408
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Valorization of dragon fruit waste to value-added bioproducts and formulations: A review

, , , , , , , ORCID Icon, , , & ORCID Icon show all
Received 31 Dec 2022, Accepted 10 Jul 2023, Published online: 24 Sep 2023

References

  • Sharma M, Bhat R. Extraction of carotenoids from pumpkin peel and pulp: comparison between innovative green extraction technologies (ultrasonic and microwave-assisted extractions using corn oil). Foods. 2021;10:787. doi: 10.3390/foods10040787.
  • Chawla P, Sridhar K, Kumar A, et al. Production of nanocellulose from corn husk for the development of antimicrobial biodegradable packaging film. Int J Biol Macromol. 2023;242:124805. doi: 10.1016/j.ijbiomac.2023.124805.
  • Saeed M, Mohammad A, Singh P, et al. Coconut waste valorization to produce biochar catalyst and its application in cellulose-degrading enzymes production via SSF. Int J Biol Macromol. 2023;240:124382. doi: 10.1016/j.ijbiomac.2023.124382.
  • Tripathi M, Sharma M, Bala S, et al. Conversion technologies for valorization of hemp lignocellulosic biomass for potential biorefinery applications. Sep Purific Tech. 2023;320:124018. doi: 10.1016/j.seppur.2023.124018.
  • Sharma M, Hussain S, Shalima T, et al. Valorization of seabuckthorn pomace to obtain bioactive carotenoids: an innovative approach of using green extraction techniques (ultrasonic and microwave-assisted extractions) synergized with green solvents (edible oils). Ind Crops Prod. 2022;175:114257. doi: 10.1016/j.indcrop.2021.114257.
  • Hussain S, Sharma M, Bhat R. Valorisation of Sea buckthorn pomace by optimization of ultrasonic-assisted extraction of soluble dietary fibre using response surface methodology. Foods. 2021;10:1330. doi: 10.3390/foods10061330.
  • Nath PC, Ojha A, Debnath S, et al. Recent advances in valorization of pineapple (Ananas comosus) processing waste and by-products: a step towards circular bioeconomy. Trends Food Sci Tech. 2023;136:100–111. doi: 10.1016/j.tifs.2023.04.008.
  • Harith NS, Rahman NA, Zamanhuri NA, et al. Microwave-based antioxidant extraction from pineapple peel waste. Mat Today: Proc. 2023; 87:126–131. doi: 10.1016/j.matpr.2023.02.384.
  • Amiri H, Aghbashlo M, Sharma M, et al. Chitin and chitosan derived from crustacean waste valorization streams can support food systems and the UN Sustainable Development Goals. Nat Food. 2022;3:822–828. doi: 10.1038/s43016-022-00591-y.
  • Usmani Z, Sharma M, Gaffey J, et al. Valorization of dairy waste and by-products through microbial bioprocesses. Bioresour Technol. 2022;346:126444. doi: 10.1016/j.biortech.2021.126444.
  • Gandam PK, Chinta ML, Pabbathi NPP, et al. Second-generation bioethanol production from corncob – A comprehensive review on pretreatment and bioconversion strategies, including techno-economic and lifecycle perspective. Ind Crops Prod. 2022;186:115245. doi: 10.1016/j.indcrop.2022.115245.
  • Gandam PK, Chinta ML, Pabbathi NPP, et al. Corncob-based biorefinery: a comprehensive review of pretreatment methodologies, and biorefinery platforms. J Energy Inst. 2022;101:290–308. doi: 10.1016/j.joei.2022.01.004.
  • Pabbathi NPP, Velidandi A, Pogula S, et al. Brewer’s spent grains-based biorefineries: a critical review. Fuel. 2022;317:123435. doi: 10.1016/j.fuel.2022.123435.
  • Usmani Z, Sharma M, Diwan D, et al. Valorization of sugar beet pulp to value-added products: a review. Bioresour Technol. 2022;346:126580. doi: 10.1016/j.biortech.2021.126580.
  • Srivastava N, Singh R, Mohammad A, et al. Graphene oxide mediated enhanced cellulase production using pomegranate waste following co-cultured condition with improved pH and thermal stability. Fuel. 2022;312:122807. doi: 10.1016/j.fuel.2021.122807.
  • Rodríguez-Martínez B, Coelho E, Gullón B, et al. Potato peels waste as a sustainable source for biotechnological production of biofuels: process optimization. Waste Manag. 2023;155:320–328. doi: 10.1016/j.wasman.2022.11.007.
  • Jaafar RA, Ridhwan A, Mahmod N. Proximate analysis of dragon fruit (Hylecereus polyhizus). Am J Appl Sci. 2009;6:1341–1346.
