2,192
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Arabinose as an overlooked sugar for microbial bioproduction of chemical building blocks

, ORCID Icon, , , , , , , & show all
Received 18 May 2023, Accepted 19 Sep 2023, Published online: 06 Nov 2023

References

  • Takkellapati S, Li T, Gonzalez MA. An overview of biorefinery-derived platform chemicals from a cellulose and hemicellulose biorefinery. Clean Technol Environ Policy. 2018;20:1615–1630. doi: 10.1007/s10098-018-1568-5.
  • Narisetty V, Cox R, Bommareddy R, et al. Valorisation of xylose to renewable fuels and chemicals, an essential step in augmenting the commercial viability of lignocellulosic biorefineries. Sustain Energy Fuels. 2021;6:29–65. doi: 10.1039/d1se00927c.
  • Agrawal D, Kumar V. Recent progress on sugarcane-bagasse based lactic acid production: technical advancements, potential and limitations. Ind Crops Prod. 2023;193:116132. doi: 10.1016/j.indcrop.2022.116132.
  • Bozell JJ, Petersen GR. Technology development for the production of biobased products from biorefinery carbohydrates—the US Department of Energy’s "Top 10" revisited. Green Chem. 2010;12:539–554. doi: 10.1039/b922014c.
  • Maity SK. Opportunities, recent trends and challenges of integrated biorefinery: part I. Renew Sustain Energy Rev. 2015;43:1427–1445. doi: 10.1016/j.rser.2014.11.092.
  • Maity SK. Opportunities, recent trends and challenges of integrated biorefinery: part II. Renew Sustain Energy Rev. 2015;43:1446–1466. doi: 10.1016/j.rser.2014.08.075.
  • Narisetty V, Narisetty S, Jacob S, et al. Biological production and recovery of 2,3-butanediol using arabinose from sugar beet pulp by Enterobacter ludwigii. Renew Energy. 2022;191:394–404. doi: 10.1016/j.renene.2022.04.024.
  • Alexandri M, Schneider R, Mehlmann K, et al. Recent advances in d-lactic acid production from renewable resources: case studies on agro-industrial waste streams. Food Technol Biotechnol. 2019;57:293–304. doi: 10.17113/ftb.57.03.19.6023.
  • Ko YS, Kim JW, Lee JA, et al. Tools and strategies of systems metabolic engineering for the development of microbial cell factories for chemical production. Chem Soc Rev. 2020;49:4615–4636. doi: 10.1039/d0cs00155d.
  • Liu Y, Tang Y, Gao H, et al. Challenges and future perspectives of promising biotechnologies for lignocellulosic biorefinery. Molecules. 2021;26:5411. doi: 10.3390/molecules26175411.
  • Fehér C. Novel approaches for biotechnological production and application of l-arabinose. J Carbohydr Chem. 2018;37:251–284. doi: 10.1080/07328303.2018.1491049.
  • Metz B, Mojzita D, Herold S, et al. A novel l-xylulose reductase essential for l-arabinose catabolism in Trichoderma reesei. Biochemistry. 2013;52:2453–2460. doi: 10.1021/bi301583u.
  • Francois JM, Alkim C, Morin N. Engineering microbial pathways for production of bio-based chemicals from lignocellulosic sugars: current status and perspectives. Biotechnol Biofuels. 2020;13:118. doi: 10.1186/s13068-020-01744-6.
  • Joanna B, Michal B, Piotr D, et al. Sugar beet pulp as a source of valuable biotechnological products. In: Holban AM, Grumezescu AM, editors. Advances in biotechnology for food industry. Academic Press; 2018. p. 359–392. doi: 10.1016/B978-0-12-811443-8.00013-X.
  • Ye S, Kim JW, Kim SR. Metabolic engineering for improved fermentation of l-arabinose. J Microbiol Biotechnol. 2019;29:339–346. doi: 10.4014/jmb.1812.12015.
