J Pharm. 2000;203:149–157.
  • Webber GB, Wanless EJ, Bütün V, et al. Self-organized monolayer films of stimulus-responsive micelles. Nano Lett. 2002;2:1307–1313.
  • Ferreira L, Vidal M, Gil M. Evaluation of poly (2-hydroxyethyl methacrylate) gels as drug delivery systems at different pH values. Int J Pharm. 2000;194:169–180.
  • Wright DB, Patterson JP, Pitto-Barry A, et al. Tuning the aggregation behavior of pH-responsive micelles by copolymerization. Polym Chem. 2015;6:2761–2768.
  • Battogtokh G, Ko YT. Active-targeted pH-responsive albumin–photosensitizer conjugate nanoparticles as theranostic agents. J Mater Chem B. 2015;3:9349–9359.
  • Abbas G, Hanif M, Khan MA. pH responsive alginate polymeric rafts for controlled drug release by using box behnken response surface design. Des Monomers Polym. 2017;20:1–9.
  • Feng W, Nie W, He C, et al. Effect of pH-responsive alginate/chitosan multilayers coating on delivery efficiency, cellular uptake and biodistribution of mesoporous silica nanoparticles based nanocarriers. ACS Appl Mater Interfaces. 2014;6:8447–8460.
  • Zhou J, Wang L, Ma J, et al. Temperature-and pH-responsive star amphiphilic block copolymer prepared by a combining strategy of ring-opening polymerization and reversible addition–fragmentation transfer polymerization. Eur Polym J. 2010;46:1288–1298.
  • Li S, Hu K, Cao W, et al. pH-responsive biocompatible fluorescent polymer nanoparticles based on phenylboronic acid for intracellular imaging and drug delivery. Nanoscale. 2014;6:13701–13709.
  • Shi S, Liu Y, Chen Y, et al. Versatile pH-response micelles with high cell-penetrating helical diblock copolymers for photoacoustic imaging guided synergistic chemo-photothermal therapy. Theranostics. 2016;6:2170–2182.
  • Aycan D, Alemdar N. Development of pH-responsive chitosan-based hydrogel modified with bone ash for controlled release of amoxicillin. Carbohydr Polym. 2018;184:401–407.
  • Chung MF, Chia WT, Liu HY, et al. Inflammation-induced drug release by using a pH-responsive gas-generating hollow-microsphere system for the treatment of osteomyelitis. Adv Healthc Mater. 2014;3:1854–1861.
  • Li X, Fu M, Wu J, et al. pH-sensitive peptide hydrogel for glucose-responsive insulin delivery. Acta Biomater. 2017;51:294–303.
  • Qu J, Zhao X, Ma PX, et al. pH-responsive self-healing injectable hydrogel based on N-carboxyethyl chitosan for hepatocellular carcinoma therapy. Acta Biomater. 2017;58:168–180.
  • Shah PV, Rajput SJ. Facile synthesis of chitosan capped mesoporous silica nanoparticles: A pH responsive smart delivery platform for raloxifene hydrochloride. AAPS PharmSciTech. 2018;19:1344–1357.
  • Majumdar S, Krishnatreya G, Gogoi N, et al. Carbon-dot-coated alginate beads as a smart stimuli-responsive drug delivery system. ACS Appl Mater Interfaces. 2016;8:34179–34184.
  • Ouyang L, Sun Z, Wang D, et al. Smart release of doxorubicin loaded on polyetheretherketone (PEEK) surface with 3D porous structure. Colloids Surf B Biointerfaces. 2018;163:175–183.
  • Nadgorny M, Xiao Z, Chen C, et al. Three-dimensional printing of pH-responsive and functional polymers on an affordable desktop printer. ACS Appl Mater Interfaces. 2016;8:28946–28954.
  • Schmaljohann D. Thermo- and pH-responsive polymers in drug delivery. Adv Drug Deliv Rev. 2006;58:1655–1670.
  • Mallakpour S, Tabesh F, Hussain CM. 3D and 4D printing: from innovation to evolution. Adv Colloid Interface Sci. 2021;294:102482.
  • Zou X, Zhao X, Ye L. Synthesis of cationic chitosan hydrogel with long chain alkyl and its controlled glucose-responsive drug delivery behavior. RSC Adv. 2015;5:96230–96241.
