245
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Biomaterials with antifungal strategies to fight oral infections

ORCID Icon, , , & ORCID Icon
Received 14 Nov 2022, Accepted 20 Jun 2023, Published online: 16 Aug 2023

References

  • Kilian M, Chapple ILC, Hannig M, et al. The oral microbiome – an update for oral healthcare professionals. Br Dent J. 2016;221:657–666. doi: 10.1038/sj.bdj.2016.865.
  • Radaic A, Kapila YL. The oralome and its dysbiosis: new insights into oral microbiome–host interactions. Comput Struct Biotechnol J. 2021;19:1335–1360. doi: 10.1016/j.csbj.2021.02.010.
  • Bui FQ, Almeida-da-Silva CLC, Huynh B, et al. Association between periodontal pathogens and systemic disease. Biomed J. 2019;42:27–35. doi: 10.1016/j.bj.2018.12.001.
  • Peres MA, Macpherson LMD, Weyant RJ, et al. Oral diseases: a global public health challenge. Lancet. 2019;394:249–260. doi: 10.1016/S0140-6736(19)31146-8.
  • WHO. Oral health – WHO fact sheets; 2023. Available from: https://www.who.int/news-room/fact-sheets/detail/oral-health
  • Song W, Ge S. Application of antimicrobial nanoparticles in dentistry. Molecules. 2019;24:1033.
  • Mehrabani MG, Karimian R, Mehramouz B, et al. Preparation of biocompatible and biodegradable silk fibroin/chitin/silver nanoparticles 3D scaffolds as a bandage for antimicrobial wound dressing. Int J Biol Macromol. 2018;114:961–971. doi: 10.1016/j.ijbiomac.2018.03.128.
  • Barzegar PEF, Ranjbar R, Yazdanian M, et al. The current natural/chemical materials and innovative technologies in periodontal diseases therapy and regeneration: a narrative review. Mater Today Commun. 2022;32:104099. doi: 10.1016/j.mtcomm.2022.104099.
  • Mehrabani MG, Karimian R, Rakhshaei R, et al. Chitin/silk fibroin/TiO2 bio-nanocomposite as a biocompatible wound dressing bandage with strong antimicrobial activity. Int J Biol Macromol. 2018;116:966–976. doi: 10.1016/j.ijbiomac.2018.05.102.
  • Tibbitt MW, Rodell CB, Burdick JA, et al. Progress in material design for biomedical applications. Proc Natl Acad Sci U S A. 2015;112:14444–14451. doi: 10.1073/pnas.1516247112.
  • Sevari SP, Ansari S, Moshaverinia A. A narrative overview of utilizing biomaterials to recapitulate the salient regenerative features of dental-derived mesenchymal stem cells. Int J Oral Sci. 2021;13:22. doi: 10.1038/s41368-021-00126-4.
  • Zafar MS, Alnazzawi AA, Alrahabi M, et al. Nano­technology and nanomaterials in dentistry. In: Advanced dental biomaterials; 2019. p. 477–505.
  • Fakhri E, Eslami H, Maroufi P, et al. Chitosan biomaterials application in dentistry. Int J Biol Macromol. 2020;162:956–974. doi: 10.1016/j.ijbiomac.2020.06.211.
  • Dorocka-Bobkowska B, Medyński D, Pryliński M. Recent advances in tissue conditioners for prosthetic treatment: a review. Adv Clin Exp Med. 2017;26:723–728. doi: 10.17219/acem/62634.
  • Song R, Murphy M, Li C, et al. Current development of biodegradable polymeric materials for biomedical applications. Drug Des Devel Ther. 2018;12:3117–3145. doi: 10.2147/DDDT.S165440.
  • Nair LS, Laurencin CT. Biodegradable polymers as biomaterials. Prog Polym Sci. 2007;32:762–798. doi: 10.1016/j.progpolymsci.2007.05.017.
