641
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Field and laboratory guidelines for reliable bioinformatic and statistical analysis of bacterial shotgun metagenomic data

, , , &
Received 24 Jan 2023, Accepted 27 Jun 2023, Published online: 20 Sep 2023

References

  • Cullen CM, Aneja KK, Beyhan S, et al. Emerging priorities for microbiome research. Front Microbiol. 2020;11:136. doi: 10.3389/fmicb.2020.00136.
  • Conrads G, Abdelbary MMH. Challenges of next-generation sequencing targeting anaerobes. Anaerobe. 2019;58:47–52. doi: 10.1016/j.anaerobe.2019.02.006.
  • Callahan BJ, McMurdie PJ, Rosen MJ, et al. DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13:581–583. doi: 10.1038/nmeth.3869.
  • Větrovský T, Baldrian P. The variability of the 16S rRNA gene in bacterial genomes and its consequences for bacterial community analyses. PLOS One. 2013;8:e57923. doi: 10.1371/journal.pone.0057923.
  • Zepeda Mendoza ML, Sicheritz-Pontén T, Gilbert MTP. Environmental genes and genomes: understanding the differences and challenges in the approaches and software for their analyses. Brief Bioinform. 2015;16:745–758. doi: 10.1093/bib/bbv001.
  • Nayfach S, Pollard KS. Toward accurate and quantitative comparative metagenomics. Cell. 2016;166:1103–1116. doi: 10.1016/j.cell.2016.08.007.
  • Durazzi F, Sala C, Castellani G, et al. Comparison between 16S rRNA and shotgun sequencing data for the taxonomic characterization of the gut microbiota. Sci Rep. 2021;11:3030. doi: 10.1038/s41598-021-82726-y.
  • Brown SM, Chen H, Hao Y, et al. MGS-Fast: metagenomic shotgun data fast annotation using microbial gene catalogs. Gigascience. 2019;8:giz020. doi: 10.1093/gigascience/giz020.
  • Sczyrba A, Hofmann P, Belmann P, et al. Critical assessment of metagenome interpretation—a benchmark of metagenomics software. Nat Methods. 2017;14:1063–1071. doi: 10.1038/nmeth.4458.
  • Ye SH, Siddle KJ, Park DJ, et al. Benchmarking metagenomics tools for taxonomic classification. Cell. 2019;178:779–794. doi: 10.1016/j.cell.2019.07.010.
  • Han D, Gao P, Li R, et al. Multicenter assessment of microbial community profiling using 16S rRNA gene sequencing and shotgun metagenomic sequencing. J Adv Res. 2020;26:111–121. doi: 10.1016/j.jare.2020.07.010.
  • Sala C, Mordhorst H, Grützke J, et al. Metagenomics-based proficiency test of smoked salmon spiked with a mock community. Microorganisms. 2020;8:1861. doi: 10.3390/microorganisms8121861.
  • Bharti R, Grimm DG. Current challenges and best-practice protocols for microbiome analysis. Brief Bioinform. 2021;22:178–193. doi: 10.1093/bib/bbz155.
  • Quince C, Walker AW, Simpson JT, et al. Shotgun metagenomics, from sampling to analysis. Nat Biotechnol. 2017;35:833–844. doi: 10.1038/nbt.3935.
  • Wooley JC, Ye Y. Metagenomics: facts and artifacts, and computational challenges. J Comput Sci Technol. 2009;25:71–81. doi: 10.1007/s11390-010-9306-4.
  • Liang X, Bushman FD, FitzGerald GA. Rhythmicity of the intestinal microbiota is regulated by gender and the host circadian clock. Proc Natl Acad Sci U S A. 2015;112:10479–10484. doi: 10.1073/pnas.1501305112.
  • Probandt D, Eickhorst T, Ellrott A, et al. Microbial life on a sand grain: from bulk sediment to single grains. ISME J. 2018;12:623–633. doi: 10.1038/ismej.2017.197.