  • Pandit AH, Nisar S, Imtiyaz K, et al. Injectable, self-healing, and biocompatible N,O-carboxymethyl chitosan/multialdehyde guar gum hydrogels for sustained anticancer drug delivery. Biomacromolecules. 2021;22:3731–3745.
  • Pafiti K, Cui Z, Adlam D, et al. Hydrogel composites containing sacrificial collapsed hollow particles as dual action pH-responsive biomaterials. Biomacromolecules. 2016;17:2448–2458.
  • Dai M, Picot OT, Verjans JM, et al. Humidity-responsive bilayer actuators based on a liquid-crystalline polymer network. ACS Appl Mater Interfaces. 2013;5:4945–4950.
  • Liu Y, Li Y, Yang G, et al. Multi-stimuli responsive shape-memory polymer nanocomposite network cross-linked by cellulose nanocrystals. ACS Appl Mater Interfaces. 2015;7:4118–4126.
  • Lv C, Xia H, Shi Q, et al. Sensitively humidity-driven actuator based on photopolymerizable PEG-DA films. Adv Mater Interfaces. 2017;4:1601002.
  • Zhou S, Deng X, Yang H. Biodegradable poly (ε-caprolactone)-poly (ethylene glycol) block copolymers: characterization and their use as drug carriers for a controlled delivery system. Biomaterials. 2003;24:3563–3570.
  • Lv C, Sun X-C, Xia H, et al. Humidity-responsive actuation of programmable hydrogel microstructures based on 3D printing. Sens Actuators B Chem. 2018;259:736–744.
  • Torbati AH, Mather PT. A hydrogel-forming liquid crystalline elastomer exhibiting soft shape memory. J Polym Sci Part B. 2016;54:38–52.
  • Wu A, Lu F, Zhao M, et al. Photo and humidity responsive mesoporous poly (ionic liquid) membrane for selective dye adsorption. ChemistrySelect. 2017;2:1878–1884.
  • Ma M, Guo L, Anderson DG, et al. Bio-inspired polymer composite actuator and generator driven by water gradients. Science. 2013;339:186–189.
  • Hahn L, Karakaya E, Zorn T, et al. An Inverse thermogelling bioink based on an ABA-type poly(2-oxazoline) amphiphile. Biomacromolecules. 2021;22:3017–3027.
  • Wen H, Li J, Payne G, et al. Hierarchical patterning via dynamic sacrificial printing of stimuli-responsive hydrogels. Biofabrication. 2020;12:035007.
  • Costa PDC, Costa DCS, Correia TR, et al. Natural origin biomaterials for 4D bioprinting tissue-like constructs. Adv Mater Technol. 2021;6:2100168.
  • Bakarich SE, Gorkin RIII, Panhuis MIH, et al. 4D printing with mechanically robust, thermally actuating hydrogels. Macromol Rapid Commun. 2015;36:1211–1217.
  • Wang X, Sun Y, Peng C, et al. Transitional suspensions containing thermosensitive dispersant for three-dimensional printing. ACS Appl Mater Interfaces. 2015;7:26131–26136.
  • Kim S, Kim J-H, Jeon O, et al. Engineered polymers for advanced drug delivery. Eur J Pharm Biopharm. 2009;71:420–430.
  • Cabane E, Zhang X, Langowska K, et al. Stimuli-responsive polymers and their applications in nanomedicine. Biointerphases. 2012;7:9.
  • Pasparakis G, Tsitsilianis CJP. LCST polymers: thermoresponsive nanostructured assemblies towards bioapplications. Polymer. 2020;211:123146.
  • Stoychev G, Puretskiy N, Ionov L. Self-folding all-polymer thermoresponsive microcapsules. Soft Matter. 2011;7:3277–3279.
  • Xu X, Liu Y, Fu W, et al. Poly (N-isopropylacrylamide)-based thermoresponsive composite hydrogels for biomedical applications. Polymers. 2020;12:580.
  • Chastek TT, Wadajkar A, Nguyen KT, et al. Polyglycol-templated synthesis of poly (N-isopropyl acrylamide) microgels with improved biocompatibility. Colloid Polym Sci. 2010;288:105–114.
