379
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Pulmonary delivery systems for antimicrobial peptides

ORCID Icon, , & ORCID Icon
Received 13 Mar 2023, Accepted 17 Jul 2023, Published online: 20 Sep 2023

References

  • Butler MS, Gigante V, Sati H, et al. Analysis of the clinical pipeline of treatments for drug resistant bacterial infections: despite progress, more action is needed. Antimicrob Agents Chemother. 2022;66:e0199121.
  • Li J, Zheng H, Leung SSY. Pulmonary delivery of emerging antibacterials for bacterial lung infections treatment. Pharm Res. 2023;40:1057–1072. doi: 10.1007/s11095-022-03379-8.
  • Eldholm V, Balloux F. Antimicrobial resistance in mycobacterium tuberculosis: the odd one out. Trends Microbiol. 2016;24:637–648. doi: 10.1016/j.tim.2016.03.007.
  • Ciofu O, Tolker-Nielsen T, Jensen P, et al. Antimicrobial resistance, respiratory tract infections and role of biofilms in lung infections in cystic fibrosis patients. Adv Drug Deliv Rev. 2015;85:7–23. doi: 10.1016/j.addr.2014.11.017.
  • Klinger-Strobel M, Lautenschläger C, Fischer D, et al. Aspects of pulmonary drug delivery strategies for infections in cystic fibrosis – where do we stand? Expert Opin Drug Deliv. 2015;12:1351–1374. doi: 10.1517/17425247.2015.1007949.
  • Huang Z, Kłodzińska SN, Wan F, et al. Nanoparticle mediated pulmonary drug delivery: state of the art towards efficient treatment of recalcitrant respiratory tract bacterial infections. Drug Deliv Transl Res. 2021;11:1634–1654. doi: 10.1007/s13346-021-00954-1.
  • Garg M, Prabhakar N, Gulati A, et al. Spectrum of imaging findings in pulmonary infections. Part 1: bacterial and viral. Pol J Radiol. 2019;84:e205–e213. doi: 10.5114/pjr.2019.85812.
  • Gillet Y, Issartel B, Vanhems P, et al. Association between Staphylococcus aureus strains carrying gene for Panton–Valentine leukocidin and highly lethal necrotising pneumonia in young immunocompetent patients. Lancet. 2002;359:753–759. doi: 10.1016/S0140-6736(02)07877-7.
  • D'Anna SE, Maniscalco M, Cappello F, et al. Bacterial and viral infections and related inflammatory responses in chronic obstructive pulmonary disease. Ann Med. 2021;53:135–150. doi: 10.1080/07853890.2020.1831050.
  • Akinosoglou KS, Karkoulias K, Marangos M. Infectious complications in patients with lung cancer. Eur Rev Med Pharmacol Sci. 2013;17:8–18.
  • Halley A, Leonetti A, Gregori A, et al. The role of the microbiome in cancer and therapy efficacy: focus on lung cancer. Anticancer Res. 2020;40:4807–4818. doi: 10.21873/anticanres.14484.
  • Blair JMA, Webber MA, Baylay AJ, et al. Molecular mechanisms of antibiotic resistance. Nat Rev Microbiol. 2015;13:1–10.
  • Zaman SB, Hussain MA, Nye R, et al. A review on antibiotic resistance: alarm bells are ringing. Cureus. 2017;9:e1403. doi: 10.7759/cureus.1403.
  • Register OTF. 2018 CFR Annual Print Title 21 Food and Drugs Parts 300 to 499: intraWEB. Baton Rouge, LA: LLC and Claitor’s Law Publishing; 2018.
  • GBD 2019 Risk Factors Collaborators. Global burden of 87 risk factors in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet. 2020;396:1223–1249. doi: 10.1016/S0140-6736(20)30752-2.
  • Munita JM, Arias CA. Mechanisms of antibiotic resistance. Microbiol Spectr. 2016;4:1–37. doi: 10.1128/microbiolspec.VMBF-0016-2015.
  • Rončević T, Puizina J, Tossi A. Antimicrobial peptides as anti-infective agents in pre-post-antibiotic era? Int J Mol Sci. 2019;20:2713.
