167
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Ascorbic acid: a metabolite switch for designing stress-smart crops

, &
Received 27 Jul 2023, Accepted 02 Nov 2023, Published online: 01 Jan 2024

References

  • Zechmann B. Subcellular distribution of ascorbate in plants. Plant Signal Behav. 2011;6:360–363. doi: 10.4161/psb.6.3.14342.
  • Fruton J. Oxidation–reduction potentials of ascorbic acid. J Biol Chem. 1934;105:79–85. doi: 10.1016/S0021-9258(18)75567-1.
  • Khazim K, Giustarini D, Rossi R, et al. Glutathione redox potential is low and glutathionylated and cysteinylated hemoglobin levels are elevated in maintenance hemodialysis patients. Transl Res. 2013;162:16–25. doi: 10.1016/j.trsl.2012.12.014.
  • Koffler BE, Bloem E, Zellnig G, et al. High resolution imaging of subcellular glutathione concentrations by quantitative immunoelectron microscopy in different leaf areas of Arabidopsis. Micron. 2013;45:119–128. doi: 10.1016/j.micron.2012.11.006.
  • Xiao W, Wang R-S, Handy DE, et al. NAD(H) and NADP(H) redox couples and cellular energy metabolism. Antioxid Redox Signal. 2018;28:251–272. doi: 10.1089/ars.2017.7216.
  • Tanaka K, Shimakawa G, Tabata H, et al. Quantification of NAD(P)H in cyanobacterial cells by a phenol extraction method. Photosynth Res. 2021;148:57–66. doi: 10.1007/s11120-021-00835-1.
  • Koch-Nolte F, Fischer S, Haag F, et al. Compartmentation of NAD+-dependent signalling. FEBS Lett. 2011;585:1651–1656. doi: 10.1016/j.febslet.2011.03.045.
  • Smirnoff N. Ascorbic acid metabolism and functions: a comparison of plants and mammals. Free Radic Biol Med. 2018;122:116–129. doi: 10.1016/j.freeradbiomed.2018.03.033.
  • Boubakri H. The role of ascorbic acid in plant–pathogen interactions. In: Hossain MA, Munné-Bosch S, Burritt DJ, Vivancos PD, Fujita M, Lorence A, editors. Ascorbic acid in plant growth, development and stress tolerance. Springer International Publishing; 2017. p. 255–271.
  • Grillet L, Ouerdane L, Flis P, et al. Ascorbate efflux as a new strategy for iron reduction and transport in plants. J Biol Chem. 2014;289:2515–2525. doi: 10.1074/jbc.M113.514828.
  • Gallie DR. l-ascorbic acid: a multifunctional molecule supporting plant growth and development. Scientifica. 2013;2013:795964. doi: 10.1155/2013/795964.
  • Stasolla C, Yeung EC. Cellular ascorbic acid regulates the activity of major peroxidases in the apical poles of germinating white spruce (Picea glauca) somatic embryos. Plant Physiol Biochem. 2007;45:188–198. doi: 10.1016/j.plaphy.2007.02.007.
  • Horemans N, Foyer CH, Potters G, et al. Ascorbate function and associated transport systems in plants. Plant Physiol Biochem. 2000;38:531–540. doi: 10.1016/S0981-9428(00)00782-8.
  • de Pinto MC, De Gara L. Changes in the ascorbate metabolism of apoplastic and symplastic spaces are associated with cell differentiation. J Exp Bot. 2004;55:2559–2569. doi: 10.1093/jxb/erh253.
  • Schopfer P. Hydroxyl radical-induced cell-wall loosening in vitro and in vivo: implications for the control of elongation growth. Plant J. 2001;28:679–688. doi: 10.1046/j.1365-313x.2001.01187.x.
  • Pavet V, Olmos E, Kiddle G, et al. Ascorbic acid deficiency activates cell death and disease resistance responses in Arabidopsis. Plant Physiol. 2005;139:1291–1303. doi: 10.1104/pp.105.067686.