  • Cooperstein MA, Canavan HE. Assessment of cytotoxicity of (N-isopropyl acrylamide) and poly (N-isopropyl acrylamide)-coated surfaces. Biointerphases. 2013;8:19.
  • Sarkar J, Kumari J, Tonello JM, et al. Enhanced hepatic functions of genetically modified mouse hepatoma cells by spheroid culture for drug toxicity screening. Biotechnol J. 2017;12:1700274.
  • Ricci C, Moroni L, Danti S. Cancer tissue engineering-new perspectives in understanding the biology of solid tumours-a critical review. OA Tissue Eng. 2013;1:1–4.
  • Chew SA, Moscato S, George S, et al. Liver cancer: current and future trends using biomaterials. Cancers. 2019;11:2026.
  • Yang Z, Zhang W, Zou J, et al. Synthesis and thermally responsive characteristics of dendritic poly (ether-amide) grafting with PNIPAAm and PEG. Polymer. 2007;48:931–938.
  • Jin Y, Shen Y, Yin J, et al. Nanoclay-based self-supporting responsive nanocomposite hydrogels for printing applications. ACS Appl Mater Interfaces. 2018;10:10461–10470.
  • Chadwick M, Yang C, Liu L, et al. Rapid processing and drug evaluation in glioblastoma patient-derived organoid models with 4D bioprinted arrays. iScience. 2020;23:101365.
  • Vihola H, Laukkanen A, Valtola L, et al. Cytotoxicity of thermosensitive polymers poly (N-isopropylacrylamide), poly (N-vinylcaprolactam) and amphiphilically modified poly (N-vinylcaprolactam). Biomaterials. 2005;26:3055–3064.
  • Xiao RZ, Zeng ZW, Zhou GL, et al. Recent advances in PEG–PLA block copolymer nanoparticles. Int J Nanomedicine. 2010;5:1057–1065.
  • Redhead M, Mantovani G, Nawaz S, et al. Relationship between the affinity of PEO-PPO-PEO block copolymers for biological membranes and their cellular effects. Pharm Res. 2012;29:1908–1918.
  • Sosnik A, Cohn D. Ethoxysilane-capped PEO–PPO–PEO triblocks: a new family of reverse thermo-responsive polymers. Biomaterials. 2004;25:2851–2858.
  • Cho H, Kwon GS. Thermosensitive poly-(d, l-lactide-co-glycolide)-block-poly (ethylene glycol)-block-poly-(d, l-lactide-co-glycolide) hydrogels for multi-drug delivery. J Drug Target. 2014;22:669–677.
  • Zhou X, Guo L, Shi D, et al. Biocompatible chitosan nanobubbles for ultrasound-mediated targeted delivery of doxorubicin. Nanoscale Res Lett. 2019;14:24.
  • Yang P, Li D, Jin S, et al. Stimuli-responsive biodegradable poly(methacrylic acid) based nanocapsules for ultrasound traced and triggered drug delivery system. Biomaterials. 2014;35:2079–2088.
  • Nguyen K, Pan HY, Haworth K, et al. Multiple-exposure drug release from stable nanodroplets by high-intensity focused ultrasound for a potential degenerative disc disease treatment. Ultrasound Med Biol. 2019;45:160–169.
  • Cao Y, Chen Y, Yu T, et al. Drug release from phase-changeable nanodroplets triggered by low-intensity focused ultrasound. Theranostics. 2018;8:1327–1339.
  • Salgarella AR, Zahoranová A, Šrámková P, et al. Investigation of drug release modulation from poly(2-oxazoline) micelles through ultrasound. Sci Rep. 2018;8:9893.
  • Gai M, Frueh J, Tao T, et al. Polylactic acid nano- and microchamber arrays for encapsulation of small hydrophilic molecules featuring drug release via high intensity focused ultrasound. Nanoscale. 2017;9:7063–7070.
  • Roy D, Cambre JN, Sumerlin BS. Future perspectives and recent advances in stimuli-responsive materials. Prog Polym Sci. 2010;35:278–301.
  • Huang C, Lv J-a, Tian X, et al. Miniaturized swimming soft robot with complex movement actuated and controlled by remote light signals. Sci Rep. 2015;5:1–8.