  • Sessitsch A, Weilharter A, Gerzabek MH, et al. Microbial population structures in soil particle size fractions of a long-term fertilizer field experiment. Appl Environ Microbiol. 2001;67:4215–4224. doi: 10.1128/AEM.67.9.4215-4224.2001.
  • Yan W, Sun C, Zheng J, et al. Efficacy of fecal sampling as a gut proxy in the study of chicken gut microbiota. Front Microbiol. 2019;10:2126. doi: 10.3389/fmicb.2019.02126.
  • Fofanov VY, Furstenau TN, Sanchez D, et al. Guano exposed: impact of aerobic conditions on bat fecal microbiota. Ecol Evol. 2018;8:5563–5574. doi: 10.1002/ece3.4084.
  • Wong K, Shaw TI, Oladeinde A, et al. Rapid microbiome changes in freshly deposited cow feces under field conditions. Front Microbiol. 2016;7:500. doi: 10.3389/fmicb.2016.00500.
  • Ji BW, Sheth RU, Dixit PD, et al. Quantifying spatiotemporal variability and noise in absolute microbiota abundances using replicate sampling. Nat Methods. 2019;16:731–736. doi: 10.1038/s41592-019-0467-y.
  • Menke S, Meier M, Sommer S. Shifts in the gut microbiome observed in wildlife faecal samples exposed to natural weather conditions: lessons from time-series analyses using next-generation sequencing for application in field studies. Methods Ecol Evol. 2015;6:1080–1087. doi: 10.1111/2041-210X.12394.
  • Griffin TW, Baer JG, Ward JE. Direct comparison of fecal and gut microbiota in the blue mussel (Mytilus edulis) discourages fecal sampling as a proxy for resident gut community. Microb Ecol. 2021;81:180–192. doi: 10.1007/s00248-020-01553-2.
  • Wu W-K, Chen C-C, Panyod S, et al. Optimization of fecal sample processing for microbiome study – the journey from bathroom to bench. J Formos Med Assoc. 2019;118:545–555. doi: 10.1016/j.jfma.2018.02.005.
  • Vandeputte D, Falony G, Vieira-Silva S, et al. Stool consistency is strongly associated with gut microbiota richness and composition, enterotypes and bacterial growth rates. Gut. 2016;65:57–62. doi: 10.1136/gutjnl-2015-309618.
  • Tkacz A, Hortala M, Poole PS. Absolute quantitation of microbiota abundance in environmental samples. Microbiome. 2018;6:110. doi: 10.1186/s40168-018-0491-7.
  • Dahlberg J, Sun L, Persson Waller K, et al. Microbiota data from low biomass milk samples is markedly affected by laboratory and reagent contamination. PLOS One. 2019;14:e0218257. doi: 10.1371/journal.pone.0218257.
  • Karstens L, Asquith M, Caruso V, et al. Community profiling of the urinary microbiota: considerations for low-biomass samples. Nat Rev Urol. 2018;15:735–749. doi: 10.1038/s41585-018-0104-z.
  • Hirai M, Nishi S, Tsuda M, et al. Library construction from subnanogram DNA for pelagic sea water and deep-sea sediments. Microbes Environ. 2017;32:336–343. doi: 10.1264/jsme2.ME17132.
  • Kemp BM, Winters M, Monroe C, et al. How much DNA is lost? Measuring DNA loss of short-tandem-repeat length fragments targeted by the PowerPlex 16® system using the Qiagen MinElute Purification Kit. Hum Biol. 2014;86:313–329.
  • Tang J, Ostrander J, Wickenheiser R, et al. Touch DNA in forensic science: the use of laboratory-created eccrine fingerprints to quantify DNA loss. Forensic Sci Int Synerg. 2020;2:1–16. doi: 10.1016/j.fsisyn.2019.10.004.
  • Gaillard C, Strauss F. Avoiding adsorption of DNA to polypropylene tubes and denaturation of short DNA fragments. Technical Tips Online. 1998;3:63–65. doi: 10.1016/S1366-2120(08)70101-6.
  • Deiner K, Bik HM, Mächler E, et al. Environmental DNA metabarcoding: transforming how we survey animal and plant communities. Mol Ecol. 2017;26:5872–5895. doi: 10.1111/mec.14350.
