262
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Diversity and regioselectivity of O-methyltransferases catalyzing the formation of O-methylated flavonoids

, , , , & ORCID Icon
Received 25 Feb 2023, Accepted 17 Oct 2023, Published online: 30 Nov 2023

References

  • Tahara S. A journey of twenty-five years through the ecological biochemistry of flavonoids. Biosci Biotechnol Biochem. 2007;71:1387–1404. doi: 10.1271/bbb.70028.
  • Imai K, Nakanishi I, Ohkubo K, et al. Synthesis of methylated quercetin analogues for enhancement of radical-scavenging activity. RSC Adv. 2017;7:17968–17979. doi: 10.1039/C7RA02329D.
  • Li NG, Shi ZH, Tang YP, et al. Synthetic studies on the construction of 7-O-methylquercetin through regioselective protection and alkylation of quercetin. Chin Chem Lett. 2011;22:5–8. doi: 10.1016/j.cclet.2010.07.012.
  • Joshi CP, Chiang VL. Conserved sequence motifs in plant S-adensyl-ւ-methionine- dependent methyltransferases. Plant Mol Biol. 1998;37:663–674. doi: 10.1023/a:1006035210889.
  • Poudel B, Nepali S, Xin M, et al. Flavonoids from Triticum aestivum inhibit adipogenesis in 3T3-L1 cells by upregulating the insig pathway. Mol Med Rep. 2015;12:3139–3145. doi: 10.3892/mmr.2015.3700.
  • Gauthier A, Gulick PJ, Ibrahim RK. cDNA cloning and characterization of 3',4'-O methyltransferase for partially methylated flavonols from Chrysosplenium americanum. Plant Mol Biol. 1996;32:1163–1169. doi: 10.1007/BF00041401.
  • Gauthier A, Gulick PJ, Ibrahim RK. Characterization of two cDNA clones which encode O-methylatransferases for the methylation of both flavonoid and phenylpropanoid compounds. Arch Biochem Biophys. 1998;351:243–249. doi: 10.1006/abbi.1997.0554.
  • Chiron H, Drouet A, Claudot AC, et al. Molecular cloning and functional expression of a stress-induced multifunctional O-methyltransferase with pinosylvin methyltransferase activity from Scots pine (Pinus sylvestris L.). Plant Mol Biol. 2000;44:733–745. doi: 10.1023/a:1026507707186.
  • Hafeez A, Gě Q, Zhāng Q, et al. Multi-responses of O-methyltransferase genes to salt stress and fiber development of Gossypium species. BMC Plant Biol. 2021;21:37. doi: 10.1186/s12870-020-02786-6.
  • Yoon Y, Yi YS, Lee Y, et al. Characterization of O-methyltransferase ScOMT1 cloned from Streptomyces coelicolor A3(2). Biochim Biophys Acta. 2005;1730:85–95. doi: 10.1016/j.bbaexp.2005.06.005.
  • Brandt W, Manke K, Vogt T. A catalytic triad–Lys-Asn-Asp–Is essential for the catalysis of the methyl transfer in plant cation-dependent O-methyltransferases. Phytochemistry. 2015;113:130–139. doi: 10.1016/j.phytochem.2014.12.018.
  • Wilmouth RC, Turnbull J, Welford R, et al. Structure and mechanism of anthocyanidin synthase from Arabidopsis thaliana. Structure. 2002;10:93–103.
  • Zubieta C, Kota P, Ferrer JL, et al. Structural basis for the modulation of lignin monomer methylation by caffeic acid/5-hydroxyferulic acid 3/5-O-methyltransferase. Plant Cell. 2002;14:1265–1277. doi: 10.1105/tpc.001412.
  • Eckardt NA. Probing the mysteries of lignin biosynthesis: the crystal structure of caffeic acid/5-hydroxyferulic acid 3/5-O-methyltransferase provides new insights. Plant Cell. 2002;14:1185–1189. doi: 10.1105/tpc.140610.