  • Li H, Hou Y, Wang F, et al. Flexible all-solid-state supercapacitors with high volumetric capacitances boosted by solution processable mxene and electrochemically exfoliated graphene. Adv Energy Mater. 2017;7:1601847.
  • Gumbley P, Koylu D, Thomas SW.III, Photoresponsive polymers containing nitrobenzyl esters via ring-opening metathesis polymerization. Macromolecules. 2011;44:7956–7961.
  • Zakrevskyy Y, Cywinski P, Cywinska M, et al. Interaction of photosensitive surfactant with DNA and poly acrylic acid. J Chem Phys. 2014;140:044907.
  • Sugiyama K, Sono K. Characterization of photo-and thermoresponsible amphiphilic copolymers having azobenzene moieties as side groups. J Appl Polym Sci. 2001;81:3056–3063.
  • Ji S, Abaci A, Morrison T, et al. Novel bioinks from UV-responsive norbornene-functionalized carboxymethyl cellulose macromers. Bioprinting. 2020;18:e00083.
  • Cao P-F, Mangadlao JD, Advincula RC. Stimuli-responsive polymers and their potential applications in oil-gas industry. Polym Rev. 2015;55:706–733.
  • Motornov M, Roiter Y, Tokarev I, et al. Stimuli-responsive nanoparticles, nanogels and capsules for integrated multifunctional intelligent systems. Prog Polym Sci. 2010;35:174–211.
  • Giustina GD, Giulitti S, Brigo L, et al. Hydrogel with orthogonal reactive units: 2D and 3D cross-linking modulation. Macromol Rapid Commun. 2017;38:1600570.
  • Oerlemans C, Bult W, Bos M, et al. Polymeric micelles in anticancer therapy: targeting, imaging and triggered release. Pharm Res. 2010;27:2569–2589.
  • Liu Y, Boyles JK, Genzer J, et al. Self-folding of polymer sheets using local light absorption. Soft Matter. 2012;8:1764–1769.
  • Liu Y, Shaw B, Dickey MD, et al. Sequential self-folding of polymer sheets. Sci Adv. 2017;3:e1602417.
  • Hua D, Zhang X, Ji Z, et al. 3D printing of shape changing composites for constructing flexible paper-based photothermal bilayer actuators. J Mater Chem C. 2018;6:2123–2131.
  • Zhang X, Pint CL, Lee MH, et al. Optically- and thermally-responsive programmable materials based on carbon nanotube-hydrogel polymer composites. Nano Lett. 2011;11:3239–3244.
  • Babin J, Pelletier M, Lepage M, et al. A new two-photon-sensitive block copolymer nanocarrier. Angew Chem Int Ed Engl. 2009;48:3329–3332.
  • Park W, Bae BC, Na K. A highly tumor-specific light-triggerable drug carrier responds to hypoxic tumor conditions for effective tumor treatment. Biomaterials. 2016;77:227–234.
  • Alonso-Cristobal P, Oton-Fernandez O, Mendez-Gonzalez D, et al. Synthesis, characterization, and application in hela cells of an NIR light responsive doxorubicin delivery system based on NaYF4: yb,Tm@SiO2-PEG nanoparticles. ACS Appl Mater Interfaces. 2015;7:14992–14999.
  • Son S, Shin E, Kim BS. Light-responsive micelles of spiropyran initiated hyperbranched polyglycerol for smart drug delivery. Biomacromolecules. 2014;15:628–634.
  • Fan J, He Q, Liu Y, et al. Light-responsive biodegradable nanomedicine overcomes multidrug resistance via NO-enhanced chemosensitization. ACS Appl Mater Interfaces. 2016;8:13804–13811.
  • Wang Y, Cui H, Wang Y, et al. 4D printed cardiac construct with aligned myofibers and adjustable curvature for myocardial regeneration. ACS Appl Mater Interfaces. 2021;13:12746–12758.
  • Hardy JG, Larrañeta E, Donnelly RF, et al. Hydrogel-forming microneedle arrays made from light-responsive materials for on-demand transdermal drug delivery. Mol Pharm. 2016;13:907–914.
  • Zhou W, Qiao Z, Nazarzadeh Zare E, et al. 4D-printed dynamic materials in biomedical applications: chemistry, challenges, and their future perspectives in the clinical sector. J Med Chem. 2020;63:8003–8024.
