251
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Strategies to improve the efficiency and quality of mutant breeding using heavy-ion beam irradiation

, , , , , , & ORCID Icon show all
Received 09 Aug 2022, Accepted 15 Apr 2023, Published online: 16 Jul 2023

References

  • Tanaka A, Shikazono N, Hase Y. Studies on biological effects of ion beams on lethality, molecular nature of mutation, mutation rate, and spectrum of mutation phenotype for mutation breeding in higher plants. J Radiat Res. 2010;51:223–233. doi: 10.1269/jrr.09143.
  • Feng HY, Yu ZL, Chu PK. Ion implantation of organisms. Mat Sci Eng R. 2006;54:49–120. doi: 10.1016/j.mser.2006.11.001.
  • Song XQ, Zhang Y, Zhu XD, et al. Mutation breeding of high avermectin B-1a-producing strain by the combination of high energy carbon heavy ion irradiation and sodium nitrite mutagenesis based on high throughput screening. Biotechnol Bioproc E. 2017;22:539–548. doi: 10.1007/s12257-017-0022-6.
  • Satoh K, Oono Y. Studies on application of ion beam breeding to industrial microorganisms at TIARA. QuBS. 2019;3:11. doi: 10.3390/qubs3020011.
  • Guo XP, Zhang MM, Gao Y, et al. Repair characteristics and time-dependent effects in response to heavy-ion beam irradiation in Saccharomyces cerevisiae: a comparison with X-ray irradiation. Appl Microbiol Biotechnol. 2020;104:4043–4057. doi: 10.1007/s00253-020-10464-8.
  • Hagiwara Y, Oike T, Niimi A, et al. Clustered DNA double-strand break formation and the repair pathway following heavy-ion irradiation. J Radiat Res. 2019;60:69–79. doi: 10.1093/jrr/rry096.
  • Shrivastav M, De Haro LP, Nickoloff JA. Regulation of DNA double-strand break repair pathway choice. Cell Res. 2008;18:134–147. doi: 10.1038/cr.2007.111.
  • Lin X, Liu S, Xie GR, et al. Enhancement of 1,3-dihydroxyacetone production from Gluconobacter oxydans by combined mutagenesis. J Microbiol Biotechnol. 2016;26:1908–1917. doi: 10.4014/jmb.1604.04019.
  • Cui JN, Hu W, Liu YX, et al. Isolation and screening of high-yielding alpha-amylase mutants of Bacillus subtilis by heavy ion mutagenesis. Appl Biochem Biotechnol. 2023;195:68–85. doi: 10.1007/s12010-022-04097-y.
  • Karakus BZ, Korkmaz I, Demirci K, et al. A combined treatment using ethylmethane sulfonate and ultraviolet light to compare amylase production by three Bacillus sp. Isolates. Prep Biochem Biotechnol. 2018;48:815–822. doi: 10.1080/10826068.2018.1509088.
  • Gao Y, Zhang MM, Zhou X, et al. Effects of carbon ion beam irradiation on butanol tolerance and production of Clostridium acetobutylicum. Front Microbiol. 2020;11:602774. doi: 10.3389/fmicb.2020.602774.
  • Li HG, Luo W, Wang Q, et al. Direct fermentation of gelatinized cassava starch to acetone, butanol, and ethanol using Clostridium acetobutylicum mutant obtained by atmospheric and room temperature plasma. Appl Biochem Biotechnol. 2014;172:3330–3341. doi: 10.1007/s12010-014-0765-x.
  • Yan Q. Studies on mutation breeding of Acidithiobacillus ferrooxidans by heavy ion beam irradiation and its molecular mechanism (Dissertation). Chinese Academy of Sciences (Institute of Modern Physics). Gansu Province, China; 2017.
  • Zhang N, Jiang JC, Yang J, et al. Screening of thermotolerant yeast by lowenergy ion implantation for cellulosic ethanol fermentation. Energ Source Part A. 2018;40:1084–1090. doi: 10.1080/15567036.2018.1469692.
