974
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Microalgae are not an umbrella solution for power industry waste abatement but could play a role in their valorization

, , , , , , , & ORCID Icon show all
Received 03 Sep 2022, Accepted 03 Oct 2023, Published online: 17 Dec 2023

References

  • Levi PG, Cullen JM. Mapping global flows of chemicals: from fossil fuel feedstocks to chemical products. Environ Sci Technol. 2018;52:1725–1734. doi: 10.1021/acs.est.7b04573.
  • Debnath C, Bandyopadhyay TK, Bhunia B, et al. Microalgae: sustainable resource of carbohydrates in third-generation biofuel production. Renew Sustain Energy Rev. 2021;150:111464. doi: 10.1016/j.rser.2021.111464.
  • Sheehan J, Dunahay T, Benemann J, et al. A look back at the US Department of Energy’s Aquatic Species Program: biodiesel from algae. Close out report. National Renewable Energy Lab, Department of Energy, Golden; 1998. (Report Number NREL/TP-580-24190).
  • Li J, Liu Y, Cheng JJ, et al. Biological potential of microalgae in China for biorefinery-based production of biofuels and high value compounds. N Biotechnol. 2015;32:588–596. doi: 10.1016/j.nbt.2015.02.001.
  • Khoobkar Z, Delavari Amrei H, Heydarinasab A, et al. Biofixation of CO2and biomass production from model natural gas using microalgae: an attractive concept for natural gas sweetening. J Co2 Util. 2022;64:102153. doi: 10.1016/j.jcou.2022.102153.
  • Bhola V, Swalaha F, Kumar RR, et al. Overview of the potential of microalgae for CO2 sequestration. Int J Environ Sci Technol. 2014; 11:2103–2118. doi: 10.1007/s13762-013-0487-6.
  • Yu J, Liberton M, Cliften PF, et al. Synechococcus elongatus UTEX 2973, a fast growing cyanobacterial chassis for biosynthesis using light and CO2. Sci Rep. 2015;5:8132. doi: 10.1038/srep08132.
  • Khoobkar Z, Delavari Amrei H. Effect of photo, hetero and mixotrophic conditions on the growth and composition of Anabaena variabilis: an energy nexus approach. Energy Nexus. 2021;2:100010. doi: 10.1016/j.nexus.2021.100010.
  • Grizeau D, Bui LA, Dupré C, et al. Ammonium photo-production by heterocytous cyanobacteria: potentials and constraints. Crit Rev Biotechnol. 2016;36:607–618. doi: 10.3109/07388551.2014.1002380.
  • Leong YK, Chew KW, Chen WH, et al. Reuniting the biogeochemistry of algae for a low-carbon circular bioeconomy. Trends Plant Sci. 2021;26:729–740. doi: 10.1016/j.tplants.2020.12.010.
  • Lu Z, Loftus S, Sha J, et al. Water reuse for sustainable microalgae cultivation: current knowledge and future directions. Resour Conserv Recycl. 2020;161:104975. doi: 10.1016/j.resconrec.2020.104975.
  • Sirohi R, Kumar Pandey A, Ranganathan P, et al. Design and applications of photobioreactors – a review. Bioresour Technol. 2022;349:126858. doi: 10.1016/j.biortech.2022.126858.
  • Chen J, Dai L, Mataya D, et al. Enhanced sustainable integration of CO2 utilization and wastewater treatment using microalgae in circular economy concept. Bioresour Technol. 2022;366:128188. doi: 10.1016/j.biortech.2022.128188.
  • 't Lam GP, Vermuë MH, Eppink MHM, et al. Multi-product microalgae biorefineries: from concept towards reality. Trends Biotechnol. 2018;36:216–227. doi: 10.1016/j.tibtech.2017.10.011.
  • Chew KW, Yap JY, Show PL, et al. Microalgae biorefinery: high value products perspectives. Bioresour Technol. 2017;229:53–62. doi: 10.1016/j.biortech.2017.01.006.
  • Rosentrater KA, Evers AD. Chapter 14 – Wet milling: separating starch, gluten (protein) and fibre. In: Rosentrater KA, Evers ADBT-KT of C, editors. Woodhead publishing series in food science, technology and nutrition. Duxford (UK): Woodhead Publishing; 2018. p. 839–860.