  • Mendes BB, Gómez-Florit M, Hamilton AG, et al. Human platelet lysate-based nanocomposite bioink for bioprinting hierarchical fibrillar structures. Biofabrication. 2019;12:015012.
  • Giani G, Fedi S, Barbucci R. Hybrid magnetic hydrogel: a potential system for controlled drug delivery by means of alternating magnetic fields. Polymers. 2012;4:1157–1169.
  • Zhao X, Kim J, Cezar CA, et al. Active scaffolds for on-demand drug and cell delivery. Proc Natl Acad Sci U S A. 2011;108:67–72.
  • Czaun M, Hevesi L, Takafuji M, et al. A novel approach to magneto-responsive polymeric gels assisted by iron nanoparticles as nano cross-linkers. Chem Commun. 2008;18:2124–2126.
  • Herold BC, Bourne N, Marcellino D, et al. Polystyrene sulfonate is a safe and effective candidate topical antimicrobial for the prevention of sexually transmitted diseases. Pediatr Res. 1999;45:163A.
  • Pašukonienė V, Mlynska A, Steponkienė S, et al. Accumulation and biological effects of cobalt ferrite nanoparticles in human pancreatic and ovarian cancer cells. Medicina. 2014;50:237–244.
  • Tang J, Yin Q, Shi M, et al. Programmable shape transformation of 3D printed magnetic hydrogel composite for hyperthermia cancer therapy. Extreme Mech Lett. 2021;46:101305.
  • Laurent S, Dutz S, Häfeli UO, et al. Magnetic fluid hyperthermia: focus on superparamagnetic iron oxide nanoparticles. Adv Colloid Interface Sci. 2011;166:8–23.
  • Dolati S, Sadreddini S, Rostamzadeh D, et al. Utilization of nanoparticle technology in rheumatoid arthritis treatment. Biomed Pharmacother. 2016;80:30–41.
  • Duan J, Dong J, Zhang T, et al. Polyethyleneimine-functionalized iron oxide nanoparticles for systemic siRNA delivery in experimental arthritis. Nanomedicine. 2014;9:789–801.
  • Mohapatra A, Harris MA, LeVine D, et al. Magnetic stimulus responsive vancomycin drug delivery system based on chitosan microbeads embedded with magnetic nanoparticles. J Biomed Mater Res B Appl Biomater. 2018;106:2169–2176.
  • Zhu W, Li J, Leong YJ, et al. 3D-printed artificial microfish. Adv Mater. 2015;27:4411–4417.
  • Pillay V, Tsai TS, Choonara YE, et al. A review of integrating electroactive polymers as responsive systems for specialized drug delivery applications. J Biomed Mater Res A. 2014;102:2039–2054.
  • Balint R, Cassidy NJ, Cartmell SH. Conductive polymers: towards a smart biomaterial for tissue engineering. Acta Biomater. 2014;10:2341–2353.
  • Rastin H, Zhang B, Mazinani A, et al. 3D bioprinting of cell-laden electroconductive MXene nanocomposite bioinks. Nanoscale. 2020;12:16069–16080.
  • Atoufi Z, Zarrintaj P, Motlagh GH, et al. A novel bio electro active alginate-aniline tetramer/agarose scaffold for tissue engineering: synthesis, characterization, drug release and cell culture study. J Biomater Sci Polym Ed. 2017;28:1617–1638.
  • Mongkolkitikul S, Paradee N, Sirivat A. Electrically controlled release of ibuprofen from conductive poly(3-methoxydiphenylamine)/crosslinked pectin hydrogel. Eur J Pharm Sci. 2018;112:20–27.
  • Lee H, Hong W, Jeon S, et al. Electroactive polypyrrole nanowire arrays: synergistic effect of cancer treatment by on-demand drug release and photothermal therapy. Langmuir. 2015;31:4264–4269.
  • Ramírez-Acosta CM, Cifuentes J, Castellanos MC, et al. PH-responsive, cell-penetrating, core/shell magnetite/silver nanoparticles for the delivery of plasmids: preparation, characterization, and preliminary in vitro evaluation. Pharmaceutics. 2020;12:561.