  • Liu H, Xu RX, Zhang XS, et al. The identification and functional characterization of three liverwort class I O-methyltransferases. Phytochemistry. 2019;159:190–198. doi: 10.1016/j.phytochem.2018.12.001.
  • Tan Y, Yang J, Jiang Y, et al. Identification and characterization of two Isatis indigotica O-methyltransferases methylating C-glycosylflavonoids. Hortic Res. 2022;9:uhac140.
  • Yamaguchi M, Sugimoto E. Stimulatory effect of genistein and daidzein on protein synthesis in osteoblastic MC3T3-E1 cells: activation of aminoacyl-tRNA synthetase. Mol Cell Biochem. 2000;214:97–102. doi: 10.1023/a:1007199120295.
  • Lo FH, Mak NK, Leung KN. Studies on the anti-tumor activities of the soy isoflavone daidzein on murine neuroblastoma cells. Biomed Pharmacother. 2007;61:591–595. doi: 10.1016/j.biopha.2007.08.021.
  • Huai RT, Han XH, Wang BX, et al. Vasorelaxing and antihypertensive effects of 7,8-dihydroxyflavone. Am J Hypertens. 2014;27:750–760. doi: 10.1093/ajh/hpt220.
  • Wen X, Walle T. Methylated flavonoids have greatly improved intestinal absorption and metabolicstability. Drug Metab Dispos. 2006;34:1786–1792. doi: 10.1124/dmd.106.011122.
  • Wen L, Jiang Y, Yang J, et al. Structure, bioactivity, and synthesis of methylated flavonoids. Ann N Y Acad Sci. 2017;1398:120–129. doi: 10.1111/nyas.13350.
  • Chagas M, Behrens MD, Moragas-Tellis CJ, et al. Flavonols and flavones as potential anti-inflammatory, antioxidant, and antibacterial compounds. Oxid Med Cell Longev. 2022;2022:9966750.
  • Mohammed HA, Abd El-Wahab MF, Shaheen U, et al. Isolation, characterization, complete structural assignment, and anticancer activities of the methoxylated flavonoids from Rhamnus disperma roots. Molecules. 2021;26:5827. doi: 10.3390/molecules26195827.
  • Hao Y, Wei Z, Wang Z, et al. Biotransformation of flavonoids improves antimicrobial and anti-breast cancer activities in vitro. Foods. 2021;10:2367. doi: 10.3390/foods10102367.
  • Cui MY, Lu AR, Li JX, et al. Two types of O-methyltransferase are involved in biosynthesis of anticancer methoxylated 4'-deoxyflavones in Scutellaria baicalensis Georgi. Plant Biotechnol J. 2022;20:129–142. doi: 10.1111/pbi.13700.
  • Kandaswami C, Perkins E, Soloniuk DS, et al. Antiproliferative effects of Citrus flavonoids on a human squamous-cell carcinoma in vitro. Cancer Lett. 1991;56:147–152. doi: 10.1016/0304-3835(91)90089-z.
  • Wesołowska O, Wiśniewski J, Sroda-Pomianek K, et al. Multidrug resistance reversal and apoptosis induction in human colon cancer cells by some flavonoids present in citrus plants. J Nat Prod. 2012;75:1896–1902. doi: 10.1021/np3003468.
  • Liu X, Wang Y, Chen Y, et al. Characterization of a flavonoid 3'/5'/7-O-methyltransferase from Citrus reticulata and evaluation of the in vitro cytotoxicity of its methylated products. Molecules. 2020;25:858. doi: 10.3390/molecules25040858.
  • Landis-Piwowar KR, Milacic V, Dou QP. Relationship between the methylation status of dietary flavonoids and their growth-inhibitory and apoptosis inducing activities in human cancer cells. J Cell Biochem. 2008;105:514–523. doi: 10.1002/jcb.21853.