  • Pattanakittivorakul S, Lertwattanasakul N, Yamada M, et al. Selection of thermotolerant Saccharomyces cerevisiae for high temperature ethanol production from molasses and increasing ethanol production by strain improvement. Antonie Van Leeuwenhoek. 2019;112:975–990. doi: 10.1007/s10482-019-01230-6.
  • Matuo Y, Nishijima S, Hase Y, et al. Specificity of mutations induced by carbon ions in budding yeast Saccharomyces cerevisiae. Mutat Res. 2006;602:7–13. doi: 10.1016/j.mrfmmm.2006.07.001.
  • Fitriana Y, Satoh K, Narumi I, et al. Ion-beam and gamma-ray irradiations induce thermotolerant mutants in the entomopathogenic fungus Metarhizium anisopliae s.l. Biocontrol Sci Techn. 2014;24:1052–1061. doi: 10.1080/09583157.2014.918585.
  • Ma LQ, Kazama Y, Hirano T, et al. LET dependence on killing effect and mutagenicity in the model filamentous fungus Neurospora crassa. Int J Radiat Biol. 2018;94:1125–1133. doi: 10.1080/09553002.2019.1524940.
  • Du Y, Li WJ, Yu LX, et al. Mutagenic effects of carbon-ion irradiation on dry Arabidopsis thaliana seeds. Mutat Res Genet Toxicol Environ Mutagen. 2014;759:28–36. doi: 10.1016/j.mrgentox.2013.07.018.
  • Chen X, Feng H, Du Y, et al. Genetic polymorphisms in mutagenesis progeny of Arabidopsis thaliana ­irradiated by carbon-ion beams and gamma-rays ­irradiations. Int J Radiat Biol. 2020;96:267–275. doi: 10.1080/09553002.2020.1688412.
  • Du Y, Feng Z, Wang J, et al. Frequency and spectrum of mutations induced by gamma rays revealed by phenotype screening and whole-genome re-sequencing in Arabidopsis thaliana. Int J Mol Sci. 2022;23:654.
  • Du Y, Luo SW, Li X, et al. Identification of substitutions and small insertion-deletions induced by carbon-ion beam irradiation in Arabidopsis thaliana. Front Plant Sci. 2017;8:1851. doi: 10.3389/fpls.2017.01851.
  • Li F, Shimizu A, Nishio T, et al. Comparison and characterization of mutations induced by gamma-ray and carbon-ion irradiation in rice (Oryza sativa L.) using whole-genome resequencing. G3-Genes Genom Genet. 2019;9:3743–3751.
  • Sun K, Li DD, Xia AY, et al. Targeted identification of rice grain-associated gene allelic variation through mutation induction, targeted sequencing, and whole genome sequencing combined with a mixed-samples strategy. Rice. 2022;15:57. doi: 10.1186/s12284-022-00603-2.
  • Kikuchi S, Saito Y, Ryuto H, et al. Effects of heavy-ion beams on chromosomes of common wheat, Triticum aestivum. Mutat Res. 2009;669:63–66. doi: 10.1016/j.mrfmmm.2009.05.001.
  • Li X, Sun S, Yao J, et al. Using Relaxation Time to characterize biological effects of different mutagens. Sci Rep. 2020;10:13941. doi: 10.1038/s41598-020-70600-2.
  • Jo YD, Kim SH, Hwang JE, et al. Construction of mutation populations by gamma-ray and carbon beam irradiation in chili pepper (Capsicum annuum L.). Hortic Environ Biotechnol. 2016;57:606–614. doi: 10.1007/s13580-016-1132-3.
  • Hase Y, Okamura M, Takeshita D, et al. Efficient induction of flower-color mutants by ion beam irradiation in petunia seedlings treated with high sucrose concentration. Plant Biotechnol. 2010;27:99–103. doi: 10.5511/plantbiotechnology.27.99.