  • Roriz CL, Heleno SA, Alves MJ, et al. Red pitaya (Hylocereus costaricensis) peel as a source of valuable molecules: extraction optimization to recover natural colouring agents. Food Chem. 2022;372:131344. doi: 10.1016/j.foodchem.2021.131344.
  • Bauer R. A synopsis of the tribe Hylocereeae. F. Buxb. Cactaceae Syst Initiat. 2003;17:3–63.
  • Gunasena H, Pushpakumara D, Kariyawasam M. Dragon fruit (Hylocereus undatus (Haw.) Britton and Rose, Pushpakumara D, Gunasena H, Singh VP (Eds.), Underutilized fruit trees in Sri Lanka, World Agroforestry Centre, South Asia Office, New Delhi, 2007, p. 110–141.
  • Gengatharan A, Dykes GA, Choo WS. Betalains: natural plant pigments with potential application in functional foods. LWT-Food Sci Technol. 2015;64:645–649. doi: 10.1016/j.lwt.2015.06.052.
  • Pansai N, Chakree K, Takahashi YC, et al. Gut microbiota modulation and immune boosting properties of prebiotic dragon fruit oligosaccharides. Int J Food Sci Technol. 2020;55:55–64. doi: 10.1111/ijfs.14230.
  • Lira SM, Dionisio AP, Holanda MO, et al. Metabolic profile of pitaya (Hylocereus polyrhizus (FAC Weber) Britton & Rose) by UPLC-QTOF-MSE and assessment of its toxicity and anxiolytic-like effect in adult zebrafish. Int Food Res. 2020;127:108701.
  • Hua Q, Chen C, Tel Zur N, et al. Metabolomic characterization of pitaya fruit from three red-skinned cultivars with different pulp colors. Plant Physiol Biochem. 2018;126:117–125. doi: 10.1016/j.plaphy.2018.02.027.
  • Jiang H, Zhang W, Li X, et al. Nutrition, phytochemical profile, bioactivities and applications in food industry of pitaya (Hylocereus spp.) peels: a comprehensive review. Trends Food Sci Technol. 2021;116:199–217. doi: 10.1016/j.tifs.2021.06.040.
  • Gabhane J, William SPMP, Gadhe A, et al. Pretreatment of banana agricultural waste for bio-ethanol production: individual and interactive effects of acid and alkali pretreatments with autoclaving, microwave heating and ultrasonication. Waste Manag. 2014;34:498–503. doi: 10.1016/j.wasman.2013.10.013.
  • Esquivel P, Stintzing FC, Carle R. Comparison of morphological and chemical fruit traits from different pitaya genotypes (Hylocereus sp.) grown in Costa Rica. J Appl Bot Food Qual. 2007;81:7–14.
  • Liaotrakoon W, Clercq N, Hoed VV, et al. Dragon fruit (Hylocereus spp.) seed oils: their characterization and stability under storage conditions. J Am Oil Chem Soc. 2013a;90:207–215. doi: 10.1007/s11746-012-2151-6.
  • Nguyen BMN, Pirak T. Physico-chemical properties and antioxidant activities of white dragon fruit peel pectin extracted with conventional and ultrasound assisted extraction. Cogent Food Agric. 2019;5:1633076. doi: 10.1080/23311932.2019.1633076.
  • Manihuruk FM, Suryati T, Arief II. Effectiveness of the red dragon fruit (Hylocereus polyrhizus) peel extract as the colorant, antioxidant, and antimicrobial on beef sausage. Med Pet. 2017;40:47–54. doi: 10.5398/medpet.2017.40.1.47.
  • Thirugnanasambandham K, Sivakumar V, Prakash Maran J. Process optimization and analysis of microwave assisted extraction of pectin from dragon fruit peel. Carbohydr Polym. 2014;112:622–626. doi: 10.1016/j.carbpol.2014.06.044.
  • Lin X, Gao H, Ding Z, et al. Comparative metabolic profiling in pulp and peel of green and red pitayas (Hylocereus polyrhizus and Hylocereus undatus) reveals potential valorization in the pharmaceutical and food industries. Biomed Res Int. 2021;2021:6546170. doi: 10.1155/2021/6546170.
  • Yoo S-H, Fishman ML, Hotchkiss AT, et al. Viscometric behavior of high-methoxy and low-methoxy pectin solutions. Food Hydrocoll. 2006;20:62–67. doi: 10.1016/j.foodhyd.2005.03.003.
  • Ovodov YS. Current views on pectin substances. Russ J Bioorg Chem. 2009;35:269–284. doi: 10.1134/S1068162009030017.
  • Thakur BR, Singh RK, Handa AK. Chemistry and uses of pectin. Crit Rev Food Sci Nutr. 1997;37:47–73. doi: 10.1080/10408399709527767.
  • Tang P-Y, Kek T-S, Gan C-Z, et al. Yield and some chemical properties of pectin extracted from the peels of dragon fruit [Hylocereus polyrhizus (weber) britton and rose]. The Philippine Agric. Sci. 2011;94:307–311.