  • Seo SJ, Mahapatra C, Singh RK, et al. Strategies for osteochondral repair: focus on scaffolds. J Tissue Eng. 2014;5:2041731414541850. doi: 10.1177/2041731414541850.
  • Bat E, Zhang Z, Feijen J, et al. Biodegradable elastomers for biomedical applications and regenerative medicine. Regen Med. 2014;9:385–398. doi: 10.2217/rme.14.4.
  • Tian H, Tang Z, Zhuang X, et al. Biodegradable synthetic polymers: preparation, functionalization and biomedical application. Prog Polym Sci. 2012;37:237–280. doi: 10.1016/j.progpolymsci.2011.06.004.
  • Maitz MF. Applications of synthetic polymers in clinical medicine. Biosurf Biotribol. 2015;1:161–176. doi: 10.1016/j.bsbt.2015.08.002.
  • Santosh ABR, Muddana K, Bakki SR. Fungal infections of oral cavity: diagnosis, management, and association with COVID-19. SN Compr Clin Med. 2021;3:1373–1384. doi: 10.1007/s42399-021-00873-9.
  • Rodrigues CF, Rodrigues ME, Silva S, et al. Candida glabrata biofilms: how far have we come? J Fungi. 2017;3:11. doi: 10.3390/jof3010011.
  • Brown GD, Denning DW, Gow NAR, et al. Hidden killers: human fungal infections. Sci Transl Med. 2012;4:165rv13. doi: 10.1126/scitranslmed.3004404.
  • Rodrigues ME, Gomes F, Rodrigues CF. Candida spp./bacteria mixed biofilms. J Fungi. 2019;6:5. doi: 10.3390/jof6010005.
  • Sharon V, Fazel N. Oral candidiasis and angular cheilitis. Dermatol Ther. 2010;23:230–242. doi: 10.1111/j.1529-8019.2010.01320.x.
  • Silva S, Rodrigues CF, Araújo D, et al. Candida species biofilms’ antifungal resistance. J Fungi. 2017;3:8. doi: 10.3390/jof3010008.
  • Desai J. v, Mitchell AP, Andes DR. Fungal biofilms, drug resistance, and recurrent infection. Cold Spring Harb Perspect Med. 2014;4:a019729.
  • Namangkalakul W, Benjavongkulchai S, Pochana T, et al. Activity of chitosan antifungal denture adhesive against common Candida species and Candida albicans adherence on denture base acrylic resin. J Prosthet Dent. 2020;123:181.e1–181.e7. doi: 10.1016/j.prosdent.2019.09.026.
  • Srimaneepong V, Thanamee T, Wattanasirmkit K, et al. Efficacy of low-molecular weight chitosan against Candida albicans biofilm on polymethyl methacrylate resin. Aust Dent J. 2021;66:262–269. doi: 10.1111/adj.12826.
  • Alves D, Borges P, Grainha T, et al. Tailoring the immobilization and release of chlorhexidine using dopamine chemistry to fight infections associated to orthopedic devices. Mater Sci Eng C Mater Biol Appl. 2021;120:111742.
  • Alves D, Vaz AT, Grainha T, et al. Design of an antifungal surface embedding liposomal amphotericin B through a mussel adhesive-inspired coating strategy. Front Chem. 2019;7:431. doi: 10.3389/fchem.2019.00431.
  • Nemati Shizari L, Mohammadpour Dounighi N, Bayat M, et al. A new amphotericin B-loaded trimethyl chitosan nanoparticles as a drug delivery system and antifungal activity on Candida albicans biofilm. Arch Razi Inst. 2021;76:571–586.
  • Meran Z, Besinis A, de Peralta T, et al. Antifungal properties and biocompatibility of silver nanoparticle coatings on silicone maxillofacial prostheses in vitro. J Biomed Mater Res B Appl Biomater. 2018;106:1038–1051. doi: 10.1002/jbm.b.33917.