  • Salter SJ, Cox MJ, Turek EM, et al. Reagent and laboratory contamination can critically impact sequence-based microbiome analyses. BMC Biol. 2014;12:87. doi: 10.1186/s12915-014-0087-z.
  • Browne HP, Forster SC, Anonye BO, et al. Culturing of “unculturable” human microbiota reveals novel taxa and extensive sporulation. Nature. 2016;533:543–546. doi: 10.1038/nature17645.
  • Hindson CM, Chevillet JR, Briggs HA, et al. Absolute quantification by droplet digital PCR versus analog real-time PCR. Nat Methods. 2013;10:1003–1005. doi: 10.1038/nmeth.2633.
  • Eisenhofer R, Minich JJ, Marotz C, et al. Contamination in low microbial biomass microbiome studies: issues and recommendations. Trends Microbiol. 2019;27:105–117. doi: 10.1016/j.tim.2018.11.003.
  • Kennedy KM, de Goffau MC, Perez-Muñoz ME, et al. Questioning the fetal microbiome illustrates pitfalls of low-biomass microbial studies. Nature. 2023;613:639–649. doi: 10.1038/s41586-022-05546-8.
  • Kennedy K, Hall MW, Lynch MDJ, et al. Evaluating bias of illumina-based bacterial 16S rRNA gene profiles. Appl Environ Microbiol. 2014;80:5717–5722. doi: 10.1128/AEM.01451-14.
  • Schiebelhut LM, Abboud SS, Gómez Daglio LE, et al. A comparison of DNA extraction methods for high‐throughput DNA analyses. Mol Ecol Resour. 2017;17:721–729. doi: 10.1111/1755-0998.12620.
  • Carøe C, Gopalakrishnan S, Vinner L, et al. Single-tube library preparation for degraded DNA. Methods Ecol Evol. 2018;9:410–419. doi: 10.1111/2041-210X.12871.
  • Neiman M, Sundling S, Grönberg H, et al. Library preparation and multiplex capture for massive parallel sequencing applications made efficient and easy. PLOS One. 2012;7:e48616. doi: 10.1371/journal.pone.0048616.
  • Hoppers A, Apone L, Panchapakesa V, et al. A robust, streamlined, enzyme-based DNA library preparation method amenable to a wide range of DNA inputs. J Biomol Techn. 2019;30:S2.
  • Solonenko SA, Ignacio-Espinoza JC, Alberti A, et al. Sequencing platform and library preparation choices impact viral metagenomes. BMC Genomics. 2013;14:320. doi: 10.1186/1471-2164-14-320.
  • Thompson LR, Sanders JG, McDonald D, et al. A communal catalogue reveals Earth’s multiscale microbial diversity. Nature. 2017;551:457–463. doi: 10.1038/­nature24621.
  • Chao A, Kubota Y, Zelený D, et al. Quantifying sample completeness and comparing diversities among assemblages. Ecol Res. 2020;35:292–314. doi: 10.1111/1440-1703.12102.
  • Milanese A, Mende DR, Paoli L, et al. Microbial abundance, activity and population genomic profiling with mOTUs2. Nat Commun. 2019;10:1014. doi: 10.1038/s41467-019-08844-4.
  • Chao A, Jost L. Coverage-based rarefaction and extrapolation: standardizing samples by completeness rather than size. Ecology. 2012;93:2533–2547. doi: 10.1890/11-1952.1.
  • Albertsen M, Hugenholtz P, Skarshewski A, et al. Genome sequences of rare, uncultured bacteria obtained by differential coverage binning of multiple metagenomes. Nat Biotechnol. 2013;31:533–538. doi: 10.1038/nbt.2579.
  • Marotz CA, Sanders JG, Zuniga C, et al. Improving saliva shotgun metagenomics by chemical host DNA depletion. Microbiome. 2018;6:42. doi: 10.1186/s40168-018-0426-3.