  • Paciolla C, Fortunato S, Dipierro N, et al. Vitamin C in plants: from functions to biofortification. Antioxidants. 2019;8:519. doi: 10.3390/antiox8110519.
  • Paradiso A, De Pinto M, Locato V, et al. Galactone-γ-lactone-dependent ascorbate biosynthesis alters wheat kernel maturation. Plant Biol. 2012;14:652–658. doi: 10.1111/j.1438-8677.2011.00543.x.
  • Chen Z, Gallie DR. Dehydroascorbate reductase affects leaf growth, development, and function. Plant Physiol. 2006;142:775–787. doi: 10.1104/pp.106.085506.
  • Saga G, Giorgetti A, Fufezan C, et al. Mutation analysis of violaxanthin de-epoxidase identifies substrate-binding sites and residues involved in catalysis. J Biol Chem. 2010;285:23763–23770. doi: 10.1074/jbc.M110.115097.
  • Luo X, Dai Y, Zheng C, et al. The ABI4–RbohD/VTC2 regulatory module promotes reactive oxygen species (ROS) accumulation to decrease seed germination under salinity stress. New Phytol. 2021;229:950–962. doi: 10.1111/nph.16921.
  • Chen Z, Cao X-l, Niu J-p Effects of exogenous ascorbic acid on seed germination and seedling salt-tolerance of alfalfa. PLOS One. 2021;16:e0250926. doi: 10.1371/journal.pone.0250926.
  • De Tullio MC. Is ascorbic acid a key signaling molecule integrating the activities of 2-oxoglutarate-dependent dioxygenases? Shifting the paradigm. Environ Exp Bot. 2020;178:104173. doi: 10.1016/j.envexpbot.2020.104173.
  • Lu F, Li G, Cui X, et al. Comparative analysis of JmjC domain-containing proteins reveals the potential histone demethylases in Arabidopsis and rice. J Integr Plant Biol. 2008;50:886–896. doi: 10.1111/j.1744-7909.2008.00692.x.
  • Tsukada Y-i, Fang J, Erdjument-Bromage H, et al. Histone demethylation by a family of JmjC domain-containing proteins. Nature. 2006;439:811–816. doi: 10.1038/nature04433.
  • Chowrasia S, Panda AK, Rawal HC, et al. Identification of jumonjiC domain containing gene family among the Oryza species and their expression analysis in FL478, a salt tolerant rice genotype. Plant Physiol Biochem. 2018;130:43–53. doi: 10.1016/j.plaphy.2018.06.031.
  • Song T, Zhang Q, Wang H, et al. OsJMJ703, a rice histone demethylase gene, plays key roles in plant development and responds to drought stress. Plant Physiol Biochem. 2018;132:183–188. doi: 10.1016/j.plaphy.2018.09.007.
  • Blaschke K, Ebata KT, Karimi MM, et al. Vitamin C induces Tet-dependent DNA demethylation and a blastocyst-like state in ES cells. Nature. 2013;500:222–226. doi: 10.1038/nature12362.
  • Camarena V, Wang G. The epigenetic role of vitamin C in health and disease. Cell Mol Life Sci. 2016;73:1645–1658. doi: 10.1007/s00018-016-2145-x.
  • Ito S, Shen L, Dai Q, et al. Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine. Science. 2011;333:1300–1303. doi: 10.1126/science.1210597.
  • Xue J-H, Chen G-D, Hao F, et al. A vitamin-C-derived DNA modification catalysed by an algal TET homologue. Nature. 2019;569:581–585. doi: 10.1038/s41586-019-1160-0.
  • Maity J, Majumder S, Pal R, et al. Ascorbic acid modulates immune responses through Jumonji-C domain containing histone demethylases and Ten eleven translocation (TET) methylcytosine dioxygenase. Bioessays. 2023;45:e2300035. doi: 10.1002/bies.202300035.