  • Verschoyle RD, Greaves P, Cai H, et al. Preliminary safety evaluation of the putative cancer chemopreventive agent tricin, a naturally occurring flavone. Cancer Chemother Pharmacol. 2006;57:1–6. doi: 10.1007/s00280-005-0039-y.
  • Cai H, Sale S, Schmid R, et al. Flavones as colorectal cancer chemopreventive agents-phenol-O-methylation enhances efficacy. Cancer Prev Res. 2009;2:743–750. doi: 10.1158/1940-6207.CAPR-09-0081.
  • Walle T, Ta N, Kawamori T, et al. Cancer chemopreventive properties of orally bioavailable flavonoids-methylated versus unmethylated flavones. Biochem Pharmacol. 2007;73:1288–1296. doi: 10.1016/j.bcp.2006.12.028.
  • Ta N, Walle T. Aromatase inhibition by bioavailable methylated flavones. J Steroid Biochem Mol Biol. 2007;107:127–129. doi: 10.1016/j.jsbmb.2007.01.006.
  • Khan MS, Halagowder D, Devaraj SN. Methylated chrysin, a dimethoxy flavone, partially suppresses the development of liver preneoplastic lesions induced by N-nitrosodiethylamine in rats. Food Chem Toxicol. 2011;49:173–178. doi: 10.1016/j.fct.2010.10.013.
  • Yannai S, Day AJ, Williamson G, et al. Characterization of flavonoids as monofunctional or bifunctional inducers of quinone reductase in murine hepatoma cell lines. Food Chem Toxicol. 1998;36:623–630. doi: 10.1016/s0278-6915(98)00022-2.
  • Kawser Hossain M, Abdal Dayem A, Han J, et al. Molecular mechanisms of the anti-obesity and anti-diabetic properties of flavonoids. Int J Mol Sci. 2016;17:569. doi: 10.3390/ijms17040569.
  • Lee D, Imm JY. Antiobesity effect of tricin, a methylated cereal flavone, in high-fat-diet-induced obese mice. J Agric Food Chem. 2018;66:9989–9994. doi: 10.1021/acs.jafc.8b03312.
  • Lee D, Go G-W, Imm J-Y. Tricin, a methylated cereal flavone, suppresses fat accumulation by downregulating AKT and mTOR in 3T3-L1 preadipocytes. J Funct Foods. 2016;26:548–556. doi: 10.1016/j.jff.2016.08.023.
  • Ahmad B, Friar EP, Taylor E, et al. Anti-pancreatic lipase and anti-adipogenic effects of 5, 7, 3',4',5’ -pentamethoxy and 6, 2',4'-trimethoxy flavone-an in vitro study. Eur J Pharmacol. 2023;938:175445. doi: 10.1016/j.ejphar.2022.175445.
  • Hsu CL, Yen GC. Induction of cell apoptosis in 3T3-L1 pre-adipocytes by flavonoids is associated with their antioxidant activity. Mol Nutr Food Res. 2006;50:1072–1079. doi: 10.1002/mnfr.200600040.
  • Eseberri I, Miranda J, Lasa A, et al. Doses of quercetin in the range of serum concentrations exert delipidating effects in 3T3-L1 preadipocytes by acting on different stages of adipogenesis, but not in mature adipocytes. Oxid Med Cell Longev. 2015;2015:480943. doi: 10.1155/2015/480943.
  • Gonzalez-Arceo M, Gomez-Lopez I, Carr-Ugarte H, et al. Anti-obesity effects of isorhamnetin and isorhamnetin conjugates. Int J Mol Sci. 2022;24:299. doi: 10.3390/ijms24010299.
  • An GH, Gallegos J, Morris ME. The bioflavonoid kaempferol is an ABCG2 substrate and inhibits ABCG2-mediated quercetin efflux. Drug Metab Dispos. 2011;39:426–432. doi: 10.1124/dmd.110.035212.
  • Zhang Y, Gu M, Cai W, et al. Dietary component isorhamnetin is a PPARγ antagonist and ameliorates metabolic disorders induced by diet or leptin deficiency. Sci Rep. 2016;6:19288. doi: 10.1038/srep19288.