  • (i) Hancock REW, Haney EF, Gill EE. The immunology of host defence peptides: beyond antimicrobial activity. Nat Rev Immunol. 2016;16:321–334. doi: 10.1038/nri.2016.29. (ii) Mookherjee N, Anderson MA, Haagsman HP, et al. Antimicrobial and host defence peptides: functions and clinical potential. Nat Rev Drug Discov. 2020;19:311–332. doi: 10.1038/s41573-019-0058-8. (iii) Drayton M, Deisinger JP, Ludwig KC, et al. Host defense peptides: dual antimicrobial and immunomodulatory action. Int J Mol Sci. 2021;22:11172. doi: 10.3390/ijms222011172.
  • Nordström R, Malmsten M. Delivery systems for antimicrobial peptides. Adv Colloid Interface Sci. 2017;242:17–34. doi: 10.1016/j.cis.2017.01.005.
  • Omar A, Wright JB, Schultz G, et al. Microbial biofilms and chronic wounds. Microorganisms. 2017;5:9. doi: 10.3390/microorganisms5010009.
  • Wang Y, Chang RYK, Britton WJ, et al. Advances in the development of antimicrobial peptides and proteins for inhaled therapy. Adv Drug Deliv Rev. 2022;180:114066. doi: 10.1016/j.addr.2021.114066.
  • Chen C, Deslouches B, Montelaro RC, et al. Enhanced efficacy of the engineered antimicrobial peptides WLBU2 via direct airway delivery in a murine model of Pseudomonas aeruginosa pneumonia. Clin Microbiol Infect. 2018;24:547.e1–547.e8. doi: 10.1016/j.cmi.2017.08.029.
  • Forde E, Kelly G, Sweeney L, et al. Vibrating mesh nebulization of pro-antimicrobial peptides for use in cystic fibrosis. Pharmaceutics. 2019;11:239. doi: 10.3390/pharmaceutics11050239.
  • Forde E, Schütte A, Reeves E, et al. Differential in vitro and in vivo toxicities of antimicrobial peptide prodrugs for potential use in cystic fibrosis. Antimicrob Agents Chemother. 2016;60:2813–2821. doi: 10.1128/AAC.00157-16.
  • Kwok PCL, Grabarek A, Chow MYT, et al. Inhalable spray-dried formulation of D-LAK antimicrobial peptides targeting tuberculosis. Int J Pharm. 2015;491:367–374. doi: 10.1016/j.ijpharm.2015.07.001.
  • Simonson AW, Umstead TM, Lawanprasert A, et al. Extracellular matrix-inspired inhalable aerogels for rapid clearance of pulmonary tuberculosis. Biomaterials. 2021;273:120848. doi: 10.1016/j.biomaterials.2021.120848.
  • Garcia-Mouton C, Hidalgo A, Cruz A, et al. Barrier or carrier? Pulmonary surfactant and drug delivery. Eur J Pharm Biopharm. 2019;144:230–243. doi: 10.1016/j.ejpb.2019.09.020.
  • Guagliardo R, Perez-Gil J, De Smedt S, et al. Pulmonary surfactant and drug delivery: focusing on the role of surfactant proteins. J Control Release. 2018;291:116–126. doi: 10.1016/j.jconrel.2018.10.012.
  • Garcia-Mouton C, Parra-Ortiz E, Malmsten M, et al. Pulmonary surfactant and drug delivery: vehiculization of a tryptophan-tagged antimicrobial peptide over the air–liquid interfacial highway. Eur J Pharm Biopharm. 2022;180:33–47. doi: 10.1016/j.ejpb.2022.09.018.
  • Schmidtchen A, Ringstad L, Kasetty G, et al. Membrane selectivity by W-tagging of antimicrobial peptides. Biochim Biophys Acta. 2011;1808:1081–1091. doi: 10.1016/j.bbamem.2010.12.020.
  • Banaschewski BJ, Veldhuizen EJ, Keating E, et al. Antimicrobial and biophysical properties of surfactant supplemented with an antimicrobial peptide for treatment of bacterial pneumonia. Antimicrob Agents Chemother. 2015;59:3075–3083. doi: 10.1128/AAC.04937-14.