  • Liaotrakoon W, Buggenhout SV, Christiaens S, et al. An explorative study on the cell wall polysaccharides in the pulp and peel of dragon fruits (Hylocereus spp.). Eur Food Res Technol. 2013b;237:341–351. doi: 10.1007/s00217-013-1997-7.
  • Pagan J, Ibarz A, Llorca M, et al. Extraction and characterization of pectin from stored peach pomace. Food Res Int. 2001;34:605–612. doi: 10.1016/S0963-9969(01)00078-3.
  • Rahmati S, Abdullah A, Kang OL. Effects of different microwave intensity on the extraction yield and physicochemical properties of pectin from dragon fruit (Hylocereus polyrhizus) peels. Bioactive Carbohy Diet Fib. 2019;18:100186. doi: 10.1016/j.bcdf.2019.100186.
  • Muhammad K, Zahari NIM, Gannasin SP, et al. High methoxyl pectin from dragon fruit (Hylocereus polyrhizus) peel. Food Hydrocoll. 2014;42:289–297. doi: 10.1016/j.foodhyd.2014.03.021.
  • Woo KK, Chong YY, Li Hiong SK, et al. Pectin extraction and characterization from red dragon fruit (Hylocereus polyrhizus): a preliminary study. J Biol Sci. 2010;10:631–636. doi: 10.3923/jbs.2010.631.636.
  • Ismail NSM, Ramli N, Hani NM. Extraction and characterization of pectin from dragon fruit (Hylocereus polyrhizus) using various extraction conditions. Sains Malaysiana. 2012;41:41–45.
  • Montoya-Arroyo A, Schweiggert RM, Pineda-Castro ML, et al. Characterization of cell wall polysaccharides of purple pitaya (Hylocereus sp.) pericarp. Food Hydrocoll. 2014;35:557–564. doi: 10.1016/j.foodhyd.2013.07.010.
  • Zhuang Y, Zhang Y, Sun L. Characteristics of fibre-rich powder and antioxidant activity of pitaya (Hylocereus undatus) peels. Int J Food Sci Technol. 2012;47:1279–1285. doi: 10.1111/j.1365-2621.2012.02971.x.
  • Luo H, Cai Y, Peng Z. Chemical composition and in vitro evaluation of the cytotoxic and antioxidant activities of supercritical carbon dioxide extracts of pitaya (dragon fruit) peel. Chem Central J. 2014;8:1–7.
  • Nurliyana R, Syed Zahir I, Mustapha Suleiman K, et al. Antioxidant study of pulps and peels of dragon fruits: a comparative study. Int Food Res J. 2010;17:367–375.
  • Fathordoobady F, Manap MY, Selamat J, et al. Development of supercritical fluid extraction for the recovery of betacyanins from red pitaya fruit (Hylocereus polyrhizus) peel: a source of natural red pigment with potential antioxidant properties. Int Food Res J. 2019;26:1023–1034.
  • Kurek J. Introductory chapter: alkaloids - their importance in nature and for human life. In (Ed.), Alkaloids - their importance in nature and human life. London (UK): IntechOpen; 2019. doi: 10.5772/intechopen.85400.
  • Suh DH, Lee S, Heo DY, et al. Metabolite profiling of red and white pitayas (Hylocereus polyrhizus and Hylocereus undatus) for comparing betalain biosynthesis and antioxidant activity. J Agric Food Chem. 2014;62:8764–8771. doi: 10.1021/jf5020704.
  • Wu Y, Xu J, He Y, et al. Metabolic profiling of pitaya (Hylocereus polyrhizus) during fruit development and maturation. Molecules. 2019;24:1114. doi: 10.3390/molecules24061114.
  • Wu Q, Zhang Z, Zhu H, et al. Comparative volatile compounds and primary metabolites profiling of pitaya fruit peel after ozone treatment. J Sci Food Agric. 2019;99:2610–2621.
  • Fathordoobady F, Jarzębski M, Pratap-Singh A, et al. Encapsulation of betacyanins from the peel of red dragon fruit (Hylocereus polyrhizus L.) in alginate microbeads. Food Hydrocoll. 2021;113:106535. doi: 10.1016/j.foodhyd.2020.106535.
  • Thaiudom S, Oonsivilai R, Thaiwong N. Production of colorant powder from dragon fruit (Hylocerecus polyrhizus) peel: bioactivity, heavy metal contamination, antimutagenicity, and antioxidation aspects. J Food Process Preserv. 2021;45:e15044. doi: 10.1111/jfpp.15044.
  • Chen R, Luo S, Wang C, et al. Effects of ultra-high pressure enzyme extraction on characteristics and functional properties of red pitaya (Hylocereus polyrhizus) peel pectic polysaccharides. Food Hydrocoll. 2021;121:107016. doi: 10.1016/j.foodhyd.2021.107016.