  • Vaz SJ. Sugarcane-biorefinery. Adv Biochem Eng Biotechnol. 2019;166:125–136.
  • Jacob-Lopes E, Guillermo L, Mérida R, et al. Microalgal biorefineries. In: Jacob-Lopes E, editor. Biomass production and uses. London (UK): Intechopen; 2015. p. 938–965.
  • Turon V, Baroukh C, Trably E, et al. Use of fermentative metabolites for heterotrophic microalgae growth: yields and kinetics. Bioresour Technol. 2015;175:342–349. doi: 10.1016/j.biortech.2014.10.114.
  • International Energy Agency. World Energy Outlook 2022 [Internet]. Available from: www.iea.org/t&c/.
  • Coal. 2022 [Internet]. Available from: www.iea.org.
  • Cotton CA, Claassens NJ, Benito-Vaquerizo S, et al. Renewable methanol and formate as microbial feedstocks. Curr Opin Biotechnol. 2020;62:168–180. doi: 10.1016/j.copbio.2019.10.002.
  • Lee JS, Kim DK, Lee JP, et al. Effects of SO2 and NO on growth of Chlorella sp. KR-1. Bioresour Technol. 2002;82:1–4. doi: 10.1016/s0960-8524(01)00158-4.
  • Maeda K, Owada M, Kimura N, et al. Pergamon CO2 fixation from the flue gas on coal-fired thermal power plant by microalgae To screen microalgac which arc suitable for direct COZ fixation, microalgae were sampled from. Energy Convers Mgmi. 1995;36:717–720. doi: 10.1016/0196-8904(95)00105-M.
  • Roberts DA, Paul NA, Bird MI, et al. Bioremediation for coal-fired power stations using macroalgae. J Environ Manage. 2015;153:25–32. doi: 10.1016/j.jenvman.2015.01.036.
  • McGinn PJ, Dickinson KE, Bhatti S, et al. Integration of microalgae cultivation with industrial waste remediation for biofuel and bioenergy production: opportunities and limitations. Photosynth Res. 2011;109:231–247. doi: 10.1007/s11120-011-9638-0.
  • Doucha J, Straka F, Lívanský K. Utilization of flue gas for cultivation of microalgae (Chlorella sp.) in an outdoor open thin-layer photobioreactor. J Appl Phycol. 2005;17:403–412. doi: 10.1007/s10811-005-8701-7.
  • Chiu S-YY, Kao C-YY, Huang T-TT, et al. Microalgal biomass production and on-site bioremediation of carbon dioxide, nitrogen oxide and sulfur dioxide from flue gas using Chlorella sp. cultures. Bioresour Technol. 2011;102:9135–9142. doi: 10.1016/j.biortech.2011.06.091.
  • Mortensen LM, Gislerød HR. The growth of Chlamydomonas reinhardtii as influenced by high CO2 and low O2 in flue gas from a silicomanganese smelter. J Appl Phycol. 2015;27:633–638. doi: 10.1007/s10811-014-0357-8.
  • Borkenstein CG, Knoblechner J, Frühwirth H, et al. Cultivation of Chlorella emersonii with flue gas derived from a cement plant. J Appl Phycol. 2011;23:131–135. doi: 10.1007/s10811-010-9551-5.
  • Sahu SG, Chakraborty N, Sarkar P. Coal-biomass co-combustion: an overview. Renew Sustain Energy Rev. 2014;39:575–586. doi: 10.1016/j.rser.2014.07.106.
  • Hughes E, Benemann JR. Biological fossil CO2 mitigation. Energy Convers Mgmt. 1997;38:S467–S473. doi: 10.1016/S0196-8904(96)00312-3
  • Benemann JR. CO2 mitigation with microalgae systems. Energy Convers Mgmt. 1997;38:s475–S479. doi: 10.1016/S0196-8904(96)00313-5.
  • Negoro M, Hamasaki A, Ikuta Y, et al. Carbon dioxide fixation by microalgai photosynthesis using actual flue gas discharged from a boiler. Appl Biochem Biotechnol. 1993;39–40:643–653. doi: 10.1007/BF02919025.