  • Baygar T, Sarac N, Ugur A, et al. Antimicrobial characteristics and biocompatibility of the surgical sutures coated with biosynthesized silver nanoparticles. Bioorg Chem. 2019;86:254–258. doi: 10.1016/j.bioorg.2018.12.034.
  • Acosta-Torres LS, Flores-Arriaga JC, Serrano-Díaz PN, et al. Biomaterial antifúngico para reducir las infecciones causadas por Candida albicans en pacientes edéntulos. Gac Med Mex. 2021;157:437–442.
  • Gondim BLC, Castellano LRC, de Castro RD, et al. Effect of chitosan nanoparticles on the inhibition of Candida spp. biofilm on denture base surface. Arch Oral Biol. 2018;94:99–107. doi: 10.1016/j.archoralbio.2018.07.004.
  • de Carvalho FG, Magalhães TC, Teixeira NM, et al. Synthesis and characterization of TPP/chitosan nanoparticles: colloidal mechanism of reaction and antifungal effect on C. albicans biofilm formation. Mater Sci Eng C Mater Biol Appl. 2019;104:109885. doi: 10.1016/j.msec.2019.109885.
  • Cicciù M, Fiorillo L, Cervino G. Chitosan use in dentistry: a systematic review of recent clinical studies. Mar Drugs. 2019;17:417. doi: 10.3390/md17070417.
  • Ma S, Moser D, Han F, et al. Preparation and antibiofilm studies of curcumin loaded chitosan nanoparticles against polymicrobial biofilms of Candida albicans and Staphylococcus aureus. Carbohydr Polym. 2020;241:116254. doi: 10.1016/j.carbpol.2020.116254.
  • Parvez S, Yadagiri G, Karole A, et al. Recuperating biopharmaceutical aspects of amphotericin B and paromomycin using a chitosan functionalized nanocarrier via oral route for enhanced anti-leishmanial activity. Front Cell Infect Microbiol. 2020;10:570573. doi: 10.3389/fcimb.2020.570573.
  • Tan Y, Ma S, Leonhard M, et al. Co-immobilization of cellobiose dehydrogenase and deoxyribonuclease I on chitosan nanoparticles against fungal/bacterial polymicrobial biofilms targeting both biofilm matrix and microorganisms. Mater Sci Eng C Mater Biol Appl. 2020;108:110499. doi: 10.1016/j.msec.2019.110499.
  • Alvarez Echazú MI, Olivetti CE, Anesini C, et al. Development and evaluation of thymol-chitosan hydrogels with antimicrobial-antioxidant activity for oral local delivery. Mater Sci Eng C Mater Biol Appl. 2017;81:588–596. doi: 10.1016/j.msec.2017.08.059.
  • Shcherbakova L, Mikityuk O, Arslanova L, et al. Studying the ability of thymol to improve fungicidal effects of tebuconazole and difenoconazole against some plant pathogenic fungi in seed or foliar treatments. Front Microbiol. 2021;12:629429. doi: 10.3389/fmicb.2021.629429.
  • Dahlgren D, Roos C, Lundqvist A, et al. Effect of absorption-modifying excipients, hypotonicity, and enteric neural activity in an in vivo model for small intestinal transport. Int J Pharm. 2018;549:239–248. doi: 10.1016/j.ijpharm.2018.07.057.
  • Tejada G, Lamas MC, Sortino M, et al. Composite microparticles based on natural mucoadhesive polymers with promising structural properties to protect and improve the antifungal activity of miconazole nitrate. AAPS PharmSciTech. 2018;19:3712–3722. doi: 10.1208/s12249-018-1175-0.
  • Kraisit P, Yonemochi E, Furuishi T, et al. Chitosan film containing antifungal agent-loaded SLNs for the treatment of candidiasis using a Box–Behnken design. Carbohydr Polym. 2022;283:119178. doi: 10.1016/j.carbpol.2022.119178.