  • Prabowo I, Utomo EP, Nurfaizy A, et al. Characteristics and antioxidant activities of anthocyanin fraction in red dragon fruit peels (Hylocereus polyrhizus) extract. Drug Invent Today. 2019;12:670–678.
  • Wu Q, Zhou Y, Zhang Z, et al. Effect of blue light on primary metabolite and volatile compound profiling in the peel of red pitaya. Postharvest Biol Technol. 2020;160:111059. doi: 10.1016/j.postharvbio.2019.111059.
  • Castellar MR, Obón JM, Fernández‐López JA. The isolation and properties of a concentrated red‐purple betacyanin food colourant from Opuntia stricta fruits. J Sci Food Agric. 2006;86:122–128. doi: 10.1002/jsfa.2285.
  • Sharma M, Sharma M, Dikkala PK, et al. Pigments. In: Gupta VK, ed. Valorization of biomass to bioproducts. Elsevier; 2023. pp. 389–421.
  • Bakar J, Shu CE, Muhammad SKS, et al. Physico-chemical characteristics of red pitaya (Hylocereus polyrhizus) peel. Int. Food Res J. 2011;18:279–286.
  • Khan MI, Giridhar P. Plant betalains: chemistry and biochemistry. Phytochemistry. 2015;117:267–295. doi: 10.1016/j.phytochem.2015.06.008.
  • Bazaria B, Kumar P. Effect of whey protein concentrate as drying aid and drying parameters on physicochemical and functional properties of spray dried beetroot juice concentrate. Food Biosci. 2016;14:21–27. doi: 10.1016/j.fbio.2015.11.002.
  • Gliszczyńska-Świgło A. Antioxidant activity of water soluble vitamins in the TEAC (trolox equivalent antioxidant capacity) and the FRAP (ferric reducing antioxidant power) assays. Food Chem. 2006;96:131–136.
  • Cai Y, Sun M, Corke H. Antioxidant activity of betalains from plants of the Amaranthaceae. J Agric Food Chem. 2003;51:2288–2294. doi: 10.1021/jf030045u.
  • Li X, Zhang Z-H, Qiao J, et al. Improvement of betalains stability extracted from red dragon fruit peel by ultrasound-assisted microencapsulation with maltodextrin. Ultrason Sonochem. 2022;82:105897. doi: 10.1016/j.ultsonch.2021.105897.
  • Shaaruddin S, Mohd Ghazali H, Mirhosseini SH, et al. Stability of betanin in pitaya powder and confection as affected by resistant maltodextrin. LWT Food Sci Technol. 2017;84:129–134. doi: 10.1016/j.lwt.2017.05.031.
  • Saenjum C, Pattananandecha T, Nakagawa K. Antioxidative and anti-inflammatory phytochemicals and related stable paramagnetic species in different parts of dragon fruit. Molecules. 2021;26:3565. doi: 10.3390/molecules26123565.
  • Khoo HE, Azlan A, Tang ST, et al. Anthocyanidins and anthocyanins: colored pigments as food, pharmaceutical ingredients, and the potential health benefits. Food Nutr Res. 2017;61:1361779. doi: 10.1080/16546628.2017.1361779.
  • Ariffin AA, Bakar J, Tan CP, et al. Essential fatty acids of pitaya (dragon fruit) seed oil. Food Chem. 2009;114:561–564. doi: 10.1016/j.foodchem.2008.09.108.
  • Lim HK, Tan CP, Bakar J, et al. Effects of different wall materials on the physicochemical properties and oxidative stability of spray-dried microencapsulated red-fleshed pitaya (Hylocereus polyrhizus) seed oil. Food Bioprocess Technol. 2012;5:1220–1227. doi: 10.1007/s11947-011-0555-1.
  • Merrill AH. Sphingolipid and glycosphingolipid metabolic pathways in the era of sphingolipidomics. Chem Rev. 2011;111:6387–6422. doi: 10.1021/cr2002917.
  • Liu WN, Leung KN. The immunomodulatory activity of jacaric acid, a conjugated linolenic acid isomer, on murine peritoneal macrophages. PLoS One. 2015;10:1–12.
  • Singh KP. Medicinal properties of mulberry: a review. Indian Drugs. 1997;34:488–492.
  • Tenore GC, Novellino E, Basile A. Nutraceutical potential and antioxidant benefits of red pitaya (Hylocereus polyrhizus) extracts. J Func Foods. 2012;4:129–136. doi: 10.1016/j.jff.2011.09.003.
  • Nurmahani MM, Osman A, Hamid AA, et al. Antibacterial property of Hylocereus polyrhizus and Hylocereus undatus peel extracts. Int Food Res J. 2012;19:77–84.