  • Selway CA, Eisenhofer R, Weyrich LS. Microbiome applications for pathology: challenges of low microbial biomass samples during diagnostic testing. J Pathol Clin Res. 2020;6:97–106. doi: 10.1002/cjp2.151.
  • Hacquard S, Garrido-Oter R, González A, et al. Microbiota and host nutrition across plant and animal kingdoms. Cell Host Microbe. 2015;17:603–616. doi: 10.1016/j.chom.2015.04.009.
  • Alberdi A, Aizpurua O, Gilbert MTP, et al. Scrutinizing key steps for reliable metabarcoding of environmental samples. Methods Ecol Evol. 2018;9:134–147. doi: 10.1111/2041-210X.12849.
  • Horz H-P, Scheer S, Huenger F, et al. Selective isolation of bacterial DNA from human clinical specimens. J Microbiol Methods. 2008;72:98–102. doi: 10.1016/j.mimet.2007.10.007.
  • Wen Y, Xiao F, Wang C, et al. The impact of different methods of DNA extraction on microbial community measures of BALF samples based on metagenomic data. Am J Transl Res. 2016;8:1412–1425.
  • Blekhman R, Goodrich JK, Huang K, et al. Host genetic variation impacts microbiome composition across human body sites. Genome Biol. 2015;16:191. doi: 10.1186/s13059-015-0759-1.
  • Marcos S, Parejo M, Estonba A, et al. Recovering high‐quality host genomes from gut metagenomic data through genotype imputation. Adv Genet. 2022;3:2100065. doi: 10.1002/ggn2.202100065.
  • Nyholm L, Koziol A, Marcos S, et al. Holo-omics: integrated host–microbiota multi-omics for basic and applied biological research. iScience. 2020;23:101414. doi: 10.1016/j.isci.2020.101414.
  • Alberdi A, Andersen SB, Limborg MT, et al. Disentangling host–microbiota complexity through hologenomics. Nat Rev Genet. 2022;23:281–297. doi: 10.1038/s41576-021-00421-0.
  • Knapp M, Hofreiter M. Next generation sequencing of ancient DNA: requirements, strategies and perspectives. Genes. 2010;1:227–243. doi: 10.3390/genes1020227.
  • Kapp JD, Green RE, Shapiro B. A fast and efficient single-stranded genomic library preparation method optimized for ancient DNA. J Hered. 2021;112:241–249. doi: 10.1093/jhered/esab012.
  • Bjerre RD, Hugerth LW, Boulund F, et al. Effects of sampling strategy and DNA extraction on human skin microbiome investigations. Sci Rep. 2019;9:17287. doi: 10.1038/s41598-019-53599-z.
  • Mitra A, MacIntyre DA, Mahajan V, et al. Comparison of vaginal microbiota sampling techniques: cytobrush versus swab. Sci Rep. 2017;7:9802. doi: 10.1038/s41598-017-09844-4.
  • Ogai K, Nagase S, Mukai K, et al. A comparison of techniques for collecting skin microbiome samples: swabbing versus tape-stripping. Front Microbiol. 2018;9:2362. doi: 10.3389/fmicb.2018.02362.
  • Pérez-Losada M, Crandall KA, Freishtat RJ. Two sampling methods yield distinct microbial signatures in the nasopharynges of asthmatic children. Microbiome. 2016;4:25. doi: 10.1186/s40168-016-0170-5.
  • Prast-Nielsen S, Tobin A-M, Adamzik K, et al. Investigation of the skin microbiome: swabs vs. biopsies. Br J Dermatol. 2019;181:572–579. doi: 10.1111/bjd.17691.
  • Spens J, Evans AR, Halfmaerten D, et al. Comparison of capture and storage methods for aqueous macrobial eDNA using an optimized extraction protocol: advantage of enclosed filter. Methods Ecol Evol. 2017;8:635–645. doi: 10.1111/2041-210X.12683.
  • Carroll IM, Ringel-Kulka T, Siddle JP, et al. Characterization of the fecal microbiota using high-throughput sequencing reveals a stable microbial community during storage. PLOS One. 2012;7:e46953. doi: 10.1371/journal.pone.0046953.