  • Miranda AM, Sáez AA, Hoyos BS, et al. Improving microalgal biomass production with industrial CO2 for bio-oil obtention by hydrothermal liquefaction. Fuel. 2021;302:121236. doi: 10.1016/j.fuel.2021.121236.
  • Aslam A, Thomas-Hall SR, Mughal T, et al. Heavy metal bioremediation of coal-fired flue gas using microalgae under different CO 2 concentrations. J Environ Manage. 2019;241:243–250. doi: 10.1016/j.jenvman.2019.03.118.
  • Aslam A, Thomas-Hall SR, Mughal TA, et al. Selection and adaptation of microalgae to growth in 100% unfiltered coal-fired flue gas. Bioresour Technol. 2017;233:271–283. doi: 10.1016/j.biortech.2017.02.111.
  • Aslam A, Thomas-Hall SR, Manzoor M, et al. Mixed microalgae consortia growth under higher concentration of CO2 from unfiltered coal fired flue gas: fatty acid profiling and biodiesel production. J Photochem Photobiol B. 2018;179:126–133. doi: 10.1016/j.jphotobiol.2018.01.003.
  • Choi SY, Sim SJ, Ko SC, et al. Scalable cultivation of engineered cyanobacteria for squalene production from industrial flue gas in a closed photobioreactor. J Agric Food Chem. 2020;68:10050–10055. doi: 10.1021/acs.jafc.0c03133.
  • Ji MK, Yun HS, Hwang JH, et al. Effect of flue gas CO2 on the growth, carbohydrate and fatty acid composition of a green microalga Scenedesmus obliquus for biofuel production. Environ Technol. 2017;38:2085–2092. doi: 10.1080/09593330.2016.1246145.
  • García-Cubero R, Moreno-Fernández J, García-González M. Potential of chlorella vulgaris to abate flue gas. Waste Biomass Valor. 2018;9:2015–2019. doi: 10.1007/s12649-017-9987-9.
  • Rossi RA, Camargo EC, Crnkovic PCGM, et al. Physiological and biochemical responses of Chlorella vulgaris to real cement flue gas under controlled conditions. Water Air Soil Pollut. 2018;229:259. doi: 10.1007/s11270-018-3914-y.
  • Pavlik D, Zhong Y, Daiek C, et al. Microalgae cultivation for carbon dioxide sequestration and protein production using a high-efficiency photobioreactor system. Algal Res. 2017;25:413–420. doi: 10.1016/j.algal.2017.06.003.
  • Kao CY, Chen TY, Chang YB, et al. Utilization of carbon dioxide in industrial flue gases for the cultivation of microalga Chlorella sp. Bioresour Technol. 2014;166:485–493. doi: 10.1016/j.biortech.2014.05.094.
  • Zhao Y, Li J, Ma X, et al. Screening and application of Chlorella strains on biosequestration of the power plant exhaust gas evolutions of biomass growth and accumulation of toxic agents. Environ Sci Pollut Res Int. 2022;29:6744–6754. doi: 10.1007/s11356-021-15950-8.
  • Wang B, Xu YF, Sun ZL. Mass transfer characteristics and effect of flue gas used in microalgae culture. Appl Microbiol Biotechnol. 2022;106:7013–7025. doi: 10.1007/s00253-022-12206-4.
  • Olofsson M, Lindehoff E, Legrand C. Production stability and biomass quality in microalgal cultivation – contribution of community dynamics. Eng Life Sci. 2019;19:330–340. doi: 10.1002/elsc.201900015.
  • Yu BS, Sung YJ, Hong ME, et al. Improvement of photoautotrophic algal biomass production after interrupted co2 supply by urea and kh2 po4 injection. Energies (Basel). 2021;14:778. doi: 10.3390/en14030778.
  • Song Y, Cheng J, Miao Y, et al. SO2 impurity in simulated flue gas with 15% CO2 affects dynamic bubble dissolution and arthrospira photosynthetic growth. ACS Sustain Chem Eng. 2021;9:5580–5589. doi: 10.1021/acssuschemeng.0c09197.