  • Le NL. Functional compounds in dragon fruit peels and their potential health benefits: a review. Int J Food Sci Tech. 2022;57:2571–2580. doi: 10.1111/ijfs.15111.
  • Satpute MSA, Shinde MSS. Dragon fruit: a review of health coverage and nutrients. Int J Res Pub Rev. 2022;3:2693–2702.
  • Wahyuniasim RAP. studipembuatanpermenlunakprobiotik sari buahnagamerah (hylocereuspolyrhizus)(kajianperbandingandaging, kulitbuahnagamerah, dan konsentrasi starter yoghurt) (Doctoral dissertation University of Muhammadiyah Malang), 2018.
  • Magalhães DS, da Silva DM, Ramos JD, et al. Changes in the physical and physico-chemical characteristics of red-pulp dragon fruit during its development. Scientia Horticul. 2019;253:180–186. doi: 10.1016/j.scienta.2019.04.050.
  • Putriningtyas ND, Siti WM, Siti W. Effect differences of fermented and non-fermented red dragon fruit peel on blood glucose levels of hypercholestrolemic wistar Rats. In ISMINA 2021: Proceedings of the 5th International Conference on Sports, Health, and Physical Education, ISMINA 2021, 28-29 April 2021, Semarang, Central Java, Indonesia, p. 450. European Alliance for Innovation, 2021. doi: 10.4108/eai.28-4-2021.2312240.
  • Potekaev NN, Borzykh OB, Medvedev GV, et al. The role of extracellular matrix in skin wound healing. J Clin Med. 2021;10:5947. doi: 10.3390/jcm10245947.
  • Ibrahim SRM, Mohamed GA, Khedr AIM, et al. Genus Hylocereus: beneficial phytochemicals, nutritional importance, and biological relevance—a review. J Food Biochem. 2018;42:e12491. doi: 10.1111/jfbc.12491.
  • Tsai Y, Lin CG, Chen WL, et al. Evaluation of the antioxidant and wound-healing properties of extracts from different parts of Hylocereus polyrhizus. Agronomy. 2019;9:27. doi: 10.3390/agronomy9010027.
  • Nur MA, Uddin MR, Meghla NS, et al. In vitro anti-oxidant, anti-inflammatory, anti-bacterial, and cytotoxic effects of extracted colorants from two species of dragon fruit (Hylocereus spp). Food Chem Adv. 2023;2:100318. doi: 10.1016/j.focha.2023.100318.
  • Kunnika S, Pranee A. Influence of enzyme treatment on bioactive compounds and colour stability of betacyanin in flesh and peel of red dragon fruit Hylocereus polyrhizus (Weber) Britton and Rose. Int Food Res J. 2011;18:1437.
  • Rusip G, Ilyas S, Lister INE, et al. The effect of ingestion of red dragon fruit extract on levels of malondialdehyde and superoxide dismutase after strenuous exercise in rats (Rattus norvegicus). F1000Res. 2021;10:1061. doi: 10.12688/f1000research.54254.1.
  • Zitha EZM, Magalhães DS, do Lago RC, et al. Changes in the bioactive compounds and antioxidant activity in red-fleshed dragon fruit during its development. Scientia Horticul. 2022;291:110611. doi: 10.1016/j.scienta.2021.110611.
  • Padmavathy K, Sivakumari K, Karthika S, et al. Phytochemical profiling and anticancer activity of dragon fruit Hylocereus undatus extracts against human hepatocellular carcinoma cancer (hepg-2) cells. Int J Pharm Sci Res. 2021;12:2770–2778.
  • Joshi M, Prabhakar B. Phytoconstituents and pharmaco‐therapeutic benefits of pitaya: a wonder fruit. J Food Biochem. 2020;44:e13260.
  • Kim H, Choi HK, Moon JY, et al. Comparative antioxidant and antiproliferative activities of red and white pitayas and their correlation with flavonoid and polyphenol content. J Food Sci. 2011;76:38–45.
  • Hossain FM, Numan SM, Akhtar S. Cultivation, nutritional value, and health benefits of dragon fruit (Hylocereus spp.): a review. Int J Horticul Sci Technol. 2021;8:259–269.
  • Rahmawati MA, Supriyana DM, Djamil M. Potential effect of pitaya fruit juice (Hylocereus polyrhizus) as an anti-anemic agent for postpartum anemia.Indones J Med. 2019;4(4):293–299. doi: 10.26911/theijmed.2019.04.04.01.
  • Eldeen IMS, Foong SY, Ismail N, et al. Regulation of pro-inflammatory enzymes by the dragon fruits from Hylocereus undatus (Haworth) and squalene-its major volatile constituents. Phcog Mag. 2020;16:81. doi: 10.4103/pm.pm_271_19.