  • Zhang W, Lorence A, Gruszewski HA, et al. AMR1, an Arabidopsis gene that coordinately and negatively regulates the mannose/l-galactose ascorbic acid biosynthetic pathway. Plant Physiol. 2009;150:942–950. doi: 10.1104/pp.109.138453.
  • Qin H, Deng Z, Zhang C, et al. Rice GDP-mannose pyrophosphorylase OsVTC1-1 and OsVTC1-3 play different roles in ascorbic acid synthesis. Plant Mol Biol. 2016;90:317–327. doi: 10.1007/s11103-015-0420-0.
  • Foyer CH, Noctor G. Ascorbate and glutathione: the heart of the redox hub. Plant Physiol. 2011;155:2–18. doi: 10.1104/pp.110.167569.
  • Xue C-c, Xu J-y, Wang C, et al. Molecular cloning and functional characterization of a soybean GmGMP1 gene reveals its involvement in ascorbic acid biosynthesis and multiple abiotic stress tolerance in transgenic plants. J Integr Agric. 2018;17:539–553. doi: 10.1016/S2095-3119(17)61727-1.
  • Wang H-S, Yu C, Zhu Z-J, et al. Overexpression in tobacco of a tomato GMPase gene improves tolerance to both low and high temperature stress by enhancing antioxidation capacity. Plant Cell Rep. 2011;30:1029–1040. doi: 10.1007/s00299-011-1009-y.
  • Chen G, Han H, Yang X, et al. Salt tolerance of rice is enhanced by the SS3 gene, which regulates ascorbic acid synthesis and ROS scavenging. Int J Mol Sci. 2022;23:10338. doi: 10.3390/ijms231810338.
  • Wang J, Yu Y, Zhang Z, et al. Arabidopsis CSN5B interacts with VTC1 and modulates ascorbic acid synthesis. Plant Cell. 2013;25:625–636. doi: 10.1105/tpc.112.106880.
  • Yabuta Y, Mieda T, Rapolu M, et al. Light regulation of ascorbate biosynthesis is dependent on the photosynthetic electron transport chain but independent of sugars in Arabidopsis. J Exp Bot. 2007;58:2661–2671. doi: 10.1093/jxb/erm124.
  • Li Y, Chu Z, Luo J, et al. The C2H2 zinc-finger protein Sl ZF 3 regulates AsA synthesis and salt tolerance by interacting with CSN 5B. Plant Biotechnol J. 2018;16:1201–1213. doi: 10.1111/pbi.12863.
  • Zhang Z, Wang J, Zhang R, et al. The ethylene response factor AtERF98 enhances tolerance to salt through the transcriptional activation of ascorbic acid synthesis in Arabidopsis. Plant J. 2012;71:273–287. doi: 10.1111/j.1365-313X.2012.04996.x.
  • Yu C, Yan M, Dong H, et al. Maize bHLH55 functions positively in salt tolerance through modulation of AsA biosynthesis by directly regulating GDP-mannose pathway genes. Plant Sci. 2021;302:110676. doi: 10.1016/j.plantsci.2020.110676.
  • Hu T, Ye J, Tao P, et al. The tomato HD-Zip I transcription factor Sl HZ 24 modulates ascorbate accumulation through positive regulation of the d-mannose/l-galactose pathway. Plant J. 2016;85:16–29. doi: 10.1111/tpj.13085.
  • Li J, Xu H, Li X, et al. Molecular cloning and functional analysis of a Chrysanthemum vestitum GME homolog that enhances drought tolerance in transgenic tobacco. Sci Rep. 2022;12:13551. doi: 10.1038/s41598-022-17815-7.
  • Zhang C, Liu J, Zhang Y, et al. Overexpression of SlGMEs leads to ascorbate accumulation with enhanced oxidative stress, cold, and salt tolerance in tomato. Plant Cell Rep. 2011;30:389–398. doi: 10.1007/s00299-010-0939-0.