  • Lee YS, Lee S, Lee HS, et al. Inhibitory effects of isorhamnetin-3-O-β-D-glucoside from Salicornia herbacea on rat lens aldose reductase and sorbitol accumulation in streptozotocininduced diabetic rat tissues. Biol Pharm Bull. 2005;28:916–918. doi: 10.1248/bpb.28.916.
  • Yokozawa T, Kim HY, Cho EJ, et al. Antioxidant effects of isorhamnetin 3,7-di-O-β-D-glucopyranoside isolated from mustard leaf (Brassica juncea) in rats with streptozotocin-induced diabetes. J Agric Food Chem. 2002;50:5490–5495. doi: 10.1021/jf0202133.
  • Shim SY, Park JR, Byun DS. 6-Methoxyluteolin from Chrysanthemum zawadskii var. latilobum suppresses histamine release and calcium influx via down-regulation of FcepsilonRI alpha chain expression. J Microbiol Biotechnol. 2012;22:622–627. doi: 10.4014/jmb.1111.11060.
  • Franco JL, Posser T, Missau F, et al. Structure-activity relationship of flavonoids derived from medicinal plants in preventing methylmercury-induced mitochondrial dysfunction. Environ Toxicol Pharmacol. 2010;30:272–278. doi: 10.1016/j.etap.2010.07.003.
  • Asadi S, Zhang B, Weng Z, et al. Luteolin and thiosalicylate inhibit HgCl(2) and thimerosalinduced VEGF release from human mast cells. Int J Immunopathol Pharmacol. 2010;23:1015–1020. doi: 10.1177/039463201002300406.
  • Weng Z, Patel AB, Panagiotidou S, et al. The novel flavone tetramethoxyluteolin is a potent inhibitor of human mast cells. J Allergy Clin Immunol. 2014;14:01574–01577.
  • Wang X, Cao Y, Chen S, et al. Structure-activity relationship (SAR) of flavones on their anti-inflammatory activity in murine macrophages in culture through the NF-κB pathway and c-Src kinase receptor. J Agric Food Chem. 2022;70:8788–8798. doi: 10.1021/acs.jafc.2c03050.
  • Zaragoza C, Villaescusa L, Monserrat J, et al. Potential therapeutic anti-inflammatory and immunomodulatory effects of dihydroflavones, flavones, and flavonols. Molecules. 2020;25:1017. doi: 10.3390/molecules25041017.
  • During A, Larondelle Y. The O-methylation of chrysin markedly improves its intestinal anti-inflammatory properties: structure-activity relationships of flavones. Biochem Pharmacol. 2013;86:1739–1746. doi: 10.1016/j.bcp.2013.10.003.
  • Kwon HM, Choi YJ, Jeong YJ, et al. Anti-inflammatory inhibition of endothelial cell adhesion molecule ­expression by flavone derivatives. J Agric Food Chem. 2005;53:5150–5157. doi: 10.1021/jf047854d.
  • Patel K, Gadewar M, Tahilyani V, et al. A review on pharmacological and analytical aspects of diosmetin: a concise report. Chin J Integr Med. 2013;19:792–800. doi: 10.1007/s11655-013-1595-3.
  • Yu X, Liu Y. Diosmetin attenuate experimental ulcerative colitis in rats via suppression of NF-κB, TNF-α and IL-6 signalling pathways correlated with down-regulation of apoptotic events. Eur J Inflamm. 2021;19:205873922110672. doi: 10.1177/20587392211067292.
  • Lima JCS, de Oliveira RG, Silva VC, et al. Anti-inflammatory activity of 4',6,7-trihydroxy-5-methoxyflavone from Fridericia chica (Bonpl.) L.G.Lohmann. Nat Prod Res. 2020;34:726–730. doi: 10.1080/14786419.2018.1495636.