  • Guo Y, Li S-H, Kuang Y-S, et al. Effect of short-term room temperature storage on the microbial community in infant fecal samples. Sci Rep. 2016;6:26648. doi: 10.1038/srep26648.
  • Hickl O, Heintz-Buschart A, Trautwein-Schult A, et al. Sample preservation and storage significantly impact taxonomic and functional profiles in metaproteomics studies of the human gut microbiome. Microorganisms. 2019;7:367. doi: 10.3390/microorganisms7090367.
  • Nel Van Zyl K, Whitelaw AC, Newton-Foot M. The effect of storage conditions on microbial communities in stool. PLOS One. 2020;15:e0227486. doi: 10.1371/journal.pone.0227486.
  • Poulsen CS. The effect of sample processing on microbiomes using metagenomics characterization; 2019. Available from: https://orbit.dtu.dk/en/publications/the-effect-of-sample-processing-on-microbiomes-using-metagenomics
  • Fouhy F, Deane J, Rea MC, et al. The effects of freezing on faecal microbiota as determined using MiSeq sequencing and culture-based investigations. PLOS One. 2015;10:e0119355. doi: 10.1371/journal.pone.0119355.
  • Adler CJ, Haak W, Donlon D, et al. Survival and recovery of DNA from ancient teeth and bones. J Archaeol Sci. 2011;38:956–964. doi: 10.1016/j.jas.2010.11.010.
  • Dippenaar A, Ismail N, Grobbelaar M, et al. Optimizing liquefaction and decontamination of sputum for DNA extraction from Mycobacterium tuberculosis. Tuberculosis. 2022;132:102159. doi: 10.1016/j.tube.2021.102159.
  • Wiehlmann L, Pienkowska K, Hedtfeld S, et al. Impact of sample processing on human airways microbial metagenomes. J Biotechnol. 2017;250:51–55. doi: 10.1016/j.jbiotec.2017.01.001.
  • Tedjo DI, Jonkers DMAE, Savelkoul PH, et al. The effect of sampling and storage on the fecal microbiota composition in healthy and diseased subjects. PLOS One. 2015;10:e0126685. doi: 10.1371/journal.pone.0126685.
  • Asangba AE, Donohue ME, Lamb A, et al. Variations in the microbiome due to storage preservatives are not large enough to obscure variations due to factors such as host population, host species, body site, and captivity. Am J Primatol. 2019;81:e23045. doi: 10.1002/ajp.23045.
  • Byrd DA, Sinha R, Hoffman KL, et al. Comparison of methods to collect fecal samples for microbiome studies using whole-genome shotgun metagenomic sequencing. mSphere. 2020;5:e00827-19. doi: 10.1128/mSphere.00827-19.
  • Menke S, Gillingham MAF, Wilhelm K, et al. Home-made cost effective preservation buffer is a better alternative to commercial preservation methods for microbiome research. Front Microbiol. 2017;8:102. doi: 10.3389/fmicb.2017.00102.
  • Schnorr SL, Candela M, Rampelli S, et al. Gut microbiome of the Hadza hunter–gatherers. Nat Commun. 2014;5:3654. doi: 10.1038/ncomms4654.
  • Cuthbertson L, Rogers GB, Walker AW, et al. Implications of multiple freeze-thawing on respiratory samples for culture-independent analyses. J Cyst Fibros. 2015;14:464–467. doi: 10.1016/j.jcf.2014.10.004.
  • Corcoll N, Österlund T, Sinclair L, et al. Comparison of four DNA extraction methods for comprehensive assessment of 16S rRNA bacterial diversity in marine biofilms using high-throughput sequencing. FEMS Microbiol Lett. 2017;364. doi: 10.1093/femsle/fnx139.
  • Costea PI, Zeller G, Sunagawa S, et al. Towards standards for human fecal sample processing in metagenomic studies. Nat Biotechnol. 2017;35:1069–1076. doi: 10.1038/nbt.3960.