  • Vásquez Marcano RGDJ, Tominaga TT, Khalil NM, et al. Chitosan functionalized poly(ε-caprolactone) nanoparticles for amphotericin B delivery. Carbohydr Polym. 2018;202:345–354. doi: 10.1016/j.carbpol.2018.08.142.
  • Mohammed AK, Salh KK, Ali FA. ZnO, TiO2 and Ag nanoparticles impact against some species of pathogenic bacteria and yeast. Cell Mol Biol. 2021;67:24–34. doi: 10.14715/cmb/2021.67.3.4.
  • Kenechukwu FC, Dias ML, Ricci-Júnior E. Biodegradable nanoparticles from prosopisylated cellulose as a platform for enhanced oral bioavailability of poorly water-soluble drugs. Carbohydr Polym. 2021;256:117492. doi: 10.1016/j.carbpol.2020.117492.
  • Arias LS, Butche MC, Short B, et al. Chitosan ameliorates candida auris virulence in a Galleria mellonella infection model. Antimicrob Agents Chemother. 2020;64:1–13. doi: 10.1128/AAC.00476-20.
  • Saeed A, Haider A, Zahid S, et al. In-vitro antifungal efficacy of tissue conditioner-chitosan composites as potential treatment therapy for denture stomatitis. Int J Biol Macromol. 2019;125:761–766. doi: 10.1016/j.ijbiomac.2018.12.091.
  • de Carvalho FG, Magalhães TC, Teixeira NM, et al. Synthesis and characterization of TPP/chitosan nanoparticles: colloidal mechanism of reaction and antifungal effect on C. albicans biofilm formation. Mater Sci Eng, C. 2019;104:109885.
  • Tan Y, Ma S, Leonhard M, et al. Co-immobilization of cellobiose dehydrogenase and deoxyribonuclease I on chitosan nanoparticles against fungal/bacterial polymicrobial biofilms targeting both biofilm matrix and microorganisms. Mater Sci Eng C. 2020;108:31923978.
  • Murakami M, Fujishima K, Nishi Y, et al. Impact of type and duration of application of commercially available oral moisturizers on their antifungal effects. J Prosthodont. 2018;27:52–56. doi: 10.1111/jopr.12458.
  • Bapat RA, Chaubal TV, Dharmadhikari S, et al. Recent advances of gold nanoparticles as biomaterial in dentistry. Int J Pharm. 2020;586:119596. doi: 10.1016/j.ijpharm.2020.119596.
  • Radwan MA, AlQuadeib BT, Šiller L, et al. Oral administration of amphotericin B nanoparticles: antifungal activity, bioavailability and toxicity in rats. Drug Deliv. 2017;24:40–50. doi: 10.1080/10717544.2016.1228715.
  • Roque L, Alopaeus J, Reis C, et al. Mucoadhesive assessment of different antifungal nanoformulations. Bioinspir Biomim. 2018;13:055001. doi: 10.1088/1748-3190/aad488.
  • Puri S, Orrego S, Montoya C, et al. Antifungal effect of piezoelectric charges on PMMA dentures. ACS Biomater Sci Eng. 2021;7:4838–4846. doi: 10.1021/acsbiomaterials.1c00926.
  • Walczak K, Schierz G, Basche S, et al. Antifungal and surface properties of chitosan-salts modified PMMA denture base material. Molecules. 2020;25:5899. doi: 10.3390/molecules25245899.
  • Lee MJ, Kim MJ, Oh SH, et al. Novel dental poly(methyl methacrylate) containing phytoncide for antifungal effect and inhibition of oral multispecies biofilm. Materials. 2020;13:371. doi: 10.3390/ma13020371.
  • Nikawa H, Yamamoto T, Hamada T, et al. Antifungal effect of zeolite-incorporated tissue conditioner against Candida albicans growth and/or acid production. J Oral Rehabil. 1997;24:350–357. doi: 10.1046/j.1365-2842.1997.d01-297.x.