  • Pandurangan K, Krishnappan V, Subramanian V, et al. Anti-inflammatory effect of certain dimethoxy flavones. Inflammopharmacology. 2015;23:307–317. doi: 10.1007/s10787-015-0242-3.
  • Li XX, Chen SG, Yue GG, et al. Natural flavone tricin exerted anti-inflammatory activity in macrophage via NF-κB pathway and ameliorated acute colitis in mice. Phytomedicine. 2021;90:153625. doi: 10.1016/j.phymed.2021.153625.
  • Liu XY, Yu ZJ, Huang X, et al. Peroxisome proliferatoractivated receptor γ (PPARγ) mediates the protective effect of quercetin against myocardial ischemia-reperfusion injury via suppressing the NF-κB pathway. Am J Transl Res. 2016;8:5169–5186.
  • Eun SH, Woo JT, Kim DH. Tangeretin inhibits IL-12 expression and NF-κB activation in dendritic cells and attenuates colitis in mice. Planta Med. 2017;83:527–533.
  • Liu Y, Xu XH, Liu Z, et al. Effects of the natural flavone trimethylapigenin on cardiac potassium currents. Biochem Pharmacol. 2012;84:498–506. doi: 10.1016/j.bcp.2012.05.002.
  • Lam IK, Alex D, Wang YH, et al. In vitro and in vivo structure and activity relationship analysis of polymethoxylated flavonoids: identifying sinensetin as a novel antiangiogenesis agent. Mol Nutr Food Res. 2012;56:945–956. doi: 10.1002/mnfr.201100680.
  • Seo K, Yang JH, Kim SC, et al. The antioxidant effects of isorhamnetin contribute to inhibit COX-2 expression in response to inflammation: a potential role of HO-1. Inflammation. 2014;37:712–722. doi: 10.1007/s10753-013-­9789-6.
  • Fu C, Yang D, Peh WY, et al. Structure and antioxidant activities of proanthocyanidins from elephant apple (Dillenia indica Linn.). J Food Sci. 2015;80: C2191–C2199.
  • Steffen Y, Gruber C, Schewe T, et al. Mono-O-methylated flavanols and other flavonoids as inhibitors of endothelial NADPH oxidase. Arch Biochem Biophys. 2008;469:209–219. doi: 10.1016/j.abb.2007.10.012.
  • Arteel GE, Sies H. Protection against peroxynitrite by cocoa polyphenol oligomers. FEBS Lett. 1999;462:167–170. doi: 10.1016/s0014-5793(99)01498-2.
  • Ollila F, Halling K, Vuorela P, et al. Characterization of flavonoid–biomembrane interactions. Arch Biochem Biophys. 2002;399:103–108. doi: 10.1006/abbi.2001.2759.
  • Park HL, Lee JC, Lee K, et al. Biochemical characterization of a flavonoid O-methyltransferase from perilla leaves and its application in 7-methoxyflavonoid production. Molecules. 2020;25:4455. doi: 10.3390/molecules25194455.
  • Santana FPR, da Silva RC, Grecco SDS, et al. Inhibition of mapk and STAT3-SOCS3 by sakuranetin attenuated chronic allergic airway inflammation in mice. Mediators Inflamm. 2019;2019:1356356. doi: 10.1155/2019/1356356.
  • Horibe I, Satoh Y, Shiota Y, et al. Induction of melanogenesis by 4'-O-methylated flavonoids in B16F10 melanoma cells. J Nat Med. 2013;67:705–710. doi: 10.1007/s11418-012-0727-y.
  • Liu X, Qi Q, Xiao G, et al. O-methylated metabolite of 7,8-dihydroxyflavone activates TrkB receptor and displays antidepressant activity. Pharmacology. 2013;91:185–200. doi: 10.1159/000346920.
  • Gu N, Liu S, Qiu C, et al. Biosynthesis of 3'-O-methylisoorientin from luteolin by selecting O-methylation/C-glycosylation motif. Enzyme Microb Technol. 2021;150:109862. doi: 10.1016/j.enzmictec.2021.109862.