  • Douglas CA, Ivey KL, Papanicolas LE, et al. DNA extraction approaches substantially influence the assessment of the human breast milk microbiome. Sci Rep. 2020;10:123. doi: 10.1038/s41598-019-55568-y.
  • Fiedorová K, Radvanský M, Němcová E, et al. The impact of DNA extraction methods on stool bacterial and fungal microbiota community recovery. Front Microbiol. 2019;10:821. doi: 10.3389/fmicb.2019.00821.
  • Knudsen BE, Bergmark L, Munk P, et al. Impact of sample type and DNA isolation procedure on genomic inference of microbiome composition. mSystems. 2016;1:e00095-16. doi: 10.1128/mSystems.00095-16.
  • Mallott EK, Malhi RS, Amato KR. Assessing the comparability of different DNA extraction and amplification methods in gut microbial community profiling. Access Microbiol. 2019;1:e000060. doi: 10.1099/acmi.0.000060.
  • Shi XJ, Liu G, Zhang M, et al. Membrane-sensitive bacterial DNA extractions and absolute quantitation of recovery efficiencies. Sci Total Environ. 2020;708:135125. doi: 10.1016/j.scitotenv.2019.135125.
  • Starke R, Jehmlich N, Alfaro T, et al. Incomplete cell disruption of resistant microbes. Sci Rep. 2019;9:5618. doi: 10.1038/s41598-019-42188-9.
  • Sui H-Y, Weil AA, Nuwagira E, et al. Impact of DNA extraction method on variation in human and built environment microbial community and functional profiles assessed by shotgun metagenomics sequencing. Front Microbiol. 2020;11:953. doi: 10.3389/fmicb.2020.00953.
  • Wesolowska-Andersen A, Bahl MI, Carvalho V, et al. Choice of bacterial DNA extraction method from fecal material influences community structure as evaluated by metagenomic analysis. Microbiome. 2014;2:19. doi: 10.1186/2049-2618-2-19.
  • Sasada R, Weinstein M, Danko D, et al. Progress towards standardizing metagenomics: applying metagenomic reference material to develop reproducible microbial lysis methods with minimum bias. J Biomol Techn. 2020;31:S30.
  • Gobbi A, Santini RG, Filippi E, et al. Quantitative and qualitative evaluation of the impact of the G2 enhancer, bead sizes and lysing tubes on the bacterial community composition during DNA extraction from recalcitrant soil core samples based on community sequencing and qPCR. PLOS One. 2019;14:e0200979. doi: 10.1371/journal.pone.0200979.
  • Guo F, Zhang T. Biases during DNA extraction of activated sludge samples revealed by high throughput sequencing. Appl Microbiol Biotechnol. 2013;97:4607–4616. doi: 10.1007/s00253-012-4244-4.
  • Lim MY, Song E-J, Kim SH, et al. Comparison of DNA extraction methods for human gut microbial community profiling. Syst Appl Microbiol. 2018;41:151–157. doi: 10.1016/j.syapm.2017.11.008.
  • Tourlousse DM, Narita K, Miura T, et al. Validation and standardization of DNA extraction and library construction methods for metagenomics-based human fecal microbiome measurements. Microbiome. 2021;9:95. doi: 10.1186/s40168-021-01048-3.
  • Thomas V, Clark J, Doré J. Fecal microbiota analysis: an overview of sample collection methods and sequencing strategies. Future Microbiol. 2015;10:1485–1504. doi: 10.2217/fmb.15.87.
  • Zhang B, Brock M, Arana C, et al. Impact of bead-beating intensity on microbiome recovery in mouse and human stool: optimization of DNA extraction. bioRxiv. 2020. doi: 10.1101/2020.06.15.151753.
  • Salonen A, Nikkilä J, Jalanka-Tuovinen J, et al. Comparative analysis of fecal DNA extraction methods with phylogenetic microarray: effective recovery of bacterial and archaeal DNA using mechanical cell lysis. J Microbiol Methods. 2010;81:127–134. doi: 10.1016/j.mimet.2010.02.007.
  • Schrader C, Schielke A, Ellerbroek L, et al. PCR inhibitors – occurrence, properties and removal. J Appl Microbiol. 2012;113:1014–1026. doi: 10.1111/j.1365-2672.2012.05384.x.