  • Du Y, Luo SW, Zhao J, et al. Genome and transcriptome-based characterization of high energy carbon-ion beam irradiation induced delayed flower senescence mutant in Lotus japonicus. BMC Plant Biol. 2021;21:510. doi: 10.1186/s12870-021-03283-0.
  • Gao Y, Zhou X, Zhang MM, et al. Response characteristics of the membrane integrity and physiological activities of the mutant strain Y217 under exogenous butanol stress. Appl Microbiol Biotechnol. 2021;105:2455–2472. doi: 10.1007/s00253-021-11174-5.
  • Guo XP, Zhang MM, Gao Y, et al. “Saddle-shaped” dose-survival effect, is it a general and valuable phenomenon in microbes in response to heavy ion beam irradiation. Ann Microbiol. 2019;69:221–232. doi: 10.1007/s13213-019-1442-7.
  • Zhang X, Yang F, Ma HY, et al. Evaluation of the saline-alkaline tolerance of rice (Oryza sativa L.) mutants induced by heavy-ion beam mutagenesis. Biology-Basel. 2022;11:13.
  • Yamaguchi H. Mutation breeding of ornamental plants using ion beams. Breed Sci. 2018;68:71–78. doi: 10.1270/jsbbs.17086.
  • Li X, Wang J, Tan ZL, et al. Cd resistant characterization of mutant strain irradiated by carbon-ion beam. J Hazard Mater. 2018;353:1–8. doi: 10.1016/j.jhazmat.2018.03.036.
  • Mo YN, Yang Z, Hao BC, et al. Screening of endophytic fungi in locoweed induced by heavy-Ion irradiation and study on swainsonine biosynthesis pathway. J Fungi. 2022;8(9):951.
  • Fu J, Chen T, Lu H, et al. Enhancement of docosahexaenoic acid production by low-energy ion implantation coupled with screening method based on Sudan black B staining in Schizochytrium sp. Bioresour Technol. 2016;221:405–411. doi: 10.1016/j.biortech.2016.09.058.
  • Aonuma W, Kawamoto H, Kazama Y, et al. Male/female trade-off in hermaphroditic Y-chromosome deletion mutants of the dioecious plant Silene latifolia. cytologia. 2021;86:329–338. doi: 10.1508/cytologia.86.329.
  • Guo XP, Zhang MM, Gao Y, et al. Quantitative multi-omics analysis of the effects of mitochondrial dysfunction on lipid metabolism in Saccharomyces cerevisiae. Appl Microbiol Biotechnol. 2020;104:1211–1226. doi: 10.1007/s00253-019-10260-z.
  • Hu GR, Fan Y, Zheng YL, et al. Photoprotection capacity of microalgae improved by regulating the antenna size of light-harvesting complexes. J Appl Phycol. 2020;32:1027–1039. doi: 10.1007/s10811-019-01969-5.
  • Nishiura A, Kitagawa S, Matsumura M, et al. An early-flowering einkorn wheat mutant with deletions of PHYTOCLOCK 1/LUX ARRHYTHMO and VERNALIZATION 2 exhibits a high level of VERNALIZATION 1 expression induced by vernalization. J Plant Physiol. 2018;222:28–38. doi: 10.1016/j.jplph.2018.01.002.
  • Guo WB, Feng LC, Wang ZY, et al. In-situ high-resolution 3D imaging combined with proteomics and metabolomics reveals enlargement of subcellular architecture and enhancement of photosynthesis pathways in nuclear-irradiated Chlorella pyrenoidosa. Chem Eng J. 2022;430:12.
  • Zhang HD, Lu D, Li X, et al. Heavy ion mutagenesis combined with triclosan screening provides a new strategy for improving the arachidonic acid yield in Mortierella alpina. BMC Biotechnol. 2018;18:23. doi: 10.1186/s12896-018-0437-y.
  • Kazama Y, Ishii K, Hirano T, et al. Different mutational function of low- and high-linear energy transfer heavy-ion irradiation demonstrated by whole-genome resequencing of Arabidopsis mutants. Plant J. 2017;92:1020–1030. doi: 10.1111/tpj.13738.