  • Rodriguez EB, Vidallon MLP, Mendoza DJR, et al. Stabilization of betalains from the peel of red dragon fruit [Hylocereus polyrhizus (Weber) Britton & Rose] through biopolymeric encapsulation. Philippine Agric Sci. 2015;98:276–286.
  • Rodriguez EB, Vidallon MLP, Mendoza DJR, et al. Health-promoting bioactivities of betalains from red dragon fruit (Hylocereus polyrhizus (Weber) Britton and Rose) peels as affected by carbohydrate encapsulation. J Sci Food Agric. 2016;96:4679–4689. doi: 10.1002/jsfa.7681.
  • Arora A, Behl T, Sehgal A, et al. Unravelling the involvement of gut microbiota in type 2 diabetes mellitus. Life Sci. 2021;273:119311. doi: 10.1016/j.lfs.2021.119311.
  • Putri MD, Wiboworini B, Dirgahayu P. Red dragon fruit juice in reducing ros levels and insulin resistance In rats with type 2 diabetes mellitus model. JurnalGizi Indonesia (The Indonesian). J Nutr. 2021;10:6–14.
  • Wu YJ, Lu YC, Wu YH, et al. Effects of high pressure processing on the physicochemical properties and glycemic index of fruit puree in a hyperglycemia mouse model. J Sci Food Agric. 2022;102:6138–6145. doi: 10.1002/jsfa.11967.
  • Ngamwonglumlert L, Devahastin S, Chiewchan N. Natural colorants: pigment stability and extraction yield enhancement via utilization of appropriate pretreatment and extraction methods. Crit Rev Food Sci Nutr. 2017;57:3243–3259. doi: 10.1080/10408398.2015.1109498.
  • Sharma M, Usmani Z, Gupta VK, et al. Valorization of fruits and vegetable wastes and by-products to produce natural pigments. Crit Rev Biotechnol. 2021;41:535–563. doi: 10.1080/07388551.2021.1873240.
  • Widmer W, Zhou W, Grohmann K. Pretreatment effects on orange processing waste for making ethanol by simultaneous saccharification and fermentation. Bioresour Technol. 2010;101:5242–5249. doi: 10.1016/j.biortech.2009.12.038.
  • Wu L, Hsu H-W, Chen Y-C, et al. Antioxidant and antiproliferative activities of red pitaya. Food Chem. 2006;95:319–327. doi: 10.1016/j.foodchem.2005.01.002.
  • Mello FR, de Bernardo C, Dias CO, et al. Antioxidant properties, quantification and stability of betalains from pitaya (Hylocereus undatus) peel. Cienc Rural. 2014;45:323–328. doi: 10.1590/0103-8478cr20140548.
  • Cunha LCM, Monteiro MLG, Costa-Lima BRC, et al. Effect of microencapsulated extract of pitaya (Hylocereus costaricensis) peel on color, texture and oxidative stability of refrigerated ground pork patties submitted to high pressure processing. Innov Food Sci Emerg Technol. 2018;49:136–145. doi: 10.1016/j.ifset.2018.08.009.
  • Chia SL, Chong GH. Effect of drum drying on physico-chemical characteristics of dragon fruit peel (Hylocereus polyrhizus). Int J Food Eng. 2015;11:285–293.
  • Harivaindaran KV, Rebecca OPS, Chandran S. Study of optimal temperature, pH and stability of dragon fruit (Hylocereus polyrhizus) peel for use as potential natural colorant. Pak J Biol Sci. 2008;11:2259–2263. doi: 10.3923/pjbs.2008.2259.2263.
  • Rui H, Zhang L, Li Z, et al. Extraction and characteristics of seed kernel oil from white pitaya. J Food Eng. 2009;93:482–486. doi: 10.1016/j.jfoodeng.2009.02.016.
  • Chumroenvidhayakul S, Thilavech T, Abeywardena M, et al. Investigating the impact of dragon fruit peel waste on starch digestibility, pasting, and thermal properties of flours used in Asia. Foods. 2022;11:2031. doi: 10.3390/foods11142031.
  • Sarungu S, Willard K, Ryka H, et al. Production of bioethanol production from dragon fruit wastes by using Aspergillus niger and Saccharomyces cerevisiae. Adv Biol Sci Res. 2022;16:239–240.
  • Muenmee S, Prasertboonyai K. Potential biogas production generated by mono- and co-digestion of food waste and fruit waste (durian shell, dragon fruit and pineapple peel) in different mixture ratio under anaerobic condition. EREM. 2021;77:25–35. doi: 10.5755/j01.erem.77.1.25234.
  • Widyaningrum T, Parahadi M. Bioethanol levels of dragon fruit (Hylocereus polyrhizus) peel with the addition of blend crude cellulase enzyme from Trichoderma reesei and Aspergillus niger. J Trop Biodivers Biotechnol. 2020;5:1–5. doi: 10.22146/jtbb.52189.