  • Zubieta C, He XZ, Dixon r, et al. Structures of two natural product methyltransferases reveal the basis for substrate specificity in plant O-methyltransferases. Nat Struct Biol. 2001;8:271–279. doi: 10.1038/85029.
  • Alseekh S, Perez de Souza L, Benina M, et al. The style and substance of plant flavonoid decoration; towards defining both structure and function. Phytochemistry. 2020;174:112347. doi: 10.1016/j.phytochem.2020.112347.
  • Kim BG, Lee Y, Hur HG, et al. Flavonoid 3'-O-methyltransferase from rice: cDNA cloning, characterization and functional expression. Phytochemistry. 2006;67:387–394. doi: 10.1016/j.phytochem.2005.11.022.
  • Muzac I, Wang J, Anzellotti D, et al. Functional expression of an arabidopsis cDNA clone encoding a flavonol 3'-O-methyltransferase and characterization of the gene product. Arch Biochem Biophys. 2000;375:385–388. doi: 10.1006/abbi.1999.1681.
  • Yang H, Ahn JH, Ibrahim RK, et al. The three-dimensional structure of Arabidopsis thaliana O-methyltransferase predicted by homology-based modelling. J Mol Graph Model. 2004;23:77–87. doi: 10.1016/j.jmgm.2004.02.001.
  • Kim BG, Lee HJ, Park Y, et al. Characterization of an O-methyltransferase from soybean. Plant Physiol Biochem. 2006;44:236–241. doi: 10.1016/j.plaphy.2006.05.003.
  • Seoka M, Ma G, Zhang L, et al. Expression and functional analysis of the nobiletin biosynthesis-related gene CitOMT in citrus fruit. Sci Rep. 2020;10:15288. doi: 10.1038/s41598-020-72277-z.
  • Kim DH, Kim BG, Lee Y, et al. Regiospecific methylation of naringenin to ponciretin by soybean O-methyltransferase expressed in Escherichia coli. J Biotechnol. 2005;119:155–162. doi: 10.1016/j.jbiotec.2005.04.004.
  • Shimizu T, Lin F, Hasegawa M, et al. Purification and identification of naringenin 7-O-methyltransferase, a key enzyme in biosynthesis of flavonoid phytoalexin sakuranetin in rice. J Biol Chem. 2012;287:19315–19325. doi: 10.1074/jbc.M112.351270.
  • Shimizu T, Lin F, Hasegawa M, et al. The potential bioproduction of the pharmaceutical agent sakuranetin, a flavonoid phytoalexin in rice. Bioengineered. 2012;3:352–357. doi: 10.4161/bioe.21546.
  • Cacace S, Schröder G, Wehinger E, et al. A flavonol O-methyltransferase from Catharanthus roseus performing two sequential methylations. Phytochemistry. 2003;62:127–137. doi: 10.1016/s0031-9422(02)00483-1.
  • Jang CS, Johnson JW, Seo YW. Differential expression of TaLTP3 and TaCOMT1 induced by Hessian fly larval infestation in a wheat line possessing H21 resistance gene. Plant Sci. 2005;168:1319–1326. doi: 10.1016/j.plantsci.2005.01.014.
  • Zhou JM, Weon Seo Y, Ibrahim RK. Biochemical characterization of a putative wheat caffeic acid O-methyltransferase. Plant Physiol Biochem. 2009;47:322–326. doi: 10.1016/j.plaphy.2008.11.011.
  • Zhou JM, Gold ND, Martin VJ, et al. Sequential O-methylation of tricetin by a single gene product in wheat. Biochim Biophys Acta. 2006;1760:1115–1124. doi: 10.1016/j.bbagen.2006.02.008.
  • Fornale S, Rencoret J, Garcia-Calvo L, et al. Changes in cell wall polymers and degradability in maize mutants lacking 3'- and 5'-O-methyltransferases involved in lignin biosynthesis. Plant Cell Physiol. 2017;58:240–255.