  • Banaschewski BJ, Baer B, Arsenault C, et al. The antibacterial and anti-inflammatory activity of chicken cathelicidin-2 combined with exogenous surfactant for the treatment of cystic fibrosis-associated pathogens. Sci Rep. 2017;7:15545. doi: 10.1038/s41598-017-15558-4.
  • Baer B, Veldhuizen EJ, Molchanova N, et al. Optimizing exogenous surfactant as a pulmonary delivery vehicle for chicken cathelicidin-2. Sci Rep. 2020;10:9392. doi: 10.1038/s41598-020-66448-1.
  • Souza LMP, Nascimento JB, Romeu AL, et al. Penetration of antimicrobial peptides in a lung surfactant model. Colloids Surf B Biointerfaces. 2018;167:345–353. doi: 10.1016/j.colsurfb.2018.04.030.
  • Souza FR, Souza LMP, Pimentel AS. Permeation of beta-defensin-3 encapsulated with polyethylene glycol in lung surfactant models at air–water interface. Colloids Surf B Biointerfaces. 2019;182:110357. doi: 10.1016/j.colsurfb.2019.110357.
  • Creane SE, Carlile SR, Downey D, et al. The impact of lung proteases on snake-derived antimicrobial peptides. Biomolecules. 2021;11:1106. doi: 10.3390/biom11081106.
  • Morris CJ, Beck K, Fox MA, et al. Pegylation of antimicrobial peptides maintains the active peptide conformation, model membrane interactions, and antimicrobial activity while improving lung tissue biocompatibility following airway delivery. Antimicrob Agents Chemother. 2012;56:3298–3308. doi: 10.1128/AAC.06335-11.
  • Singh S, Papareddy P, Mörgelin M, et al. Effects of PEGylation on membrane and lipopolysaccharide interactions of host defense peptides. Biomacromolecules. 2014;15:1337–1345. doi: 10.1021/bm401884e.
  • Ilyas H, van der Plas MJA, Agnoletti M, et al. Effect of PEGylation on host defense peptide complexation with bacterial lipopolysaccharide. Bioconjug Chem. 2021;32:1729–1741. doi: 10.1021/acs.bioconjchem.1c00259.
  • Nordström R, Nyström L, Andrén OCJ, et al. Membrane interactions of microgels as carriers of antimicrobial peptides. J Colloid Interface Sci. 2018;513:141–150. doi: 10.1016/j.jcis.2017.11.014.
  • Nyström L, Strömstedt AA, Schmidtchen A, et al. Peptide-loaded microgels as antimicrobial and anti-inflammatory surface coatings. Biomacromolecules. 2018;19:3456–3466. doi: 10.1021/acs.biomac.8b00776.
  • Nordström R, Andrén OCJ, Singh S, et al. Degradable dendritic nanogels as carriers for antimicrobial peptides. J Colloid Interface Sci. 2019;554:592–602. doi: 10.1016/j.jcis.2019.07.028.
  • Insua I, Zizmare L, Peacock AFA, et al. Polymyxin B containing polyion complex (PIC) nanoparticles: improving the antimicrobial activity by tailoring the degree of polymerization of the inert component. Sci Rep. 2017;7:9396. doi: 10.1038/s41598-017-09667-3.
  • Silva JP, Gonçalves C, Costa C, et al. Delivery of LLKKK18 loaded into self-assembling hyaluronic acid nanogel for tuberculosis treatment. J Control Release. 2016;235:112–124. doi: 10.1016/j.jconrel.2016.05.064.
  • d’Angelo I, Casciaro B, Miro A, et al. Overcoming barriers in Pseudomonas aeruginosa lung infections: engineered nanoparticles for local delivery of a cationic antimicrobial peptide. Colloids Surf B Biointerfaces. 2015;135:717–725. doi: 10.1016/j.colsurfb.2015.08.027.