  • Listyarini RV, Susilawati PR, Nukung EN, et al. Bioplastic from pectin of dragon fruit (Hylocereus polyrhizus) peel. J Kim Sains Apl. 2020;23:203–208. doi: 10.14710/jksa.23.6.203-208.
  • Chin LL. Bioethanol production by using pitaya fruit peel waste as carbon source, A MSc dissertation submitted to the Department of Chemical Engineering, Faculty of Engineering & Science, University Tunku Abdul Rahman2015.
  • Leong LC. Bioethanol Production By Using Pitaya Fruit Peel Waste As Carbon Source, A dissertation submitted to the Department of Chemical Engineering, Faculty of Engineering & Science, University Tunku Abdul Rahman, 2015.
  • Shiau SY, Li GH, Pan WC, et al. Effect of pitaya peel powder addition on the phytochemical and textural properties and sensory acceptability of dried and cooked noodles. J Food Process Preserv. 2020;44:e14491.
  • Hsu CT, Chang YH, Shiau SY. Color, antioxidation, and texture of dough and Chinese steamed bread enriched with pitaya peel powder. Cereal Chem. 2019;96:76–85. doi: 10.1002/cche.10097.
  • Mai THA, Tran TTT, Le VVM. Use of pitaya peel powder for partial replacement of wheat flour in cookie making: effects of particle size of pitaya peel powder on the product quality. J Food Process Preser. 2022;46:e16214.
  • Faridah R, Mangalisu A, Maruddin F. Antioxidant effectiveness and pH value of red dragon fruit skin powder (Hylocereus polyrhizus) on pasteurized milk with different storage times. In IOP Conference Series: Earth Environment Science, vol. 492; 2020.p. 012051.
  • Madane P, Das AK, Nanda PK, et al. Dragon fruit (Hylocereus undatus) peel as antioxidant dietary fibre on quality and lipid oxidation of chicken nuggets. J Food Sci Technol. 2020;57:1449–1461. doi: 10.1007/s13197-019-04180-z.
  • El Salous A, Ordoñez-Araque R, Zuñiga-Moreno L, et al. Sensory and physicochemical characteristics of cookies made of yellow pitaya (Selenicereus megalanthus) peel flour. Int J Pharm Res. 2020;12:4179–4185.
  • Utpott M, de Araujo RR, Vargas CG, et al. Characterization and application of red pitaya (Hylocereus polyrhizus) peel powder as a fat replacer in ice cream. J Food Process Preserv. 2020;44:e14420. doi: 10.1111/jfpp.14420.
  • Liu W, Shen Y, Li N, et al. Application of gelatin incorporated with red pitaya peel methanol extract as edible coating for quality enhancement of crayfish (Procambarus clarkii) during refrigerated storage. J Food Qual. 2019;2019:1–8.
  • Hassan SS, Williams GA, Jaiswal AK. Emerging technologies for the pretreatment of lignocellulosic biomass. Bioresour Technol. 2018;262:310–318.
  • Merino-Pérez O, Martínez-Palou R, Labidi J, et al. Microwave-assisted pretreatment of lignocellulosic biomass to produce biofuels and value-added products. In: Fang Z, Smith RL, Qi X, Eds. Production of biofuels and chemicals with microwave. New York: E-Publishing Inc.; 2015. pp. 197–224.
  • López-Linares JC, García-Cubero M, Lucas S, et al. Microwave assisted hydrothermal as greener pretreatment of brewer’s spent grains for biobutanol production. Chem Eng J. 2019;368:1045–1055. doi: 10.1016/j.cej.2019.03.032.
  • Guo X, Han D, Xi H, et al. Extraction of pectin from navel orange peel assisted by ultra-high pressure, microwave or traditional heating: a comparison. Carbohydr Poly. 2012;88:441–448. doi: 10.1016/j.carbpol.2011.12.026.
  • Rojas ML, Kubo MTK, Caetano‐Silva ME, et al. Ultrasound processing of fruits and vegetables, structural modification and impact on nutrient and bioactive compounds: a review. Int J of Food Sci Tech. 2021;56:4376–4395. doi: 10.1111/ijfs.15113.
  • Yang M, Wei Y, Ashokkumar M, et al. Effect of ultrasound on binding interaction between emodin and micellar casein and its microencapsulation at various temperatures. Ultrason Sonochem. 2020;62:104861. doi: 10.1016/j.ultsonch.2019.104861.
  • Wang T, Chen K, Zhang X, et al. Effect of ultrasound on the preparation of soy protein isolate-maltodextrin embedded hemp seed oil microcapsules and the establishment of oxidation kinetics models. Ultrason Sonochem. 2021;77:105700. doi: 10.1016/j.ultsonch.2021.105700.