  • Hase Y, Satoh K, Kitamura S, et al. Physiological status of plant tissue affects the frequency and types of mutations induced by carbon-ion irradiation in Arabidopsis. Sci Rep. 2018;8:1394. doi: 10.1038/s41598-018-19278-1.
  • Ma LQ, Kong FQ, Sun K, et al. From classical radiation to modern radiation: past, present, and future of radiation mutation breeding. Front Public Health. 2021;9:768071. doi: 10.3389/fpubh.2021.768071.
  • Guo XP. Study on mechanism of mutagenesis induced by heavy ion beam irradiation and mitochondrion-related function based on Saccharomyces cerevisiae model. Institute of Modern Physics, Chinese Academy of Sciences Doctor of Philosophy; 2020.
  • Xie M, Zhang XL, Hu XP, et al. Mutagenic effects of low-energy N + ion implantation on the propamocarb-tolerance of nematophagous fungus Lecanicillium attenuatum. Biol Control. 2018;117:1–5. doi: 10.1016/j.biocontrol.2017.08.017.
  • Takeshita T, Takita K, Ishii K, et al. Robust mutants isolated through heavy-ion beam irradiation and endurance screening in the Green Alga Haematococcus pluvialis. cytologia. 2021;86:283–289. doi: 10.1508/cytologia.86.283.
  • Nhat VQ, Kazama Y, Ishii K, et al. Double mutant analysis with the large flower mutant, ohbana1, to explore the regulatory network controlling the flower and seed sizes in Arabidopsis thaliana. Plants Basel. 2021;10:1881. doi: 10.3390/plants10091881.
  • Tojo H, Nakamura A, Ferjani A, et al. A method enabling comprehensive isolation of Arabidopsis mutants exhibiting unusual root mechanical behavior. Front Plant Sci. 2021;12:646404. doi: 10.3389/fpls.2021.646404.
  • Asrapil Waitul F, Asmuni MI, Ahmad F, et al. Carbon-ion beam radiosensitivity study and biological responses of high- yielding rice line, MR219-PL-5. JSM. 2021;50:3481–3491. doi: 10.17576/jsm-2021-5012-02.
  • Hosoguchi T, Uchiyama Y, Komazawa H, et al. Effect of three types of ion beam irradiation on Gerbera (Gerbera hybrida) in vitro shoots with mutagenesis efficiency. Plants Basel. 2021;10:1480. doi: 10.3390/plants10071480.
  • Kato Y, Ho SH, Vavricka CJ, et al. Evolutionary engineering of salt-resistant Chlamydomonas sp. strains reveals salinity stress-activated starch-to-lipid biosynthesis switching. Bioresour Technol. 2017;245:1484–1490. doi: 10.1016/j.biortech.2017.06.035.
  • Wu HF, Wang H, Wang P, et al. Gradient radiation breeding and culture domestication of menaquinone producing strains. Bioprocess Biosyst Eng. 2021;44:1373–1382. doi: 10.1007/s00449-021-02508-8.
  • Kim YS, Sung SY, Jo JD, et al. Effects of gamma ray dose rate and sucrose treatment on mutation induction in chrysanthemum. EuropJHorticSci. 2016;81:212–218. doi: 10.17660/eJHS.2016/81.4.4.
  • Wang X, Liu CK, Tu BJ, et al. Effects of carbon ion beam irradiation on phenotypic variations and biochemical parameters in early generations of soybean plants. Agriculture-Basel. 2021;11:98. doi: 10.3390/agriculture11020098.
  • Zhang J, Peng Z, Liu QL, et al. Time course analysis of genome-wide identification of mutations induced by and genes expressed in response to carbon ion beam irradiation in rice (Oryza sativa L.). Genes. 2021;12:1391. doi: 10.3390/genes12091391.
  • Ishii K, Kazama Y, Morita R, et al. Linear energy transfer-dependent change in rice gene expression profile after heavy-ion beam irradiation. PLoS ONE. 2016;11:e0160061. doi: 10.1371/journal.pone.0160061.