  • Premaratne M, Liyanaarachchi VC, Nishshanka GKSH, et al. Nitrogen-limited cultivation of locally isolated Desmodesmus sp. for sequestration of CO2from simulated cement flue gas and generation of feedstock for biofuel production. J Environ Chem Eng. 2021;9:105765. doi: 10.1016/j.jece.2021.105765.
  • Olofsson M, Lindehoff E, Frick B, et al. Baltic Sea microalgae transform cement flue gas into valuable biomass. Algal Res. 2015;11:227–233. doi: 10.1016/j.algal.2015.07.001.
  • Cho SJ, Sung YJ, Lee JS, et al. Robust cyst germination induction in Haematococcus pluvialis to enhance astaxanthin productivity in a semi-continuous outdoor culture system using power plant flue gas. Bioresour Technol. 2021;338:125533. doi: 10.1016/j.biortech.2021.125533.
  • Lage S, Gentili FG. Chemical composition and species identification of microalgal biomass grown at pilot-scale with municipal wastewater and CO2 from flue gases. Chemosphere. 2023;313:137344. doi: 10.1016/j.chemosphere.2022.137344.
  • Choi HI, Hwang SW, Kim J, et al. Augmented CO2 tolerance by expressing a single H+-pump enables microalgal valorization of industrial flue gas. Nat Commun. 2021;12:6049. doi: 10.1038/s41467-021-26325-5.
  • Yadav G, Dubey BK, Sen R. A comparative life cycle assessment of microalgae production by CO2 sequestration from flue gas in outdoor raceway ponds under batch and semi-continuous regime. J Clean Prod. 2020;258:120703. doi: 10.1016/j.jclepro.2020.120703.
  • Jebali A, Acién FG, Rodriguez Barradas E, et al. Pilot-scale outdoor production of Scenedesmus sp. in raceways using flue gases and centrate from anaerobic digestion as the sole culture medium. Bioresour Technol. 2018;262:1–8. doi: 10.1016/j.biortech.2018.04.057.
  • Cheng J, Yang Z, Zhou J, et al. Improving the CO2 fixation rate by increasing flow rate of the flue gas from microalgae in a raceway pond. Korean J Chem Eng. 2018;35:498–502. doi: 10.1007/s11814-017-0300-1.
  • Sanaye Mozaffari Sabet N, Golzary A. CO2 biofixation at microalgae photobioreactors: hydrodynamics and mass transfer study. Int J Environ Sci Technol. 2022;19:11631–11648. doi: 10.1007/s13762-022-04286-6.
  • Vuppaladadiyam AK, Yao JG, Florin N, et al. Impact of flue gas compounds on microalgae and mechanisms for carbon assimilation and utilization. ChemSusChem. 2018;11:334–355. doi: 10.1002/cssc.201701611.
  • Chi Z, Elloy F, Xie Y, et al. Selection of microalgae and cyanobacteria strains for bicarbonate-based integrated carbon capture and algae production system. Appl Biochem Biotechnol. 2014;172:447–457. doi: 10.1007/s12010-013-0515-5.
  • Kim G, Roh K, Han JI. The use of bicarbonate for microalgae cultivationand its carbon footprint analysis. Green Chem. 2019;21:5053–5062. doi: 10.1039/C9GC01107B.
  • Ming C, Ta H, Hui H, et al. Chemosphere effects of dissolved inorganic carbon and nutrient levels on carbon fixation and properties of Thermosynechococcus sp. in a continuous system. Chemosphere. 2012;88:706–711.
  • Zhu C, Zhai X, Jia J, et al. Seawater desalination concentrate for cultivation of Dunaliella salina with floating photobioreactor to produce β-carotene. Algal Res. 2018;35:319–324. doi: 10.1016/j.algal.2018.08.035.
  • Zhai X, Zhu C, Zhang Y, et al. Seawater supplemented with bicarbonate for efficient marine microalgae production in floating photobioreactor on ocean: a case study of Chlorella sp. Sci Total Environ. 2020;738:139439. doi: 10.1016/j.scitotenv.2020.139439.