  • Finkenstadt VL. A review on the complete utilization of the sugarbeet. Sugar Tech. 2014;16:339–346. doi: 10.1007/s12355-013-0285-y.
  • Ioannidou SM, Pateraki C, Ladakis D, et al. Sustainable production of bio-based chemicals and polymers via integrated biomass refining and bioprocessing in a circular bioeconomy context. Bioresour Technol. 2020;307:123093. doi: 10.1016/j.biortech.2020.123093.
  • Jin YS, Cruz J, Jeffries TW. Xylitol production by a Pichia stipitis d-xylulokinase mutant. Appl Microbiol Biotechnol. 2005;68:42–45. doi: 10.1007/s00253-004-1854-5.
  • Young E, Lee SM, Alper H. Optimizing pentose utilization in yeast: the need for novel tools and approaches. Biotechnol Biofuels. 2010;3:24 doi: 10.1186/1754-6834-3-24.
  • Van Maris AJ, Abbott DA, Bellissimi E, et al. Alcoholic fermentation of carbon sources in biomass hydrolysates by Saccharomyces cerevisiae: current status. Anton Van Leeuwenhoek. 2006;90:391–418. doi: 10.1007/s10482-006-9085-7.
  • Wisselink HW, Toirkens MJ, del Rosario Franco Berriel M, et al. Engineering of Saccharomyces cerevisiae for efficient anaerobic alcoholic fermentation of l-arabinose. Appl Environ Microbiol. 2007;73:4881–4891. doi: 10.1128/AEM.00177-07.
  • Zhang Z, Su B, Wu M, et al. Strategies for eliminating l-arabinitol in the bioconversion of xylitol. Process Biochem. 2016;51:1964–1972. doi: 10.1016/j.procbio.2016.08.027.
  • Kwak S, Jo JH, Yun EJ, et al. Production of biofuels and chemicals from xylose using native and engineered yeast strains. Biotechnol Adv. 2019;37:271–283. doi: 10.1016/j.biotechadv.2018.12.003.
  • Havukainen S, Pujol-Giménez J, Valkonen M, et al. Functional characterization of a highly specific l-arabinose transporter from Trichoderma reesei. Microb Cell Fact. 2021;20:1–20. doi: 10.1186/s12934-021-01666-4.
  • Bracher JM, Verhoeven MD, Wisselink HW, et al. The Penicillium chrysogenum transporter PcAraT enables high-affinity, glucose-insensitive l-arabinose transport in Saccharomyces cerevisiae. Biotechnol Biofuels. 2018;11:63. doi: 10.1186/s13068-018-1047-6.
  • Endalur Gopinarayanan V, Nair NU. Pentose metabolism in Saccharomyces cerevisiae: the need to engineer global regulatory systems. Biotechnol J. 2019;14:e1800364. doi: 10.1002/biot.201800364.
  • Dugar D, Stephanopoulos G. Relative potential of biosynthetic pathways for biofuels and bio-based products. Nat Biotechnol. 2011;29:1074–1078. doi: 10.1038/nbt.2055.
  • Kumar V, Park S. Potential and limitations of Klebsiella pneumoniae as a microbial cell factory utilizing glycerol as the carbon source. Biotechnol Adv. 2018;36:150–167. doi: 10.1016/j.biotechadv.2017.10.004.
  • Kumdam H, Narayana Murthy S, Gummadi SN. Production of ethanol and arabitol by Debaryomyces nepalensis: influence of process parameters. AMB Express. 2013;3:23. doi: 10.1186/2191-0855-3-23.
  • Kordowska-Wiater M. Production of arabitol by yeasts: current status and future prospects. J Appl Microbiol. 2015;119:303–314. doi: 10.1111/jam.12807.
  • Ravikumar Y, Razack SA, Ponpandian LN, et al. Microbial hosts for production of d-arabitol: current state-of-art and future prospects. Trends Food Sci Technol. 2022;120:100–110. doi: 10.1016/j.tifs.2021.12.029.