  • Shiny PJ, Devi MV, Felciya SJG, et al. In vitro and in vivo evaluation of poly-3-hydroxybutyric acid-sodium alginate as a core-shell nanofibrous matrix with arginine and bacitracin-nanoclay complex for dermal reconstruction of excision wound. Int J Biol Macromol. 2021;168:46–58.
  • Milazzo M, Contessi Negrini N, Scialla S, et al. Additive manufacturing approaches for hydroxyapatite-reinforced composites. Adv Funct Mater. 2019;29:1903055.
  • Alzari V, Nuvoli D, Sanna R, et al. Multistimuli-responsive hydrogels of poly (2-acrylamido-2-methyl-1-propanesulfonic acid) containing graphene. Colloid Polym Sci. 2013;291:2681–2687.
  • Niu X, Rouabhia M, Chiffot N, et al. An electrically conductive 3D scaffold based on a nonwoven web of poly (l-lactic acid) and conductive poly (3, 4-ethylenedioxythiophene). J Biomed Mater Res A. 2015;103:2635–2644.
  • Pires F, Ferreira Q, Rodrigues CA, et al. Neural stem cell differentiation by electrical stimulation using a cross-linked PEDOT substrate: expanding the use of biocompatible conjugated conductive polymers for neural tissue engineering. Biochim Biophys Acta. 2015;1850:1158–1168.
  • Duc C, Vlandas A, Malliaras GG, et al. Study of the electro-responsiveness and surface texturing of PEDOT: PSS for smart MEMS interface applications. In 2017 19th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS). IEEE; 2017.
  • Irimia-Vladu M. “Green” electronics: biodegradable and biocompatible materials and devices for sustainable future. Chem Soc Rev. 2014;43:588–610.
  • Sun K, Zhang S, Li P, et al. Review on application of PEDOTs and PEDOT: PSS in energy conversion and storage devices. J Mater Sci. 2015;26:4438–4462.
  • Heo DN, Lee S-J, Timsina R, et al. Development of 3D printable conductive hydrogel with crystallized PEDOT: PSS for neural tissue engineering. Mater Sci Eng C Mater Biol Appl. 2019;99:582–590.
  • Han D, Farino C, Yang C, et al. Soft robotic manipulation and locomotion with a 3D printed electroactive hydrogel. ACS Appl Mater Interfaces. 2018;10:17512–17518.
  • Perrier DL, Rems L, Boukany PE. Lipid vesicles in pulsed electric fields: fundamental principles of the membrane response and its biomedical applications. Adv Colloid Interface Sci. 2017;249:248–271.
  • Bulysheva A, Hornef J, Edelblute C, et al. Coalesced thermal and electrotransfer mediated delivery of plasmid DNA to the skin. Bioelectrochemistry. 2019;125:127–133.
  • Denzi A, Della Valle E, Apollonio F, et al. Exploring the applicability of nano-poration for remote control in smart drug delivery systems. J Membr Biol. 2017;250:31–40.
  • van Rijt SH, Bölükbas DA, Argyo C, et al. Protease-mediated release of chemotherapeutics from mesoporous silica nanoparticles to ex vivo human and mouse lung tumors. ACS Nano. 2015;9:2377–2389.
  • Upreti M, Jyoti A, Sethi P. Tumor microenvironment and nanotherapeutics. Transl Cancer Res. 2013;2:309–319.
  • Tirella A, Mattei G, Marca ML, et al. Functionalized enzyme-responsive biomaterials to model tissue stiffening in vitro. Front Bioeng Biotechnol. 2020;8:208.
  • Zhang C, Pan D, Li J, et al. Enzyme-responsive peptide dendrimer-gemcitabine conjugate as a controlled-release drug delivery vehicle with enhanced antitumor efficacy. Acta Biomater. 2017;55:153–162.
  • Randolph LM, Chien M-P, Gianneschi NC. Biological stimuli and biomolecules in the assembly and manipulation of nanoscale polymeric particles. Chem Sci. 2012;3:1363–1380.
  • Wang B, Liu H, Sun L, et al. Construction of high drug loading and enzymatic degradable multilayer films for self-defense drug release and long-term biofilm inhibition. Biomacromolecules. 2018;19:85–93.