  • Chen H, Zhou Y, Zhou X, et al. Dimethylaminododecyl methacrylate inhibits Candida albicans and oropharyngeal candidiasis in a pH-dependent manner. Appl Microbiol Biotechnol. 2020;104:3585–3595. doi: 10.1007/s00253-020-10496-0.
  • Khlibsuwan R, Khunkitti W, Pongjanyakul T. Alginate-poloxamer beads for clotrimazole delivery: molecular interactions, mechanical properties, and anticandidal activity. Int J Biol Macromol. 2020;148:1061–1071. doi: 10.1016/j.ijbiomac.2020.01.217.
  • Semnani D, Afrashi M, Alihosseini F, et al. Investigating the performance of drug delivery system of fluconazole made of nano–micro fibers coated on cotton/polyester fabric. J Mater Sci Mater Med. 2017;28:175. doi: 10.1007/s10856-017-5957-9.
  • Miao R, Jin F, Wang Z, et al. Oral delivery of decanoic acid conjugated plant protein shell incorporating hybrid nanosystem leverage intestinal absorption of polyphenols. Biomaterials. 2022;281:121373. doi: 10.1016/j.biomaterials.2022.121373.
  • Wen J, Yeh CK, Sun Y. Salivary polypeptide/hyaluronic acid multilayer coatings act as “fungal repellents” and prevent biofilm formation on biomaterials. J Mater Chem B. 2018;6:1452–1457. doi: 10.1039/c7tb02592k.
  • Pezzotti G, Asai T, Adachi T, et al. Antifungal activity of polymethyl methacrylate/Si3N4 composites against Candida albicans. Acta Biomater. 2021;126:259–276. doi: 10.1016/j.actbio.2021.03.023.
  • Naeem M, Bae J, Oshi MA, et al. Colon-targeted delivery of cyclosporine A using dual-functional Eudragit® FS30D/PLGA nanoparticles ameliorates murine experimental colitis. Int J Nanomedicine. 2018;13:1225–1240. doi: 10.2147/IJN.S157566.
  • Moraes Moreira Carraro TC, Altmeyer C, Maissar Khalil N, et al. Assessment of in vitro antifungal efficacy and in vivo toxicity of amphotericin B-loaded PLGA and PLGA–PEG blend nanoparticles. J Mycol Med. 2017;27:519–529. doi: 10.1016/j.mycmed.2017.07.004.
  • Singh A, Yadagiri G, Negi M, et al. Carboxymethyl chitosan modified lipid nanoformulations as a highly efficacious and biocompatible oral anti-leishmanial drug carrier system. Int J Biol Macromol. 2022;204:373–385. doi: 10.1016/j.ijbiomac.2022.02.006.
  • Jain S, Reddy CSK, Swami R, et al. Amphotericin B loaded chitosan nanoparticles: implication of bile salt stabilization on gastrointestinal stability, permeability and oral bioavailability. AAPS PharmSciTech. 2018;19:3152–3164. doi: 10.1208/s12249-018-1153-6.
  • Ling JTS, Roberts CJ, Billa N. Antifungal and mucoadhesive properties of an orally administered chitosan-coated amphotericin B nanostructured lipid carrier (NLC). AAPS PharmSciTech. 2019;20:136. doi: 10.1208/s12249-019-1346-7.
  • Ling Tan JS, Roberts CJ, Billa N. Mucoadhesive chitosan-coated nanostructured lipid carriers for oral delivery of amphotericin B. Pharm Dev Technol. 2019;24:504–512. doi: 10.1080/10837450.2018.1515225.
  • Tan JSL, Roberts C, Billa N. Pharmacokinetics and tissue distribution of an orally administered mucoadhesive chitosan-coated amphotericin B-loaded nanostructured lipid carrier (NLC) in rats. J Biomater Sci Polym Ed. 2020;31:141–154. doi: 10.1080/09205063.2019.1680926.