  • Gong CS, Claypool TA, McCracken LD, et al. Conversion of pentoses by yeasts. Biotechnol Bioeng. 1983;25:85–102. doi: 10.1002/bit.260250108.
  • Dien BS, Kurtzman CP, Saha BC, et al. Screening for l-arabinose fermenting yeasts. Appl Biochem Biotechnol. 1996;57–58:233–242. doi: 10.1007/BF02941704.
  • Saha BC, Bothast RJ. Production of l-arabitol from l-arabinose by Candida entomaea and Pichia guilliermondii. Appl Microbiol Biotechnol. 1996;45:299–306. doi: 10.1007/s002530050687.
  • Bera AK, Sedlak M, Khan A, et al. Establishment of l-arabinose fermentation in glucose/xylose co-fermenting recombinant Saccharomyces cerevisiae 424A (LNH-ST) by genetic engineering. Appl Microbiol Biotechnol. 2010;87:1803–1811. doi: 10.1007/s00253-010-2609-0.
  • Kordowska-Wiater M, Kubik-Komar A, Targoński Z. Optimization of arabitol production by karyoductant SP-K 7 of Saccharomyces cerevisiae V 30 and Pichia stipitis CCY 39501 using response surface methodology. Pol J Microbiol. 2012;61:291–297. doi: 10.33073/pjm-2012-039.
  • Kordowska-Wiater M, Targoński Z. Application of Saccharomyces cerevisiae and Pichia stipitis karyoductants to the production of ethanol from xylose. Acta Microbiol Pol. 2004;50:291–299.
  • Amraoui Y, Prabhu AA, Narisetty V, et al. Enhanced 2,3-butanediol production by mutant Enterobacter ludwigii using Brewers’ spent grain hydrolysate: process optimization for a pragmatic biorefinery loom. Chem Eng J. 2022;427:130851. doi: 10.1016/j.cej.2021.130851.
  • Saha BC, Bothast RJ. Production of 2,3-butanediol by newly isolated Enterobacter cloacae. Appl Microbiol Biotechnol. 1999;52:321–326. doi: 10.1007/s002530051526.
  • Liakou V, Pateraki C, Palaiogeorgou AM, et al. Valorisation of fruit and vegetable waste from open markets for the production of 2,3-butanediol. Food Bioprod Process. 2018;108:27–36. doi: 10.1016/j.fbp.2017.10.004.
  • San K-Y, Bennett GN, Berríos-Rivera SJ, et al. Metabolic engineering through cofactor manipulation and its effects on metabolic flux redistribution in Escherichia coli. Metab Eng. 2002;4:182–192. doi: 10.1006/mben.2001.0220.
  • Niu W, Molefe MN, Frost JW. Microbial synthesis of the energetic material precursor 1,2,4-butanetriol. J Am Chem Soc. 2003;125:12998–12999. doi: 10.1021/ja036391+.
  • Abdel-Ghany SE, Day I, Heuberger AL, et al. Metabolic engineering of Arabidopsis for butanetriol production using bacterial genes. Metab Eng. 2013;20:109–120. doi: 10.1016/j.ymben.2013.10.003.
  • Zhang N, Wang J, Zhang Y, et al. Metabolic pathway optimization for biosynthesis of 1,2,4-butanetriol from xylose by engineered Escherichia coli. Enzyme Microb Technol. 2016;93–94:51–58. doi: 10.1016/j.enzmictec.2016.07.007.
  • Sun L, Yang F, Sun H, et al. Synthetic pathway optimization for improved 1,2,4-butanetriol production. J Ind Microbiol Biotechnol. 2016;43:67–78. doi: 10.1007/s10295-015-1693-7.
  • Jing P, Cao X, Lu X, et al. Modification of an engineered Escherichia coli by a combined strategy of deleting branch pathway, fine-tuning xylose isomerase expression, and substituting decarboxylase to improve 1,2,4-butanetriol production. J Biosci Bioeng. 2018;126:547–552. doi: 10.1016/j.jbiosc.2018.05.019.