  • Thresh K, Ibrahim RK. Are spinach chloroplasts involved in flavonoid O-methylation? Zeitschrift Für Naturforschung C. 1985;40:331–335. doi: 10.1515/znc-1985-5-609.
  • Koirala N, Pandey RP, Parajuli P, et al. Methylation and subsequent glycosylation of 7,8-dihydroxyflavone. J Biotechnol. 2014;184:128–137. doi: 10.1016/j.jbiotec.2014.05.005.
  • Darsandhari S, Dhakal D, Shrestha B, et al. Characterization of regioselective flavonoid O-methyltransferase from the Streptomyces sp. KCTC 0041BP. Enzyme Microb Technol. 2018;113:29–36. doi: 10.1016/j.enzmictec.2018.02.007.
  • Hosny M, Dhar K, Rosazza JP. Hydroxylations and methylations of quercetin, fisetin, and catechin by Streptomyces griseus. J Nat Prod. 2001;64:462–465. doi: 10.1021/np000457m.
  • Choi KY, Jung E, Yang YH, et al. Production of a novel O-methyl-isoflavone by regioselective sequential hydroxylation and O-methylation reactions in Streptomyces avermitilis host system. Biotechnol Bioeng. 2013;110:2591–2599. doi: 10.1002/bit.24931.
  • Sokolova N, Zhang L, Deravi S, et al. Structural characterization and extended substrate scope analysis of two Mg2+-dependent O-methyltransferases from bacteria. ChemBioChem. 2023;24:e202300076. doi: 10.1002/cbic.202300076.
  • Zhu BT, Ezell EL, Liehr JG. Catechol-O-methyltransferase catalyzed rapid O-methylation of mutagenic flavonoids. J Bioll Chem. 1994;269:292–299. doi: 10.1016/S0021-9258(17)42348-9.
  • Poór M, Zrínyi Z, Kőszegi T. Structure related effects of flavonoid aglycones on cell cycle progression of HepG2 cells: metabolic activation of fisetin and quercetin by catechol-O-methyltransferase (COMT). Biomed Pharmacother. 2016;83:998–1005. doi: 10.1016/j.biopha.2016.08.009.
  • Cho M-H, Park HL, Park J-H, et al. Characterization of regiospecific flavonoid 3′/5′-O-methyltransferase from tomato and its application in flavonoid biotransformation. J Korean Soc Appl Biol Chem. 2012;55:749–755. doi: 10.1007/s13765-012-2193-3.
  • Joe EJ, Kim BG, An BC, et al. Engineering of flavonoid. O-methyltransferase for a novel regioselectivity. Mol Cells. 2010;30:137–141. doi: 10.1007/s10059-010-0098-8.
  • Itoh N, Iwata C, Toda H. Molecular cloning and characterization of a flavonoid-O-methyltransferase with broad substrate specificity and regioselectivity from Citrus depressa. BMC Plant Biol. 2016;16:180. doi: 10.1186/s12870-016-0870-9.
  • Lee D, Park HL, Lee SW, et al. Biotechnological production of dimethoxyflavonoids using a fusion flavonoid O-Methyltransferase possessing both 3'- and 7-O-methyltransferase activities. J Nat Prod. 2017;80:1467–1474. doi: 10.1021/acs.jnatprod.6b01164.
  • Kim BG, Shin KH, Lee Y, et al. Multiple regiospecific methylations of a flavonoid by plant O-methyltransferases expressed in E. coli. Biotechnol Lett. 2005;27:1861–1864. doi: 10.1007/s10529-005-3893-0.
  • Wu X, Yuwen M, Pu Z, et al. Engineering of flavonoid 3'-O-methyltransferase for improved biosynthesis of chrysoeriol in Escherichia coli. Appl Microbiol Biotechnol. 2023;107:1663–1672. doi: 10.1007/s00253-023-12403-9.