  • Casciaro B, d‘Angelo I, Zhang X, et al. Poly(lactide-co-glycolide) nanoparticles for prolonged therapeutic efficacy of esculentin-1a-derived antimicrobial peptides against Pseudomonas aeruginosa lung infection: in vitro and in vivo studies. Biomacromolecules. 2019;20:1876–1888. doi: 10.1021/acs.biomac.8b01829.
  • Falciani C, Zevolini F, Brunetti J, et al. Antimicrobial peptide-loaded nanoparticles as inhalation therapy for Pseudomonas aeruginosa infections. Int J Nanomedicine. 2020;15:1117–1128. doi: 10.2147/IJN.S218966.
  • Song J, Cortez-Jugo C, Shirbin SJ, et al. Immobilization and intracellular delivery of structurally nanoengineered antimicrobial peptide polymers using polyphenol-based capsules. Adv Funct Mater. 2022;6:2107341.
  • Yang L, Liu Y, Wang N, et al. Albumin-based LL37 peptide nanoparticles as a sustained release system against Pseudomonas aeruginosa lung infection. ACS Biomater Sci Eng. 2021;7:1817–1826. doi: 10.1021/acsbiomaterials.0c01084.
  • Scutera S, Argenziano M, Sparti R, Bessone F, et al. Enhanced antimicrobial and antibiofilm effect of new colistin-loaded human albumin nanoparticles. Antibiotics. 2021;10:57. doi: 10.3390/antibiotics10010057.
  • Ngambenjawong C, Chan LW, Fleming HE, et al. Conditional antimicrobial peptide therapeutics. ACS Nano. 2022;16:15779–15791. doi: 10.1021/acsnano.2c04162.
  • Li T, Lu XM, Zhang MR, et al. Peptide-based nanomaterials: self-assembly, properties and applications. Bioact Mater. 2022;11:268–282. doi: 10.1016/j.bioactmat.2021.09.029.
  • Veiga AS, Sinthuvanich C, Gaspar D, et al. Arginine-rich self-assembling peptides as potent antibacterial gels. Biomaterials. 2012;33:8907–8916. doi: 10.1016/j.biomaterials.2012.08.046.
  • Salick DA, Pochan DJ, Schneider JP. Design of an injectable β-hairpin peptide hydrogel that kills methicillin-resistant Staphylococcus aureus. Adv Mater. 2009;21:4120–4123. doi: 10.1002/adma.200900189.
  • Xu D, Ran Q, Xiang Y, et al. Toward hemocompatible self-assembling antimicrobial nanofibers: understanding the synergistic effect of supramolecular structure and PEGylation on hemocompatibility. RSC Adv. 2016;6:15911–15919. doi: 10.1039/C5RA24553B.
  • Park S-C, Ko C, Hyeon H, et al. Imaging and targeted antimicrobial therapy using chimeric antimicrobial peptide micelles. ACS Appl Mater Interfaces. 2020;12:54306–54315. doi: 10.1021/acsami.0c13083.
  • Liu Y-H, Kuo S-C, Yao B-Y, et al. Colistin nanoparticle assembly by coacervate complexation with polyanionic peptides for treating drug-resistant Gram-negative bacteria. Acta Biomater. 2018;82:133–142. doi: 10.1016/j.actbio.2018.10.013.
  • Akram AR, Avlonitis N, Scholefield E, et al. Enhanced avidity from a multivalent fluorescent antimicrobial peptide enables pathogen detection in a human lung model. Sci Rep. 2019;9:8422. doi: 10.1038/s41598-019-44804-0.
  • Zhou C, Wang Y. Structure–activity relationship of cationic surfactants as antimicrobial agents. Adv Colloid Interface Sci. 2020;45:28–43. doi: 10.1016/j.cocis.2019.11.009.
  • Alzahrani NM, Booq RY, Aldossary AM, et al. Liposome-encapsulated tobramycin and IDR-1018 peptide mediated biofilm disruption and enhanced antimicrobial activity against Pseudomonas aeruginosa. Pharmaceutics. 2022;14:960. doi: 10.3390/pharmaceutics14050960.