  • Wilson IG. Inhibition and facilitation of nucleic acid amplification. Appl Environ Microbiol. 1997;63:3741–3751. doi: 10.1128/aem.63.10.3741-3751.1997.
  • Hu Q, Liu Y, Yi S, et al. A comparison of four methods for PCR inhibitor removal. Forensic Sci Int Genet. 2015;16:94–97. doi: 10.1016/j.fsigen.2014.12.001.
  • Tanaka N, Takahara A, Hagio T, et al. Sequencing artifacts derived from a library preparation method using enzymatic fragmentation. PLOS One. 2020;15:e0227427. doi: 10.1371/journal.pone.0227427.
  • Adey A, Morrison HG, Asan  , et al. Rapid, low-input, low-bias construction of shotgun fragment libraries by high-density in vitro transposition. Genome Biol. 2010;11(12):R119. doi: 10.1186/gb-2010-11-12-r119.
  • Gyarmati P, Song Y, Hällman J, et al. Chemical fragmentation for massively parallel sequencing library preparation. J Biotechnol. 2013;168:95–100. doi: 10.1016/j.jbiotec.2013.08.020.
  • Sambrook J, Russell DW. Fragmentation of DNA by sonication. CSH Protoc. 2006;2006. doi: 10.1101/pdb.prot4538.
  • Poptsova MS, Il’icheva IA, Nechipurenko DY, et al. Non-random DNA fragmentation in next-generation sequencing. Sci Rep. 2014;4:4532. doi: 10.1038/srep04532.
  • Bowers RM, Clum A, Tice H, et al. Impact of library preparation protocols and template quantity on the metagenomic reconstruction of a mock microbial community. BMC Genomics. 2015;16:856. doi: 10.1186/s12864-015-2063-6.
  • Jones MB, Highlander SK, Anderson EL, et al. Library preparation methodology can influence genomic and functional predictions in human microbiome research. Proc Natl Acad Sci U S A. 2015;112:14024–14029. doi: 10.1073/pnas.1519288112.
  • Poulsen CS, Pamp SJ, Ekstrøm CT, et al. Library preparation and sequencing platform introduce bias in metagenomics characterisation of microbial communities. Cold Spring Harbor Laboratory. 2019;592154. doi: 10.1101/592154.
  • Podnar J, Deiderick H, Hunicke-Smith S. Next-generation sequencing fragment library construction. Curr Protoc Mol Biol. 2014;107:7.17.1–7.17.16. doi: 10.1002/0471142727.mb0717s107.
  • Feng X, Cheng H, Portik D, et al. Metagenome assembly of high-fidelity long reads with hifiasm-meta. Nat Methods. 2022;19:671–674. doi: 10.1038/s41592-022-01478-3.
  • Sereika M, Kirkegaard RH, Karst SM, et al. Oxford Nanopore R10.4 long-read sequencing enables the generation of near-finished bacterial genomes from pure cultures and metagenomes without short-read or reference polishing. Nat Methods. 2022;19:823–826. doi: 10.1038/s41592-022-01539-7.
  • Browne PD, Nielsen TK, Kot W, et al. GC bias affects genomic and metagenomic reconstructions, underrepresenting GC-poor organisms. Gigascience. 2020;9:giaa008. doi: 10.1093/gigascience/giaa008.
  • Ratan A, Miller W, Guillory J, et al. Comparison of sequencing platforms for single nucleotide variant calls in a human sample. PLOS One. 2013;8:e55089. doi: 10.1371/journal.pone.0055089.
  • Mak SST, Gopalakrishnan S, Carøe C, et al. Comparative performance of the BGISEQ-500 vs Illumina HiSeq2500 sequencing platforms for palaeogenomic sequencing. Gigascience. 2017;6:1–13. doi: 10.1093/gigascience/gix049.
  • Schirmer M, Ijaz UZ, D'Amore R, et al. Insight into biases and sequencing errors for amplicon sequencing with the Illumina MiSeq platform. Nucleic Acids Res. 2015;43:e37. doi: 10.1093/nar/gku1341.