  • Kim MJ, Kim BG, Ahn JH. Biosynthesis of bioactive O-methylated flavonoids in Escherichia coli. Appl Microbiol Biotechnol. 2013;97:7195–7204. doi: 10.1007/s00253-013-5020-9.
  • Han DH, Lee Y, Ahn JH. Biological synthesis of baicalein derivatives using Escherichia coli. J Microbiol Biotechnol. 2016;26:1918–1923. doi: 10.4014/jmb.1605.05050.
  • Bong-Gyu K, Bo-Ra J, Youngshim L, et al. Regiospecific flavonoid 7-O-methylation with Streptomyces avermitilis O-methyltransferase expressed in Escherichia coli. J Agric Food Chem. 2006;54:823–828.
  • Berim A, Gang DR. Production of methoxylated flavonoids in yeast using ring A hydroxylases and flavonoid O-methyltransferases from sweet basil. Appl Microbiol Biotechnol. 2018;102:5585–5598. doi: 10.1007/s00253-018-9043-0.
  • Koirala N, Pandey RP, Thuan NH, et al. Metabolic engineering of Escherichia coli for the production of isoflavonoid-4'-O-methoxides and their biological activities. Biotechnol Appl Biochem. 2019;66:484–493. doi: 10.1002/bab.1452.
  • Frick S, Kutchan TM. Molecular cloning and functional expression of O-methyltransferases common to isoquinoline alkaloid and phenylpropanoid biosynthesis. Plant J. 1999;17:329–339. doi: 10.1046/j.1365-313x.1999.00379.x.
  • Ibrahim RK, Muzac I. The methyltransferase gene superfamily, a tree with multiple branches. Rec Adv Phytochem. 2000;34:349–384.
  • Kopycki JG, Rauh D, Chumanevich AA, et al. Biochemical and structural analysis of substrate promiscuity in plant Mg2+-dependent O-methyltransferases. J Mol Biol. 2008;378:154–164. doi: 10.1016/j.jmb.2008.02.019.
  • Cao Y, Chen ZJ, Jiang HD, et al. Computational studies of the regioselectivities of COMT-catalyzed meta-/para-O methylations of luteolin and quercetin. J Phys Chem B. 2014;118:470–481. doi: 10.1021/jp410296s.
  • Tang QY, Vianney YM, Weisz K, et al. Influence of substrate binding residues on the substrate scope and regioselectivity of a plant O-methyltransferase against flavonoids. ChemCatChem. 2020;12:3721–3727. doi: 10.1002/cctc.202000471.
  • Zhou JM, Lee EJ, Kanapathy-Sinnaiaha F, et al. Structure-function relationships of wheat flavone O-methyltransferase: homology modeling and site-directed mutagenesis. BMC Plant Biol. 2010;10:156. doi: 10.1186/1471-2229-10-156.
  • Bai HW, Shim JY, Yu J, et al. Biochemical and molecular modeling studies of the O-methylation of various endogenous and exogenous catechol substrates catalyzed by recombinant human soluble and membrane-bound catechol-O-methyltransferases. Chem Res Toxicol. 2007;20:1409–1425. doi: 10.1021/tx700174w.
  • Rajapaksha L, Gunasekara CWR, Alwis PSD. In silico detection and characterization of novel virulence proteins of the emerging poultry pathogen Gallibacterium anatis. Genomics Inform. 2022;20:e41. doi: 10.5808/gi.22006.
  • Szerszunowicz I, NaŁĘCz D. The use of UniProtKB/BIOPEP for the analysis of oat globulin physicochemical parameters and bioactivity. Czech J Food Sci. 2018;36:119–125. doi: 10.17221/455/2016-CJFS.
  • Chou KC, Shen HB. Cell-PLoc: a package of Web servers for predicting subcellular localization of proteins in various organisms. Nat Protoc. 2008;3:153–162. doi: 10.1038/nprot.2007.494.
  • Zhou W, Xin DD, Zhao YY, et al. Bioinformatics analysis of 12 fungal potassium channel proteins. Sci Technol Food Ind. 2018;39:98–103.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.