  • Zhu C, Zhai X, Xi Y, et al. Efficient CO2 capture from the air for high microalgal biomass production by a bicarbonate pool. J Co2 Util. 2020;37:320–327. doi: 10.1016/j.jcou.2019.12.023.
  • Nayak M, Suh WI, Lee B, et al. Enhanced carbon utilization efficiency and FAME production of Chlorella sp. HS2 through combined supplementation of bicarbonate and carbon dioxide. Energy Convers Manag. 2018;156:45–52. doi: 10.1016/j.enconman.2017.11.002.
  • Liang Y, Tang J, Luo Y, et al. Thermosynechococcus as a thermophilic photosynthetic microbial cell factory for CO2 utilisation. Bioresour Technol. 2019;278:255–265. doi: 10.1016/j.biortech.2019.01.089.
  • Zhu C, Zhai X, Wang J, et al. Large-scale cultivation of Spirulina in a floating horizontal photobioreactor without aeration or an agitation device. Appl Microbiol Biotechnol. 2018;102:8979–8987. doi: 10.1007/s00253-018-9258-0.
  • Chen Z, Li T, Yang B, et al. Isolation of a novel strain of Cyanobacterium sp. with good adaptation to extreme alkalinity and high polysaccharide yield. J Ocean Limnol. 2021;39:1131–1142. doi: 10.1007/s00343-020-0113-7.
  • Zhu C, Che J, Zhai X, et al. Cost-effective and efficient production of carbohydrates from an Alkalihalophilic Leptolyngbya sp. in a photobioreactor with periodical mixing. ACS Sustain Chem Eng. 2020;8:15310–15316. doi: 10.1021/acssuschemeng.0c05499.
  • De Farias Silva CE, Grisa B, Sforza E, et al. Effects of sodium bicarbonate on biomass and carbohydrate production in synechococcus PCC 7002. Chem Eng Trans. 2016;49:241–246.
  • Chi Z, Xie Y, Elloy F, et al. Bicarbonate-based integrated carbon capture and algae production system with alkalihalophilic cyanobacterium. Bioresour Technol. 2013;133:513–521. doi: 10.1016/j.biortech.2013.01.150.
  • Van Den Hende S, Vervaeren H, Boon N. Flue gas compounds and microalgae: (bio-)chemical interactions leading to biotechnological opportunities. Biotechnol Adv. 2012;30:1405–1424. doi: 10.1016/j.biotechadv.2012.02.015.
  • Lara-Gil JA, Álvarez MM, Pacheco A. Toxicity of flue gas components from cement plants in microalgae CO2 mitigation systems. J Appl Phycol. 2014;26:357–368. doi: 10.1007/s10811-013-0136-y.
  • Su Y, Xu M, Brynjólfsson S, et al. Physiological and molecular insights into adaptive evolution of the marine model diatom Phaeodactylum tricornutum under low-pH stress. J Clean Prod. 2023;412:137297. doi: 10.1016/j.jclepro.2023.137297.
  • Pawlowski A, Mendoza JL, Guzmán JL, et al. Effective utilization of flue gases in raceway reactor with event-based pH control for microalgae culture. Bioresour Technol. 2014;170:1–9. doi: 10.1016/j.biortech.2014.07.088.
  • de Godos I, Mendoza JL, Acién FG, et al. Evaluation of carbon dioxide mass transfer in raceway reactors for microalgae culture using flue gases. Bioresour Technol. 2014;153:307–314. doi: 10.1016/j.biortech.2013.11.087.
  • Jiang Y, Zhang W, Wang J, et al. Utilization of simulated flue gas for cultivation of Scenedesmus dimorphus. Bioresour Technol. 2013;128:359–364. doi: 10.1016/j.biortech.2012.10.119.
  • Kumar K, Dasgupta CN, Nayak B, et al. Development of suitable photobioreactors for CO2 sequestration addressing global warming using green algae and cyanobacteria. Bioresour Technol. 2011;102:4945–4953. doi: 10.1016/j.biortech.2011.01.054.
  • Onay M, Sonmez C, Oktem HA, et al. Thermo-resistant green microalgae for effective biodiesel production: isolation and characterization of unialgal species from geothermal flora of Central Anatolia. Bioresour Technol. 2014;169:62–71. doi: 10.1016/j.biortech.2014.06.078.