  • Chaturvedi S, Thakur N, Khan S, et al. Overexpression of banana GDP-l-galactose phosphorylase (GGP) modulates the biosynthesis of ascorbic acid in Arabidopsis thaliana. Int J Biol Macromol. 2023;237:124124. doi: 10.1016/j.ijbiomac.2023.124124.
  • Broad RC, Bonneau JP, Beasley JT, et al. Effect of rice GDP-l-galactose phosphorylase constitutive overexpression on ascorbate concentration, stress tolerance, and iron bioavailability in rice. Front Plant Sci. 2020;11:595439. doi: 10.3389/fpls.2020.595439.
  • Liu X, Bulley SM, Varkonyi-Gasic E, et al. Kiwifruit bZIP transcription factor AcePosF21 elicits ascorbic acid biosynthesis during cold stress. Plant Physiol. 2023;192:982–999. doi: 10.1093/plphys/kiad121.
  • Zhang H, Xiang Y, He N, et al. Enhanced vitamin C production mediated by an ABA-induced PTP-like nucleotidase improves plant drought tolerance in Arabidopsis and maize. Mol Plant. 2020;13:760–776. doi: 10.1016/j.molp.2020.02.005.
  • Dun W, Wei X, Wang L, et al. Over-expression of FaGalLDH increases ascorbic acid concentrations and enhances salt stress tolerance in Arabidopsis thaliana. J Plant Biol. 2023;66:35–46. doi: 10.1007/s12374-022-09376-z.
  • Upadhyaya CP, Young KE, Akula N, et al. Over-expression of strawberry d-galacturonic acid reductase in potato leads to accumulation of vitamin C with enhanced abiotic stress tolerance. Plant Sci. 2009;177(6):659–667. doi: 10.1016/j.plantsci.2009.08.004.
  • Kusuda H, Koga W, Kusano M, et al. Ectopic expression of myo-inositol 3-phosphate synthase induces a wide range of metabolic changes and confers salt tolerance in rice. Plant Sci. 2015;232:49–56. doi: 10.1016/j.plantsci.2014.12.009.
  • Chen C, Sun X, Duanmu H, et al. Ectopic expression of a Glycine soja myo-inositol oxygenase gene (GsMIOX1a) in Arabidopsis enhances tolerance to alkaline stress. PLOS One. 2015;10:e0129998. doi: 10.1371/journal.pone.0129998.
  • Zhu L, Guo J, Zhu J, et al. Enhanced expression of EsWAX1 improves drought tolerance with increased accumulation of cuticular wax and ascorbic acid in transgenic Arabidopsis. Plant Physiol Biochem. 2014;75:24–35. doi: 10.1016/j.plaphy.2013.11.028.
  • Zhang J, Li B, Yang Y, et al. A novel allele of l-galactono-1,4-lactone dehydrogenase is associated with enhanced drought tolerance through affecting stomatal aperture in common wheat. Sci Rep. 2016;6:30177. doi: 10.1038/srep30177.
  • Liu Y, Yang T, Lin Z, et al. A WRKY transcription factor PbrWRKY53 from Pyrus betulaefolia is involved in drought tolerance and AsA accumulation. Plant Biotechnol J. 2019;17:1770–1787. doi: 10.1111/pbi.13099.
  • Jardim-Messeder D, Caverzan A, Balbinott N, et al. Stromal ascorbate peroxidase (OsAPX7) modulates drought stress tolerance in rice (Oryza sativa). Antioxidants. 2023;12:387. doi: 10.3390/antiox12020387.
  • Jardim-Messeder D, Caverzan A, Rauber R, et al. Thylakoidal APX modulates hydrogen peroxide content and stomatal closure in rice (Oryza sativa L.). Environ Exp Bot. 2018;150:46–56. doi: 10.1016/j.envexpbot.2018.02.012.