  • Matuo Y, Izumi Y, Furusawa Y, et al. Biological effects of carbon ion beams with various LETs on budding yeast Saccharomyces cerevisiae. Mutat Res. 2018;810:45–51. doi: 10.1016/j.mrfmmm.2017.10.003.
  • Morita R, Ichida H, Hayashi Y, et al. Responsible gene analysis of phenotypic mutants revealed the linear energy transfer (LET)-dependent mutation spectrum in rice. cytologia. 2021;86:303–309. doi: 10.1508/cytologia.86.303.
  • Hagiwara Y, Niimi A, Isono M, et al. 3D-structured illumination microscopy reveals clustered DNA double-strand break formation in widespread gamma H2AX foci after high LET heavy-ion particle radiation. Oncotarget. 2017;8:109370–109381. doi: 10.18632/oncotarget.22679.
  • Reindl J, Girst S, Walsh DWM, et al. Chromatin organization revealed by nanostructure of irradiation induced gamma H2AX, 53BP1 and Rad51 foci. Sci Rep. 2017;7:11. doi: 10.1038/srep40616.
  • Wang HY, Wang X, Zhang PY, et al. The Ku-dependent non-homologous end-joining but not other repair pathway is inhibited by high linear energy transfer ionizing radiation. DNA Repair (Amst). 2008;7:725–733. doi: 10.1016/j.dnarep.2008.01.010.
  • Takeshita T, Ivanov IN, Oshima K, et al. Comparison of lipid productivity of Parachlorella kessleri heavy-ion beam irradiation mutant PK4 in laboratory and 150-L mass bioreactor, identification and characterization of its genetic variation. Algal Res. 2018;35:416–426. doi: 10.1016/j.algal.2018.09.005.
  • Zheng YC, Li S, Huang JZ, et al. Mutagenic effect of three ion beams on rice and identification of heritable mutations by whole genome sequencing. Plants Basel. 2020;9:551. doi: 10.3390/plants9050551.
  • Zheng YC, Li S, Huang JZ, et al. Identification and characterization of inheritable structural variations induced by ion beam radiations in rice. Mutat Res. 2021;823:111757. doi: 10.1016/j.mrfmmm.2021.111757.
  • Zhou LB, Li WJ, Yu LX, et al. Linear energy transfer dependence of the effects of carbon ion beams on adventitious shoot regeneration from in vitro leaf explants of Saintpaulia ionahta. Int J Radiat Biol. 2006;82:473–481. doi: 10.1080/09553000600863080.
  • Wang JF, Lu D, Wu X, et al. Inactive and mutagenic effects induced by carbon beams of different LET values in a red yeast strain. Nucl Instrum Meth B. 2010;268:2719–2723. doi: 10.1016/j.nimb.2010.05.100.
  • Kotani E, Furusawa T, Nagaoka S, et al. Somatic mutation in larvae of the silkworm, Bombyx mori, induced by heavy ion irradiation to diapause eggs. J Radiat Res. 2002;43:193–198.
  • Cartwright IM, Su C, Haskins JS, et al. DNA repair deficient Chinese hamster ovary cells exhibiting differential sensitivity to charged particle radiation under aerobic and hypoxic conditions. Int J Mol Sci. 2018;19:12.
  • Sridharan DM, Asaithamby A, Blattnig SR, et al. Evaluating biomarkers to model cancer risk post cosmic ray exposure. Life Sci Space Res (Amst). 2016;9:19–47. doi: 10.1016/j.lssr.2016.05.004.
  • Hase Y, Satoh K, Seito H, et al. Genetic consequences of acute/chronic gamma and carbon ion irradiation of Arabidopsis thaliana. Front Plant Sci. 2020;11:336. doi: 10.3389/fpls.2020.00336.