  • Miari S. CO2 Assimilation in a thremopkilic cyanobacterium. Energy Convers Manag. 1995;36:763–766.
  • Podkuiko L, Olt J, Kikas T. Growth of Scenedesmus obliquus under artificial flue gas with a high sulphur concentration neutralized with oil shale ash. Proc Estonian Acad Sci. 2017;66:51. doi: 10.3176/proc.2017.2.03.
  • Douskova I, Doucha J, Livansky K, et al. Simultaneous flue gas bioremediation and reduction of microalgal biomass production costs. Appl Microbiol Biotechnol. 2009;82:179–185. doi: 10.1007/s00253-008-1811-9.
  • Napan K, Teng L, Quinn JC, et al. Impact of heavy metals from flue gas integration with microalgae production. Algal Res. 2015;8:83–88. doi: 10.1016/j.algal.2015.01.003.
  • Fu W, Gudmundsson O, Feist AM, et al. Maximizing biomass productivity and cell density of Chlorella vulgaris by using light-emitting diode-based photobioreactor. J Biotechnol. 2012;161:242–249. doi: 10.1016/j.jbiotec.2012.07.004.
  • Dineshkumar R, Dash SK, Sen R. Process integration for microalgal lutein and biodiesel production with concomitant flue gas CO2 sequestration: a biorefinery model for healthcare, energy and environment. RSC Adv. 2015;5:73381–73394. doi: 10.1039/C5RA09306F.
  • Nayak M, Karemore A, Sen R. Sustainable valorization of flue gas CO2 and wastewater for the production of microalgal biomass as a biofuel feedstock in closed and open reactor systems. RSC Adv. 2016;6:91111–91120. doi: 10.1039/C6RA17899E.
  • Kumar K, Banerjee D, Das D. Carbon dioxide sequestration from industrial flue gas by Chlorella sorokiniana. Bioresour Technol. 2014;152:225–233. doi: 10.1016/j.biortech.2013.10.098.
  • Zhu C, Chen S, Ji Y, et al. Progress toward a bicarbonate-based microalgae production system. Trends Biotechnol. 2022;40:180–193. doi: 10.1016/j.tibtech.2021.06.005.
  • Singh SK, Sundaram S, Sinha S, et al. Recent advances in CO2 uptake and fixation mechanism of cyanobacteria and microalgae. Crit Rev Environ Sci Technol. 2016;46:1297–1323. doi: 10.1080/10643389.2016.1217911.
  • Tang J, Zhou H, Yao D, et al. Comparative genomic analysis revealed distinct molecular components and organization of CO2-concentrating mechanism in thermophilic cyanobacteria. Front Microbiol. 2022;13:876272. doi: 10.3389/fmicb.2022.876272.
  • Tomar V, Sidhu GK, Nogia P, et al. Regulatory components of carbon concentrating mechanisms in aquatic unicellular photosynthetic organisms. Plant Cell Rep. 2017;36:1671–1688. doi: 10.1007/s00299-017-2191-3.
  • Tang J, Jiang D, Luo Y, et al. Potential new genera of cyanobacterial strains isolated from thermal springs of western Sichuan, China. Algal Res. 2018;31:14–20. doi: 10.1016/j.algal.2018.01.008.
  • Komárek J, Johansen JR, Šmarda J, et al. Phylogeny and taxonomy of Synechococcus–like cyanobacteria. Fottea. 2020;20:171–191. doi: 10.5507/fot.2020.006.
  • Choi YY, Joun JM, Lee J, et al. Development of large-scale and economic pH control system for outdoor cultivation of microalgae Haematococcus pluvialis using industrial flue gas. Bioresour Technol. 2017;244:1235–1244. doi: 10.1016/j.biortech.2017.05.147.
  • Alliance Consulting International. Methanol Safe Handling Manual. Methanol Institute. 2008;5:1–37. Available from: https://www.methanol.org/wp-content/uploads/2020/03/Safe-Handling-Manual_5th-Edition_Final.pdf
  • Song S, Timm S, Lindner SN, et al. Expression of formate-tetrahydrofolate ligase did not improve growth but interferes with nitrogen and carbon metabolism of Synechocystis sp. PCC 6803. Front Microbiol. 2020;11:1–14.