  • Albright S, Louca S. Trait biases in microbial reference genomes. Sci Data. 2023;10:84. doi: 10.1038/s41597-023-01994-7.
  • Cattonaro F, Spadotto A, Radovic S, et al. Do you cov me? Effect of coverage reduction on metagenome shotgun sequencing studies. F1000Res. 2018;7:1767. doi: 10.12688/f1000research.16804.4.
  • Hillmann B, Al-Ghalith GA, Shields-Cutler RR, et al. Evaluating the information content of shallow shotgun metagenomics. mSystems. 2018;3:e00069-18. doi: 10.1128/mSystems.00069-18.
  • Glassing A, Dowd SE, Galandiuk S, et al. Inherent bacterial DNA contamination of extraction and sequencing reagents may affect interpretation of microbiota in low bacterial biomass samples. Gut Pathog. 2016;8:24. doi: 10.1186/s13099-016-0103-7.
  • Karstens L, Asquith M, Davin S, et al. Controlling for contaminants in low-biomass 16S rRNA gene sequencing experiments. mSystems. 2019;4:e00290-19. doi: 10.1128/mSystems.00290-19.
  • Lauder AP, Roche AM, Sherrill-Mix S, et al. Comparison of placenta samples with contamination controls does not provide evidence for a distinct placenta microbiota. Microbiome. 2016;4:29. doi: 10.1186/s40168-016-0172-3.
  • Davis NM, Proctor DM, Holmes SP, et al. Simple statistical identification and removal of contaminant sequences in marker-gene and metagenomics data. Microbiome. 2018;6:226. doi: 10.1186/s40168-018-0605-2.
  • Knights D, Kuczynski J, Charlson ES, et al. Bayesian community-wide culture-independent microbial source tracking. Nat Methods. 2011;8:761–763. doi: 10.1038/nmeth.1650.
  • Sinha R, Abnet CC, White O, et al. The microbiome quality control project: baseline study design and future directions. Genome Biol. 2015;16:276. doi: 10.1186/s13059-015-0841-8.
  • Kim D, Hofstaedter CE, Zhao C, et al. Optimizing methods and dodging pitfalls in microbiome research. Microbiome. 2017;5:52. doi: 10.1186/s40168-017-0267-5.
  • Bálint M, Márton O, Schatz M, et al. Proper experimental design requires randomization/balancing of molecular ecology experiments. Ecol Evol. 2018;8:1786–1793. doi: 10.1002/ece3.3687.
  • Hurlbert SH. Pseudoreplication and the design of ecological field experiments. Ecol Monogr. 1984;54:187–211. doi: 10.2307/1942661.
  • Martí JM. Recentrifuge: robust comparative analysis and contamination removal for metagenomics. PLoS Comput Biol. 2019;15:e1006967. doi: 10.1371/journal.pcbi.1006967.
  • de Goffau MC, Stephen Charnock-Jones D, Smith GCS, et al. Batch effects account for the main findings of an in utero human intestinal bacterial colonization study. Microbiome. 2021;9:6. doi: 10.1186/s40168-020-00949-z.
  • Dai Z, Wong SH, Yu J, et al. Batch effects correction for microbiome data with Dirichlet-multinomial regression. Bioinformatics. 2019;35:807–814. doi: 10.1093/bioinformatics/bty729.
  • Gibbons SM, Duvallet C, Alm EJ. Correcting for batch effects in case-control microbiome studies. PLoS Comput Biol. 2018;14:e1006102. doi: 10.1371/journal.pcbi.1006102.
  • Tom JA, Reeder J, Forrest WF, et al. Identifying and mitigating batch effects in whole genome sequencing data. BMC Bioinformatics. 2017;18:351. doi: 10.1186/s12859-017-1756-z.
  • Chor B, Horn D, Goldman N, et al. Genomic DNA k-mer spectra: models and modalities. Genome Biol. 2009;10:R108. doi: 10.1186/gb-2009-10-10-r108.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.