  • Bamba T, Yukawa T, Guirimand G, et al. Production of 1,2,4-butanetriol from xylose by Saccharomyces cerevisiae through Fe metabolic engineering. Metab Eng. 2019;56:17–27. doi: 10.1016/j.ymben.2019.08.012.
  • Wang J, Chen Q, Wang X, et al. The biosynthesis of d-1,2,4-butanetriol from d-arabinose with an engineered Escherichia coli. Front Bioeng Biotechnol. 2022;10:844517. doi: 10.3389/fbioe.2022.844517.
  • Bušić A, Marđetko N, Kundas S, et al. Bioethanol production from renewable raw materials and its separation and purification: a review. Food Technol Biotechnol. 2018;56:289–311. doi: 10.17113/ftb.56.03.18.5546.
  • Mendiburu AZ, Lauermann CH, Hayashi TC, et al. Ethanol as a renewable biofuel: combustion characteristics and application in engines. Energy. 2022;257:124688. doi: 10.1016/j.energy.2022.124688.
  • Caballero A, Ramos JL. Enhancing ethanol yields through d-xylose and l-arabinose co-fermentation after construction of a novel high efficient l-arabinose-fermenting Saccharomyces cerevisiae strain. Microbiology. 2017;163:442–452. doi: 10.1099/mic.0.000437.
  • Richard P, Verho R, Putkonen M, et al. Production of ethanol from l-arabinose by Saccharomyces cerevisiae containing a fungal l-arabinose pathway. FEMS Yeast Res. 2003;3:185–189. doi: 10.1016/S1567-1356(02)00184-8.
  • Becker J, Boles E. A modified Saccharomyces cerevisiae strain that consumes l-arabinose and produces ethanol. Appl Environ Microbiol. 2003;69:4144–4150. doi: 10.1128/AEM.69.7.4144-4150.2003.
  • Wiedemann B, Boles E. Codon-optimized bacterial genes improve l-arabinose fermentation in recombinant Saccharomyces cerevisiae. Appl Environ Microbiol. 2008;74:2043–2050. doi: 10.1128/AEM.02395-07.
  • Bothast RJ, Saha BC, Flosenzier AV, et al. Fermentation of l-arabinose, d-xylose and d-glucose by ethanologenic recombinant Klebsiella oxytoca strain P2. Biotechnol Lett. 1994;16:401–406. doi: 10.1007/BF00245060.
  • Dien BS, Hespell RB, Wyckoff HA, et al. Fermentation of hexose and pentose sugars using a novel ethanologenic Escherichia coli strain. Enzyme Microb Technol. 1998;23:366–371. doi: 10.1016/S0141-0229(98)00064-7.
  • Bourgade B, Humphreys CM, Millard J, et al. Design, analysis, and implementation of a novel biochemical pathway for ethylene glycol production in Clostridium autoethanogenum. ACS Synth Biol. 2022;11:1790–1800. doi: 10.1021/acssynbio.1c00624.
  • Pereira B, Li ZJ, De Mey M, et al. Efficient utilization of pentoses for bioproduction of the renewable two-carbon compounds ethylene glycol and glycolate. Metab Eng. 2016;34:80–87. doi: 10.1016/j.ymben.2015.12.004.
  • Grand View Research. Glycolic acid market size worth $415.0 million by 2024; 2016 [cited 2023 Mar 6]. Available from: https://www.grandviewresearch.com/press-release/global-glycolic-acid-market
  • Chen YM, Zhu Y, Lin ECC. The organization of the fuc regulon specifying l-fucose dissimilation in Escherichia coli K12 as determined by gene cloning. Mol Gen Genet. 1987;210:331–337. doi: 10.1007/BF00325702.
  • Moralejo P, Egan SM, Hidalgo E, et al. Sequencing and characterization of a gene cluster encoding the enzymes for l-rhamnose metabolism in Escherichia coli. J Bacteriol. 1993;175:5585–5594. doi: 10.1128/jb.175.17.5585-5594.1993.