  • Bielecka A, Kulczycka J. Coal combustion products management toward a circular economy—a case study of the coal power plant sector in Poland. Energies (Basel). 2020;13:3603. doi: 10.3390/en13143603.
  • Wang P, Wang J, Qin Q, et al. Life cycle assessment of magnetized fly-ash compound fertilizer production: a case study in China. Renew Sustain Energy Rev. 2017;73:706–713. doi: 10.1016/j.rser.2017.02.005.
  • Shaheen SM, Hooda PS, Tsadilas CD. Opportunities and challenges in the use of coal fly ash for soil improvements–a review. J Environ Manage. 2014;145:249–267. doi: 10.1016/j.jenvman.2014.07.005.
  • Rai UN, Tripathi RD, Singh N, et al. Amelioration of fly-ash by selected nitrogen fixing blue green algae. Bull Environ Contam Toxicol. 2000;64:294–301. doi: 10.1007/s001289910043.
  • Pöykiö R, Nurmesniemi H, Keiski RL. Heavy metals in flue gas cleaning residue. Environ Chem Lett. 2010;8:295–300. doi: 10.1007/s10311-009-0220-3.
  • Pesonen J, Kuokkanen T, Rautio P, et al. Bioavailability of nutrients and harmful elements in ash fertilizers: effect of granulation. Biomass Bioenergy. 2017;100:92–97. doi: 10.1016/j.biombioe.2017.03.019.
  • Sandoval R MA, Flores E MF, Narváez C RA, et al. Phototrophic culture of Chlorella sp. using charcoal ash as an inorganic nutrient source. Algal Res. 2015;11:368–374. doi: 10.1016/j.algal.2015.07.008.
  • Le VL, Kheiri A, Feidt M, et al. Thermodynamic and economic optimizations of a waste heat to power plant driven by a subcritical ORC (Organic Rankine Cycle) using pure or zeotropic working fluid. Energy. 2014;78:622–638. doi: 10.1016/j.energy.2014.10.051.
  • Laamanen CA, Shang H, Ross GM, et al. A model for utilizing industrial off-gas to support microalgae cultivation for biodiesel in cold climates. Energy Convers Manag. 2014;88:476–483. doi: 10.1016/j.enconman.2014.08.047.
  • Brückner S, Liu S, Miró L, et al. Industrial waste heat recovery technologies: an economic analysis of heat transformation technologies. Appl Energy. 2015;151:157–167. doi: 10.1016/j.apenergy.2015.01.147.
  • IEA. World Energy Outlook 2012. Paris (France): IEA; 2012. Chapter 17, Water for energy: is energy becoming a thirstier resource?; p. 501–528.
  • Covarrubias Y, Cantoral-Uriza EA, Casas-Flores JS, et al. Thermophile mats of microalgae growing on the woody structure of a cooling tower of a thermoelectric power plant in Central Mexico. Rev Mex Biodivers. 2016;87:277–287. doi: 10.1016/j.rmb.2016.04.001.
  • Wang D, Bao A, Kunc W, et al. Coal power plant flue gas waste heat and water recovery. Appl Energy. 2012;91:341–348. doi: 10.1016/j.apenergy.2011.10.003.
  • Song C, Chen G, Ji N, et al. Biodiesel production process from microalgae oil by waste heat recovery and process integration. Bioresour Technol. 2015;193:192–199. doi: 10.1016/j.biortech.2015.06.116.
  • Zou X, Xu K, Xue Y, et al. Interactions of Chlorella vulgaris and fly ash cenospheres in heat-aided ballasted flotation. Algal Res. 2020;46:101813. doi: 10.1016/j.algal.2020.101813.
  • Laamanen CA, Scott JA. Development of heat-aided flocculation for flotation harvesting of microalgae. Biomass Bioenergy. 2017;107:150–154. doi: 10.1016/j.biombioe.2017.09.020.