  • Safaei M, Taran M, Imani MM. Preparation, structural characterization, thermal properties and antifungal activity of alginate–CuO bionanocomposite. Mater Sci Eng C Mater Biol Appl. 2019;101:323–329. doi: 10.1016/j.msec.2019.03.108.
  • Santos EO, Oliveira PLE, de Mello TP, et al. Surface characteristics and microbiological analysis of a vat-photo­polymerization additive-manufacturing dental resin. Materials. 2022;15:425. doi: 10.3390/ma15020425.
  • Butcher MC, Brown JL, Hansom D, et al. Assessing the bioactive profile of antifungal-loaded calcium sulfate against fungal biofilms. Antimicrob Agents Chemother. 2021;65(6):e02551-20.
  • Yu Y, Xu S, Li S, et al. Genipin-cross-linked hydrogels based on biomaterials for drug delivery: a review. Biomater Sci. 2021;9:1583–1597. doi: 10.1039/d0bm01403f.
  • Mancino D, Kharouf N, Scavello F, et al. The catestatin-derived peptides are new actors to fight the development of oral candidosis. Int J Mol Sci. 2022;23:2066.
  • Basiri T, Johnson ND, Moffa EB, et al. Duplicated or hybridized peptide functional domains promote oral homeostasis. J Dent Res. 2017;96:1162–1167. doi: 10.1177/0022034517708552.
  • dos Santos R, Sarra G, Lincopan N, et al. Preparation, antimicrobial properties, and cytotoxicity of acrylic resins containing poly(diallyldimethylammonium chloride). Int J Prosthodont. 2021;34:635–641. doi: 10.11607/ijp.6506.
  • de Camargo Ribeiro F, Junqueira JC, dos Santos JD, et al. Development of probiotic formulations for oral candidiasis prevention: gellan gum as a carrier to deliver Lactobacillus paracasei 28.4. Antimicrob Agents Chemother. 2020;64:e02323-19. doi: 10.1128/AAC.02323-19.
  • Catanoze IA, Cunha BG, Costa GQ, et al. Antagonistic effect of isolated and commercially available probiotics on the growth of Candida albicans on acrylic resin denture surfaces. J Prosthet Dent. 2022;127:338–344. doi: 10.1016/j.prosdent.2020.10.005.
  • Abdel-Haq M, Alyan R, Abd-Rbo K, et al. Biomimetic clotrimazole-loaded PLGA films with enhanced adhesiveness for controlled drug release. Int J Pharm. 2021;601:120578. doi: 10.1016/j.ijpharm.2021.120578.
  • Gebremedhin S, Dorocka-Bobkowska B, Prylinski M, et al. Miconazole activity against Candida biofilms developed on acrylic discs. J Physiol Pharmacol. 2014;65:593–600.
  • Schneid TR. An in vitro analysis of a sustained release system for the treatment of denture stomatitis. Spec Care Dentist. 1992;12:245–250. doi: 10.1111/j.1754-4505.1992.tb00458.x.
  • Homsiang W, Kamonkhantikul K, Arksornnukit M, et al. Effect of zinc oxide nanoparticles incorporated into tissue conditioner on antifungal, physical, and mechanical properties. Dent Mater J. 2021;40:481–486. doi: 10.4012/dmj.2020-095.
  • Parry-Nweye E, Onukwugha NE, Balmuri SR, et al. Electrochemical strategy for eradicating fluconazole-tolerant Candida albicans using implantable titanium. ACS Appl Mater Interfaces. 2019;11(44):40997–41008.
  • Assuncao B, Henriques M, Rodrigues C, et al. In vitro study of antifungal drug effect in a tissue conditioner. IV International Conference on Biodental Engineering. Porto: Taylor & Francis; 2016.
  • Aref NS. An in vitro assessment of surface roughness, tensile bond strength and antifungal activity of grape seed extract-modified soft liner. J Contemp Dent Pract. 2020;21:353–358.