  • Abedi E, Hashemi SMB. Lactic acid production – producing microorganisms and substrates sources—state of art. Heliyon. 2020;6:e04974. doi: 10.1016/j.heliyon.2020.e04974.
  • Augustiniene E, Valanciene E, Matulis P, et al. Bioproduction of l- and d-lactic acids: advances and trends in microbial strain application and engineering. Crit Rev Biotechnol. 2022;42:342–360. doi: 10.1080/07388551.2021.1940088.
  • Okano K, Yoshida S, Tanaka T, et al. Homo-d-lactic acid fermentation from arabinose by redirection of the phosphoketolase pathway to the pentose phosphate pathway in l-lactate dehydrogenase gene-deficient Lactobacillus plantarum. Appl Environ Microbiol. 2009;75:5175–5178. doi: 10.1128/AEM.00573-09.
  • Liaud N, Rosso MN, Fabre N, et al. l-Lactic acid production by Aspergillus brasiliensis overexpressing the heterologous ldha gene from Rhizopus oryzae. Microb Cell Fact. 2015;14:1–9. doi: 10.1186/s12934-015-0249-x.
  • Arcaño YD, García ODV, Mandelli D, et al. Xylitol: a review on the progress and challenges of its production by chemical route. Catal Today. 2020;344:2–14. doi: 10.1016/j.cattod.2018.07.060.
  • Umai D, Kayalvizhi R, Kumar V, et al. Xylitol: bioproduction and applications—a review. Front Sustain. 2022;3:826190. doi: 10.3389/frsus.2022.826190.
  • Sakakibara Y, Saha BC, Taylor P. Microbial production of xylitol from l-arabinose by metabolically engineered Escherichia coli. J Biosci Bioeng. 2009;107:506–511. doi: 10.1016/j.jbiosc.2008.12.017.
  • Dhar KS, Wendisch VF, Nampoothiri KM. Engineering of Corynebacterium glutamicum for xylitol production from lignocellulosic pentose sugars. J Biotechnol. 2016;230:63–71. doi: 10.1016/j.jbiotec.2016.05.011.
  • Zhang C, Li T, He J. Characterization and genome analysis of a butanol–isopropanol-producing Clostridium beijerinckii strain BGS1. Biotechnol Biofuels. 2018;11:280. doi: 10.1186/s13068-018-1274-x.
  • Ounine K, Petitdemange H, Raval G, et al. Acetone-butanol production from pentoses by Clostridium acetobutylicum. Biotechnol Lett. 1983;5:605–610. doi: 10.1007/BF00130841.
  • Qureshi N, Li XL, Hughes S, et al. Butanol production from corn fiber xylan using Clostridium acetobutylicum. Biotechnol Prog. 2006;22:673–680. doi: 10.1021/bp050360w.
  • Liu Z, Ying Y, Li F, et al. Butanol production by Clostridium beijerinckii ATCC 55025 from wheat bran. J Ind Microbiol Biotechnol. 2010;37:495–501. doi: 10.1007/s10295-010-0695-8.
  • Yoshida T, Tashiro Y, Sonomoto K. Novel high butanol production from lactic acid and pentose by Clostridium saccharoperbutylacetonicum. J Biosci Bioeng. 2012;114:526–530. doi: 10.1016/j.jbiosc.2012.06.001.
  • Yao D, Dong S, Wang P, et al. Robustness of Clostridium saccharoperbutylacetonicum for acetone–butanol–ethanol production: effects of lignocellulosic sugars and inhibitors. Fuel. 2017;208:549–557. doi: 10.1016/j.fuel.2017.07.004.
  • Spagnuolo M, Shabbir Hussain M, Gambill L, et al. Alternative substrate metabolism in Yarrowia lipolytica. Front Microbiol. 2018;9:1077. doi: 10.3389/fmicb.2018.01077.