  • Cunha JR, Carvalho FE, Lima-Neto MC, et al. Proteomic and physiological approaches reveal new insights for uncover the role of rice thylakoidal APX in response to drought stress. J Proteomics. 2019;192:125–136. doi: 10.1016/j.jprot.2018.08.014.
  • Liu F, Huang N, Wang L, et al. A novel l-ascorbate peroxidase 6 gene, ScAPX6, plays an important role in the regulation of response to biotic and abiotic stresses in sugarcane. Front Plant Sci. 2017;8:2262. doi: 10.3389/fpls.2017.02262.
  • Hirooka S, Misumi O, Yoshida M, et al. Expression of the Cyanidioschyzon merolae stromal ascorbate peroxidase in Arabidopsis thaliana enhances thermotolerance. Plant Cell Rep. 2009;28:1881–1893. doi: 10.1007/s00299-009-0791-2.
  • Chin D-C, Kumar RS, Suen C-S, et al. Plant cytosolic ascorbate peroxidase with dual catalytic activity modulates abiotic stress tolerances. iScience. 2019;16:31–49. doi: 10.1016/j.isci.2019.05.014.
  • Sato Y, Masuta Y, Saito K, et al. Enhanced chilling tolerance at the booting stage in rice by transgenic overexpression of the ascorbate peroxidase gene, OsAPXa. Plant Cell Rep. 2011;30:399–406. doi: 10.1007/s00299-010-0985-7.
  • Li R, Zheng W, Yang R, et al. OsSGT1 promotes melatonin-ameliorated seed tolerance to chromium stress by affecting the OsABI5–OsAPX1 transcriptional module in rice. Plant J. 2022;112:151–171. doi: 10.1111/tpj.15937.
  • Li R, Yang R, Zheng W, et al. Melatonin promotes SGT1-involved signals to ameliorate drought stress adaption in rice. Int J Mol Sci. 2022;23:599. doi: 10.3390/ijms23020599.
  • Bai Y, Guo J, Reiter RJ, et al. Melatonin synthesis enzymes interact with ascorbate peroxidase to protect against oxidative stress in cassava. J Exp Bot. 2020;71:5645–5655. doi: 10.1093/jxb/eraa267.
  • Wei Y, Liu G, Chang Y, et al. Melatonin biosynthesis enzymes recruit WRKY transcription factors to regulate melatonin accumulation and transcriptional activity on W-box in cassava. J Pineal Res. 2018;65:e12487. doi: 10.1111/jpi.12487.
  • Zandalinas SI, Balfagón D, Arbona V, et al. ABA is required for the accumulation of APX1 and MBF1c during a combination of water deficit and heat stress. J Exp Bot. 2016;67:5381–5390. doi: 10.1093/jxb/erw299.
  • Hu Z, Li J, Ding S, et al. The protein kinase CPK28 phosphorylates ascorbate peroxidase and enhances thermotolerance in tomato. Plant Physiol. 2021;186:1302–1317. doi: 10.1093/plphys/kiab120.
  • Meng L, Zhang Q, Yang J, et al. PtrCDPK10 of Poncirus trifoliata functions in dehydration and drought tolerance by reducing ROS accumulation via phosphorylating PtrAPX. Plant Sci. 2020;291:110320. doi: 10.1016/j.plantsci.2019.110320.
  • Qi Q, Yanyan D, Yuanlin L, et al. Overexpression of SlMDHAR in transgenic tobacco increased salt stress tolerance involving S-nitrosylation regulation. Plant Sci. 2020;299:110609. doi: 10.1016/j.plantsci.2020.110609.
  • Vanacker H, Guichard M, Bohrer A-S, et al. Redox regulation of monodehydroascorbate reductase by thioredoxin y in plastids revealed in the context of water stress. Antioxidants. 2018;7:183. doi: 10.3390/antiox7120183.