  • Suman S, Kumar S, Moon BH, et al. Low and high dose rate heavy ion radiation-induced intestinal and colonic tumorigenesis in APC(1638N/+) mice. Life Sci Space Res (Amst). 2017;13:45–50. doi: 10.1016/j.lssr.2017.04.003.
  • Sage E, Harrison L. Clustered DNA lesion repair in eukaryotes: relevance to mutagenesis and cell survival. Mutat Res. 2011;711:123–133. doi: 10.1016/j.mrfmmm.2010.12.010.
  • Matuo Y, Izumi Y, Sakamoto AN, et al. Molecular analysis of carbon ion-induced mutations in DNA repair-deficient strains of Saccharomyces cerevisiae. Quantum Beam Sci. 2019;3:14.
  • Venkatesh P, Panyutin IV, Remeeva E, et al. Effect of chromatin structure on the extent and distribution of DNA double strand breaks produced by ionizing radiation; comparative study of hESC and differentiated cells lines. Int J Mol Sci. 2016;17:15.
  • Krenning L, van den Berg J, Medema RH. Life or death after a break: what determines the choice. Mol Cell. 2019;76:346–358. doi: 10.1016/j.molcel.2019.08.023.
  • Aymard F, Aguirrebengoa M, Guillou E, et al. Genome-wide mapping of long-range contacts unveils clustering of DNA double-strand breaks at damaged active genes. Nat Struct Mol Biol. 2017;24:353–361. doi: 10.1038/nsmb.3387.
  • Lemaître C, Grabarz A, Tsouroula K, et al. Nuclear position dictates DNA repair pathway choice. Genes Dev. 2014;28:2450–2463. doi: 10.1101/gad.248369.114.
  • Goodarzi AA, Noon AT, Deckbar D, et al. ATM signaling facilitates repair of DNA double-strand breaks associated with heterochromatin. Mol Cell. 2008;31:167–177. doi: 10.1016/j.molcel.2008.05.017.
  • Beucher A, Birraux J, Tchouandong L, et al. ATM and Artemis promote homologous recombination of radiation-induced DNA double-strand breaks in G2. Embo J. 2009;28:3413–3427. doi: 10.1038/emboj.2009.276.
  • Kim SH, Kim SW, Ryu J, et al. Dark/light treatments followed by gamma-irradiation increase the frequency of leaf-color mutants in Cymbidium. Plants Basel. 2020;9:12.
  • Kim SH, Kim YS, Jo YD, et al. Sucrose and methyl jasmonate modulate the expression of anthocyanin biosynthesis genes and increase the frequency of flower-color mutants in chrysanthemum. Sci Hortic. 2019;256:10.
  • Okamura M, Hase Y, Furusawa Y, et al. Tissue-dependent somaclonal mutation frequencies and spectra enhanced by ion beam irradiation in chrysanthemum. Euphytica. 2015;202:333–343. doi: 10.1007/s10681-014-1220-3.
  • Hirano T, Kazama Y, Ohbu S, et al. Molecular nature of mutations induced by high-LET irradiation with argon and carbon ions in Arabidopsis thaliana. Mutat Res. 2012;735:19–31. doi: 10.1016/j.mrfmmm.2012.04.010.
  • Tomimatsu N, Mukherjee B, Catherine Hardebeck M, et al. Phosphorylation of EXO1 by CDKs 1 and 2 regulates DNA end resection and repair pathway choice. Nat Commun. 2014;5:3561. doi: 10.1038/ncomms4561.
  • Weimer AK, Biedermann S, Schnittger A. Specialization of CDK regulation under DNA damage. Cell Cycle. 2017;16:143–144. doi: 10.1080/15384101.2016.1235852.
  • Liu KY, Fang H, Cui FJ, et al. ARTP mutation and adaptive laboratory evolution improve probiotic performance of Bacillus coagulans. Appl Microbiol Biotechnol. 2020;104:6363–6373. doi: 10.1007/s00253-020-10703-y.
  • Bai J, Gong ZH, Shu M, et al. Increased water-soluble yellow Monascus pigment productivity via dual mutagenesis and submerged repeated-batch fermentation of Monascus purpureus. Front Microbiol. 2022;13:914828. doi: 10.3389/fmicb.2022.914828.