  • Yang SY, Kang MK. Biocompatibility and antimicrobial activity of Reynoutria elliptica extract for dental application. Plants. 2020;9:670. doi: 10.3390/plants9060670.
  • D’Ercole S, di Lodovico S, Iezzi G, et al. Complex electromagnetic fields reduce Candida albicans planktonic growth and its adhesion to titanium surfaces. Biomedicines. 2021;9:1261. doi: 10.3390/biomedicines9091261.
  • Sahal G, Woerdenbag HJ, Hinrichs WLJ, et al. Candida biofilm formation assay on essential oil coated silicone rubber. Bio Protoc. 2021;11:e3941.
  • Niu JY, Yin IX, Wu WKK, et al. Antimicrobial peptides for the prevention and treatment of dental caries: a concise review. Arch Oral Biol. 2021;122:105022. doi: 10.1016/j.archoralbio.2020.105022.
  • Ota C, Unterkircher C, Fantinato V, et al. Antifungal activity of propolis on different species of Candida. Mycoses. 2001;44:375–378. doi: 10.1046/j.1439-0507.2001.00671.x.
  • Siqueira ABS, Rodriguez LRNDA, Santos RKB, et al. Antifungal activity of propolis against Candida species isolated from cases of chronic periodontitis. Braz Oral Res. 2015;29:1–6. doi: 10.1590/1807-3107BOR-2015.vol29.0083.
  • Khurshid Z, Naseem M, Zafar MS, et al. Propolis: a natural biomaterial for dental and oral healthcare. J Dent Res Dent Clin Dent Prospects. 2017;11:265–274.
  • Sahal G, Woerdenbag HJ, Hinrichs WLJ, et al. Antifungal and biofilm inhibitory effect of Cymbopogon citratus (lemongrass) essential oil on biofilm forming by Candida tropicalis isolates; an in vitro study. J Ethnopharmacol. 2020;246:112188.
  • Kanpittaya K, Teerakapong A, Morales NP, et al. Inhibitory effects of erythrosine/curcumin derivatives/nano-titanium dioxide-mediated photodynamic therapy on Candida albicans. Molecules. 2021;26:1–17. doi: 10.3390/molecules26092405.
  • Campos L, Rezende SB, Palma LF, et al. Antimicrobial photodynamic therapy to oral candidiasis not responsive to micafungin in a patient undergoing hematopoietic cell transplantation. Photodiagn Photodyn Ther. 2022;37:102678. doi: 10.1016/j.pdpdt.2021.102678.
  • Li Y, Du J, Huang S, et al. Hydrogen peroxide potentiates antimicrobial photodynamic therapy in eliminating Candida albicans and Streptococcus mutans dual-species biofilm from denture base. Photodiagn Photodyn Ther. 2022;37:34921987.
  • Ossama M, Lamie C, Tarek M, et al. Management of recurrent aphthous ulcers exploiting polymer-based muco-adhesive sponges: in-vitro and in-vivo evaluation. Drug Deliv. 2021;28:87–99. doi: 10.1080/10717544.2020.1858999.
  • Akpan A, Morgan R. Oral candidiasis. Postgrad Med J. 2002;78:455–459. doi: 10.1136/pmj.78.922.455.
  • Oliveira ACP, Shinobu CS, Longhini R, et al. Antifungal activity of propolis extract against yeasts isolated from onychomycosis lesions. Mem Inst Oswaldo Cruz. 2006;101:493–497. doi: 10.1590/s0074-02762006000500002.
  • Yazdanian M, Rostamzadeh P, Alam M, et al. Evaluation of antimicrobial and cytotoxic effects of Echinacea and Arctium extracts and Zataria essential oil. AMB Express. 2022;12:75. doi: 10.1186/s13568-022-01417-7.
  • Butcher MC, Short B, Lekha C, et al. Meta-analysis of caries microbiome studies can improve upon disease prediction outcomes. APMIS. 2022;130:763–777. doi: 10.1111/apm.13272.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.