  • Raj GB, Dash KK. Ultrasound-assisted extraction of phytocompounds from dragon fruit peel: optimization, kinetics and thermodynamic studies. Ultrason Sonochem. 2020;68:105180.
  • Nisha A, Udaya Sankar K, Venkateswaran G. Supercritical CO2 extraction of Mortierella alpina single cell oil: comparison with organic solvent extraction. Food Chem. 2012;133:220–226. doi: 10.1016/j.foodchem.2011.12.081.
  • Pasquali I, Bettini R, Giordano F. Supercritical fluid technologies: an innovative approach for manipulating the solid-state of pharmaceuticals. Adv Drug Del Rev. 2008;60:399–410. doi: 10.1016/j.addr.2007.08.030.
  • Fathordoobady F, Mirhosseini H, Selamat J, et al. Effect of solvent type and ratio on betacyanins and antioxidant activity of extracts from Hylocereus polyrhizus flesh and peel by supercritical fluid extraction and solvent extraction. Food Chem. 2016;202:70–80. doi: 10.1016/j.foodchem.2016.01.121.
  • Usmani Z, Sharma M, Tripathi M, et al. Biobased natural deep eutectic system as versatile solvents: structure, ­interaction and advanced applications. Sci Total Environm. 2023;881:163002. doi: 10.1016/j.scitotenv.2023.163002.
  • Al-Battashi HS, Annamalai N, Sivakumar N, et al. Lignocellulosic biomass (LCB): a potential alternative biorefinery feedstock for polyhydroxyalkanoates. Rev Environ Sci Biotechnol. 2019;18:183–205. doi: 10.1007/s11157-018-09488-4.
  • Gupta R, Sharma KK, Kuhad RC. Separate hydrolysis and fermentation (SHF) of Prosopis juliflora, a woody substrate, for the production of cellulosic ethanol by Saccharomyces cerevisiae and Pichia stipitis-NCIM 3498. Biores Technol. 2009;100:1214–1220. doi: 10.1016/j.biortech.2008.08.033.
  • Segundo R-F, Benites SM, De L, et al. Impact of dragon fruit waste in microbial fuel cells to generate friendly electric energy. Sustainability. 2023;15:7316. doi: 10.3390/su15097316.
  • Bhatia SK, Joo HSS, Yang YHH. Biowaste-to-bioenergy using biological methods—a mini-review. Energy Convers Manag. 2018;177:640–660. doi: 10.1016/j.enconman.2018.09.090.
  • Aili Hamzah AF, Hamzah MH, Ahmad Mazlan FN, et al. Anaerobic co-digestion of pineapple wastes with cow dung: effect of different total solid content on bio-methane yield. Adv Agri Food Res J. 2020;1:a0000109.
  • Martino M, Ruocco C, Meloni E, et al. Main hydrogen production processes: an overview. Catalysts. 2021;11:547. doi: 10.3390/catal11050547.
  • García-Depraect O, Munoz R, Rodríguez E, et al. Microbial ecology of a lactate-driven dark fermentation process producing hydrogen under carbohydrate-limiting conditions. Int J Hydrogen Energy. 2021;46:11284–11296. doi: 10.1016/j.ijhydene.2020.08.209.
  • Foong SY, Chan YH, Cheah WY, et al. Progress in waste valorization using advanced pyrolysis techniques for hydrogen and gaseous fuel production. Bioresour Technol. 2021;320:124299. doi: 10.1016/j.biortech.2020.124299.
  • Khandaker MM, Abdullahi UA, Abdulrahman MD, et al. Bio-ethanol production from fruit and vegetable waste by using Saccharomyces cerevisiae. In: Inambao F, ed. Bioethanol technologies. London: intech Open; 2020. doi: 10.5772/intechopen.94358.
  • Sadh PK, Kumar S, Chawla P, et al. Fermentation: a boon for production of bioactive compounds by processing of food industries wastes (by-products). Molecules. 2018;23:2560. doi: 10.3390/molecules23102560.
  • Tsai HJ, Liu CC. Application of the taguchi method to develop pitaya fruit bread with optimal color, volume, and taste. JFNR. 2022;10:357–365. doi: 10.12691/jfnr-10-5-4.
  • Batori V. Fruit wastes to biomaterials, development of biofilms and 3D objects in a circular economy system, Thesis submitted for the Degree of Doctor of Philosophy, University of Boras, Sweden, 2019; ISBN 978-91-88838-21-6.
  • Kyawt M, Thu M, NyiTun Z. Bioplastics from fruit waste. Int J Adv Sci Res Eng. 2019;5:209–215.
  • Truong TCT, Kobayashi T, Faculty of Environmental Sciences, University of Science, Vietnam National University, Ho Chi Minh city, Vietnam. Pectin bioplastic films regenerated from dragon fruit peels. VJSTE. 2020;62:18–22. doi: 10.31276/VJSTE.62(4).18-22.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.