  • Davaran S, Ghamkhari A, Alizadeh E, et al. Novel dual stimuli-responsive ABC triblock copolymer: RAFT synthesis, “schizophrenic” micellization, and its performance as an anticancer drug delivery nanosystem. J Colloid Interface Sci. 2017;488:282–293.
  • Xu X, Huang Z, Huang Z, et al. Injectable, NIR/pH-responsive nanocomposite hydrogel as long-acting implant for chemophotothermal synergistic cancer therapy. ACS Appl Mater Interfaces. 2017;9:20361–20375.
  • Ortiz de Solorzano I, Alejo T, Abad M, et al. Cleavable and thermo-responsive hybrid nanoparticles for on-demand drug delivery. J Colloid Interface Sci. 2019;533:171–181.
  • Bozuyuk U, Yasa O, Yasa IC, et al. Light-Triggered drug release from 3d-printed magnetic chitosan microswimmers. ACS Nano. 2018;12:9617–9625.
  • Ceylan H, Yasa IC, Yasa O, et al. 3D-Printed biodegradable microswimmer for theranostic cargo delivery and release. ACS Nano. 2019;13:3353–3362.
  • Mota C, Labardi M, Trombi L, et al. Design, fabrication and characterization of composite piezoelectric ultrafine fibers for cochlear stimulation. Mater. Des. 2017;122:206–219.
  • Danti S, Azimi B, Candito M, et al. Lithium niobate nanoparticles as biofunctional interface material for inner ear devices. Biointerphases. 2020;15:031004.
  • Chowdhury AR, Jaksik J, Hussain I, et al. Surface-modified nanostructured piezoelectric device as a cost-effective transducer for energy and biomedicine. Energy Tech. 2019;7:1800767.
  • Chowdhury AR, Abdullah AM, Hussain I, et al. Lithium doped zinc oxide based flexible piezoelectric-triboelectric hybrid nanogenerator. Nano Energy. 2019;61:327–336.
  • Chakraborty P, Zhou C, Chung D. Piezoelectric behavior of three-dimensionally printed acrylate polymer without filler or poling. J Mater Sci. 2018;53:6819–6830.
  • Kim J, Lee JH, Ryu H, et al. High-performance piezoelectric, pyroelectric, and triboelectric nanogenerators based on P (VDF-TrFE) with controlled crystallinity and dipole alignment. Adv Funct Mater. 2017;27:1700702.
  • Bodkhe S, Turcot G, Gosselin FP, et al. One-step solvent evaporation-assisted 3D printing of piezoelectric PVDF nanocomposite structures. ACS Appl Mater Interfaces. 2017;9:20833–20842.
  • Kim K, Zhu W, Qu X, et al. 3D optical printing of piezoelectric nanoparticle–polymer composite materials. ACS Nano. 2014;8:9799–9806.
  • Ge Q, Qi HJ, Dunn ML. Active materials by four-dimension printing. Appl Phys Lett. 2013;103:131901.
  • Ge Q, Dunn CK, Qi HJ, et al. Active origami by 4D printing. Smart Mater Struct. 2014;23:094007.
  • Yu K, Xie T, Leng J, et al. Mechanisms of multi-shape memory effects and associated energy release in shape memory polymers. Soft Matter. 2012;8:5687–5695.
  • Xie T. Tunable polymer multi-shape memory effect. Nature. 2010;464:267–270.
  • Raviv D, Zhao W, McKnelly C, et al. Active printed materials for complex self-evolving deformations. Sci Rep. 2014;4:1–8.
  • Kwok T-H, Wang CC, Deng D, et al. Four-dimensional printing for freeform surfaces: design optimization of origami and kirigami structures. J Mech Des. 2015;137:111413.
  • Rastogi P, Kandasubramanian B. Breakthrough in the printing tactics for stimuli-responsive materials: 4D printing. J Chem Eng. 2019;366:264–304.
  • Zolfagharian A, Bodaghi M. Chapter 1 – 4D printing mechanics, modeling, and advanced engineering applications. In: Bodaghi M, Zolfagharian A, editors. Smart materials in additive manufacturing. Elsevier; 2022. p. 1–17.
  • Sun L, Huang WM, Ding Z, et al. Stimulus-responsive shape memory materials: a review. Mater Des. 2012;33:577–640.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.