  • Li ZZ, Chen XJ, Li ZL, et al. Strain improvement of Trichoderma viride for increased cellulase production by irradiation of electron and C-12(6+)-ion beams. Biotechnol Lett. 2016;38:983–989. doi: 10.1007/s10529-016-2066-7.
  • Qian X, Jin H, Chen ZJ, et al. Comparative transcriptome analysis of genes involved in sesquiterpene alkaloid biosynthesis in Trichoderma longibrachiatum MD33 and UN32. Front Microbiol. 2021;12:800125. doi: 10.3389/fmicb.2021.800125.
  • Zhou X, Yang Z, Jiang TT, et al. The acquisition of Clostridium tyrobutyricum mutants with improved bioproduction under acidic conditions after two rounds of heavy-ion beam irradiation. Sci Rep. 2016;6:29968. doi: 10.1038/srep29968.
  • Oyama T, Kato Y, Satoh K, et al. Development of mutant microalgae that accumulate lipids under nitrate-replete conditions. Algal Res. 2021;60:8.
  • Wang J, Jian XJ, Xing XH, et al. Empowering a methanol-dependent Escherichia colivia adaptive evolution using a high-throughput microbial microdroplet culture system. Front Bioeng Biotechnol. 2020;8:9.
  • Qiao YX, Zhao XY, Zhu J, et al. Fluorescence-activated droplet sorting of lipolytic microorganisms using a compact optical system. Lab Chip. 2017;18:190–196. doi: 10.1039/c7lc00993c.
  • Liu JH, Huang Q. Screening of astaxanthin-hyperproducing Haematococcus pluvialis using Fourier transform infrared (FT-IR) and Raman microspectroscopy. Appl Spectrosc. 2016;70:1639–1648. doi: 10.1177/0003702816645605.
  • Hivert V, Leblois R, Petit EJ, et al. Measuring genetic differentiation from pool-seq data. Genetics. 2018;210:315–330. doi: 10.1534/genetics.118.300900.
  • Szurman-Zubrzycka ME, Zbieszczyk J, Marzec M, et al. HorTILLUS-A rich and renewable source of induced mutations for forward/reverse genetics and pre-breeding programs in barley (Hordeum vulgare L.). Front Plant Sci. 2018;9:216. doi: 10.3389/fpls.2018.00216.
  • Taheri S, Abdullah TL, Jain SM, et al. TILLING, high-resolution melting (HRM), and next-generation sequencing (NGS) techniques in plant mutation breeding. Mol Breed. 2017;37:23.
  • Vilperte V, Boehm R, Debener T. Development of a multiplex amplicon-sequencing assay to detect low-frequency mutations in poinsettia (Euphorbia pulcherrima) breeding programmes. Plant Breed. 2021;140:497–507. doi: 10.1111/pbr.12925.
  • Jiang BL, Wang SY, Wang YC, et al. A high-throughput screening method for breeding Aspergillus niger with C-12(6+) ion beam-improved cellulase. Nucl Sci Tech. 2017;28 doi: 10.1007/s41365-016-0157-8.
  • Lv XY, Song JL, Yu B, et al. High-throughput system for screening of high L-lactic acid-productivity strains in deep-well microtiter plates. Bioprocess Biosyst Eng. 2016;39:1737–1747. doi: 10.1007/s00449-016-1649-y.
  • Hu BY, Xu P, Ma L, et al. One cell at a time: droplet-based microbial cultivation, screening and sequencing. Mar Life Sci Technol. 2021;3:169–188. doi: 10.1007/s42995-020-00082-8.
  • Jian XJ, Guo XJ, Wang J, et al. Microbial microdroplet culture system (MMC): an integrated platform for automated, high-throughput microbial cultivation and adaptive evolution. Biotechnol Bioeng. 2020;117:1724–1737. doi: 10.1002/bit.27327.