  • Mehetre GT, Zothanpuia, Deka P, et al. Chapter 6 – Thermophilic and thermotolerant cyanobacteria: environmental and biotechnological perspectives. In: Singh P, Fillat M, Kumar ABT-CL and its A in B, editors. Cyanobacterial Lifestyle and its Applications in Biotechnology. Cambridge (UK): Academic Press; 2022. p. 159–178.
  • Varshney P, Mikulic P, Vonshak A, et al. Extremophilic micro-algae and their potential contribution in biotechnology. Bioresour Technol. 2015;184:363–372. doi: 10.1016/j.biortech.2014.11.040.
  • Liang Y, Kaczmarek MB, Kasprzak AK, et al. Thermosynechococcaceae as a source of thermostable C-phycocyanins: properties and molecular insights. Algal Res. 2018;35:223–235. doi: 10.1016/j.algal.2018.08.037.
  • Bergmann P, Trösch W. Repeated fed-batch cultivation of Thermosynechococcus elongatus BP-1 in flat-panel airlift photobioreactors with static mixers for improved light utilization: influence of nitrate, carbon supply and photobioreactor design. Algal Res. 2016;17:79–86. doi: 10.1016/j.algal.2016.03.040.
  • Hsueh HT, Chu H, Chang CC. Identification and characteristics of a cyanobacterium isolated from a hot spring with dissolved inorganic carbon. Environ Sci Technol. 2007;41:1909–1914. doi: 10.1021/es0620639.
  • Eisele LE, Bakhru SH, Liu X, et al. Studies on C-phycocyanin from cyanidium caldarium, a eukaryote at the extremes of habitat. Biochim Biophys Acta. 2000;1456:99–107. doi: 10.1016/s0005-2728(99)00110-3.
  • Riaz S, Xiao M, Chen P, et al. The genome copy number of the thermophilic Cyanobacterium Thermosynechococcus elongatus E542 is controlled by growth phase and nutrient availability. Appl Environ Microbiol. 2021;87:1–13. doi: 10.1128/AEM.02993-20.
  • Pedersen D, Miller SR. Photosynthetic temperature adaptation during niche diversification of the thermophilic cyanobacterium Synechococcus A/B clade. Isme J. 2017;11:1053–1057. doi: 10.1038/ismej.2016.173.
  • Liang Y, Tang J, Luo Y, et al. Thermosynechococcus as a thermophilic photosynthetic microbial cell factory for CO2 utilisation. Bioresour Technol. 2019;278:255–265. doi: 10.1016/j.biortech.2019.01.089.
  • Chen J, Huang Y, Shu Y, et al. Recent progress on systems and synthetic biology of diatoms for improving algal productivity. Front Bioeng Biotechnol. 2022;10:908804. doi: 10.3389/fbioe.2022.908804.
  • Cao K, Cui Y, Sun F, et al. Metabolic engineering and synthetic biology strategies for producing high-value natural pigments in Microalgae. Biotechnol Adv. 2023;68:108236. doi: 10.1016/j.biotechadv.2023.108236.
  • Skjanes K, Lindblad P, Muller J. BioCO2 – a multidisciplinary, biological approach using solar energy to capture CO2 while producing H2 and high value products. Biomol Eng. 2007;24:405–413. doi: 10.1016/j.bioeng.2007.06.002.
  • Yen H-W, Ho S-H, Chen C-Y, et al. CO 2, NO x and SO x removal from flue gas via microalgae cultivation: a critical review. Biotechnol J. 2015;10:829–839. doi: 10.1002/biot.201400707.
  • Gleizer S, Ben-Nissan R, Bar-On YM, et al. Conversion of Escherichia coli to generate all biomass carbon from CO2. Cell. 2019;179:1255–1263.e12. doi: 10.1016/j.cell.2019.11.009.
  • Gassler T, Sauer M, Gasser B, et al. The industrial yeast Pichia pastoris is converted from a heterotroph into an autotroph capable of growth on CO2. Nat Biotechnol. 2020;38:210–216. doi: 10.1038/s41587-019-0363-0.
  • Shih PM, Zarzycki J, Niyogi KK, et al. Introduction of a synthetic CO2-fixing photorespiratory bypass into a cyanobacterium. J Biol Chem. 2014;289:9493–9500. doi: 10.1074/jbc.C113.543132.