  • Pastor M, Moreno-Sastre M, Esquisabel A, et al. Sodium colistimethate loaded lipid nanocarriers for the treatment of Pseudomonas aeruginosa infections associated with cystic fibrosis. Int J Pharm. 2014;477:485–494. doi: 10.1016/j.ijpharm.2014.10.048.
  • Sans-Serramitjana E, Fusté E, Martinez-Garriga B, et al. Killing effect of nanoencapsulated colistin sulfate on Pseudomonas aeruginosa from cystic fibrosis patients. J Cyst Fibros. 2016;15:611–618. doi: 10.1016/j.jcf.2015.12.005.
  • Braun K, Pochert A, Lindén M, et al. Membrane interactions of mesoporous silica nanoparticles as carriers of antimicrobial peptides. J Colloid Interface Sci. 2016;475:161–170. doi: 10.1016/j.jcis.2016.05.002.
  • Malekkhaiat Häffner S, Parra-Ortiz E, Browning KL, et al. Membrane interactions of virus-like mesoporous silica nanoparticles. ACS Nano. 2021;15:6787–6800. doi: 10.1021/acsnano.0c10378.
  • Flynn J, Mallen S, Durack E, et al. Mesoporous matrices for the delivery of the broad spectrum bacteriocin, nisin A. J Colloid Interface Sci. 2019;537:396–406. doi: 10.1016/j.jcis.2018.11.037.
  • Malekkhaiat-Häffner S, Nyström L, Browning K, et al. Interaction of laponite with membrane components – consequences for bacterial aggregation and infection confinement. ACS Appl Mater Interfaces. 2019;11:15389–15400. doi: 10.1021/acsami.9b03527.
  • Yu Q, Deng T, Lin FC, et al. Supramolecular assemblies of heterogeneous mesoporous silica nanoparticles to co-deliver antimicrobial peptides and antibiotics for synergistic eradication of pathogenic biofilms. ACS Nano. 2020;14:5926–5937. doi: 10.1021/acsnano.0c01336.
  • Beitzinger B, Gerbl F, Vomhof T, et al. Delivery by dendritic mesoporous silica nanoparticles enhances the antimicrobial activity of a napsin-derived peptide against intracellular Mycobacterium tuberculosis. Adv Healthcare Mater. 2021;10:2100453.
  • Tenland E, Pochert A, Krishnan N, et al. Effective delivery of the anti-mycobacterial peptide NZX in mesoporous silica nanoparticles. PLOS One. 2019;14:e02112858. doi: 10.1371/journal.pone.0212858.
  • Rathnayake K, Patel U, Pham C, et al. Targeted delivery of antibiotic therapy to inhibit Pseudomonas aeruginosa using lipid-coated mesoporous silica core-shell nanoassembly. ACS Appl Bio Mater. 2020;3:6708–6721. doi: 10.1021/acsabm.0c00622.
  • Jin Y, Kim D, Roh H, et al. Tracking the fate of porous silicon nanoparticles delivering a peptide payload by intrinsic photoluminescence lifetime. Adv Mater. 2018;30:e1802878. doi: 10.1002/adma.201802878.
  • Iafisco M, Carella F, Degli Esposti L, et al. Biocompatible antimicrobial colistin loaded calcium phosphate nanoparticles for the counteraction of biofilm formation in cystic fibrosis related infections. J Inorg Biochem. 2022;230:111751. doi: 10.1016/j.jinorgbio.2022.111751.
  • Scherließ R, Bock S, Bungert N, et al. Particle engineering in dry powders for inhalation. Eur J Pharm Sci. 2022;172:106158. doi: 10.1016/j.ejps.2022.106158.
  • Joo HS, Fu CL, Otto M. Bacterial strategies of resistance to antimicrobial peptides. Philos Trans R Soc Lond B Biol Sci. 2016;371:20150292. doi: 10.1098/rstb.2015.0292.
  • Sommer MOA, Munck C, Toft-Kehler RV, et al. Prediction of antibiotic resistance: time for a new preclinical paradigm? Nat Rev Microbiol. 2017;15:689–696. doi: 10.1038/nrmicro.2017.75.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.