  • Wang Q, Jin WBA, Han W, et al. Enhancement of DHA production from Aurantiochytrium sp. by atmospheric and room temperature plasma mutagenesis aided with microbial microdroplet culture screening. Biomass Conv Bioref. 2022; doi: 10.1007/s13399-021-02147-9.
  • Liu L, Zeng WZ, Yu SQ, et al. Rapid enabling of Gluconobacter oxydans resistance to high D-sorbitol concentration and high temperature by microdroplet-aided adaptive evolution. Front Bioeng Biotechnol. 2021;9:731247. doi: 10.3389/fbioe.2021.731247.
  • Ma FQ, Chung MT, Yao Y, et al. Efficient molecular evolution to generate enantioselective enzymes using a dual-channel microfluidic droplet screening platform. Nat Commun. 2018;9:1030. doi: 10.1038/s41467-018-03492-6.
  • Yamada K, Suzuki H, Takeuchi T, et al. Efficient selective breeding of live oil-rich Euglena gracilis with fluorescence-activated cell sorting. Sci Rep. 2016;6:26327. doi: 10.1038/srep26327.
  • Fan Y, Ding XT, Wang LJ, et al. Rapid sorting of fucoxanthin-producing Phaeodactylum tricornutum mutants by flow cytometry. Mar Drugs. 2021;19:10.
  • Shi SB, Ang EL, Zhao HM. In vivo biosensors: mechanisms, development, and applications. J Ind Microbiol Biotechnol. 2018;45:491–516. doi: 10.1007/s10295-018-2004-x.
  • Hua EB, Zhang Y, Yun KY, et al. Whole-cell biosensor and producer co-cultivation-based microfludic platform for screening Saccharopolyspora erythraea with hyper erythromycin production. ACS Synth Biol. 2022;11:2697–2708. doi: 10.1021/acssynbio.2c00102.
  • Awlia M, Nigro A, Fajkus J, et al. High-throughput non-destructive phenotyping of traits that contribute to salinity tolerance in Arabidopsis thaliana. Front Plant Sci. 2016;7:15. doi: 10.3389/fpls.2016.01414.
  • Chang S, Lee U, Hong MJ, et al. High-throughput phenotyping (HTP) data reveal dosage effect at growth stages in Arabidopsis thaliana irradiated by gamma rays. Plants Basel. 2020;9:557. doi: 10.3390/plants9050557.
  • Zheng WS, Zhao SJ, Yin YH, et al. High-throughput, single-microbe genomics with strain resolution, applied to a human gut microbiome. Science. 2022;376:eabm1483. doi: 10.1126/science.abm1483.
  • Dong MY, Wang SY, Xu FQ, et al. Integrative transcriptome and proteome analyses of Trichoderma longibrachiatum LC and its cellulase hyper-producing mutants generated by heavy ion mutagenesis reveal the key genes involved in cellulolytic enzymes regulation. Biotechnol Biofuels. 2022;15:1–13. doi: 10.1186/s13068-022-02161-7.
  • Haas R, Horev G, Lipkin E, et al. Mapping ethanol tolerance in budding yeast reveals high genetic variation in a wild isolate. Front Genet. 2019;10:998. doi: 10.3389/fgene.2019.00998.
  • Ichida H, Morita R, Shirakawa Y, et al. Targeted exome sequencing of unselected heavy-ion beam-irradiated populations reveals less-biased mutation characteristics in the rice genome. Plant J. 2019;98:301–314. doi: 10.1111/tpj.14213.
  • Pačnik K, Ogrizović M, Diepold M, et al. Identification of novel genes involved in neutral lipid storage by quantitative trait loci analysis of Saccharomyces cerevisiae. BMC Genom. 2021;22:110.
  • Luo JM, Li SY, Xu JJ, et al. Pyramiding favorable alleles in an elite wheat variety in one generation by CRISPR-Cas9-mediated multiplex gene editing. Mol Plant. 2021;14:847–850. doi: 10.1016/j.molp.2021.03.024.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.