  • Wang Y, Feng C, Zhai Z, et al. The apple microR171i-SCARECROW-LIKE PROTEINS26.1 module enhances drought stress tolerance by integrating ascorbic acid metabolism. Plant Physiol. 2020;184:194–211. doi: 10.1104/pp.20.00476.
  • Zhu M, Liu Q, Liu F, et al. Gene profiling of the ascorbate oxidase family genes under osmotic and cold stress reveals the role of AnAO5 in cold adaptation in Ammopiptanthus nanus. Plants. 2023;12:677. doi: 10.3390/plants12030677.
  • Zhu M, Wang X, Zhou Y, et al. Small RNA sequencing revealed that miR4415, a legume-specific miRNA, was involved in the cold acclimation of Ammopiptanthus nanus by targeting an l-ascorbate oxidase gene and regulating the redox state of apoplast. Front Genet. 2022;13:870446. doi: 10.3389/fgene.2022.870446.
  • Wang M, Guo W, Li J, et al. The miR528-AO module confers enhanced salt tolerance in rice by modulating the ascorbic acid and abscisic acid metabolism and ROS scavenging. J Agric Food Chem. 2021;69:8634–8648. doi: 10.1021/acs.jafc.1c01096.
  • Yuan S, Li Z, Li D, et al. Constitutive expression of rice microRNA528 alters plant development and enhances tolerance to salinity stress and nitrogen starvation in creeping bentgrass. Plant Physiol. 2015;169:576–593. doi: 10.1104/pp.15.00899.
  • Parmar S, Gharat SA, Tagirasa R, et al. Identification and expression analysis of miRNAs and elucidation of their role in salt tolerance in rice varieties susceptible and tolerant to salinity. PLOS One. 2020;15:e0230958. doi: 10.1371/journal.pone.0230958.
  • Yin L, Wang S, Eltayeb AE, et al. Overexpression of dehydroascorbate reductase, but not monodehydroascorbate reductase, confers tolerance to aluminum stress in transgenic tobacco. Planta. 2010;231:609–621. doi: 10.1007/s00425-009-1075-3.
  • Xing C, Liu Y, Zhao L, et al. A novel MYB transcription factor regulates ascorbic acid synthesis and affects cold tolerance. Plant Cell Environ. 2019;42:832–845. doi: 10.1111/pce.13387.
  • Wang M, Ding F, Zhang S. Mutation of SlSBPASE aggravates chilling-induced oxidative stress by impairing glutathione biosynthesis and suppressing ascorbate-glutathione recycling in tomato plants. Front Plant Sci. 2020;11:565701. doi: 10.3389/fpls.2020.565701.
  • Nguyen KH, Mostofa MG, Watanabe Y, et al. Overexpression of GmNAC085 enhances drought tolerance in Arabidopsis by regulating glutathione biosynthesis, redox balance and glutathione-dependent detoxification of reactive oxygen species and methylglyoxal. Environ Exp Bot. 2019;161:242–254. doi: 10.1016/j.envexpbot.2018.12.021.
  • Sevilla F, Camejo D, Ortiz-Espín A, et al. The thioredoxin/peroxiredoxin/sulfiredoxin system: current overview on its redox function in plants and regulation by reactive oxygen and nitrogen species. J Exp Bot. 2015;66:2945–2955. doi: 10.1093/jxb/erv146.
  • Labrou NE, Papageorgiou AC, Pavli O, et al. Plant GSTome: structure and functional role in xenome network and plant stress response. Curr Opin Biotechnol. 2015;32:186–194. doi: 10.1016/j.copbio.2014.12.024.
  • Romero-Puertas MC, Sandalio LM. Nitric oxide level is self-regulating and also regulates its ROS partners. Frontiers Media SA; 2016. p. 316.
  • Foyer CH, Kyndt T, Hancock RD. Vitamin C in plants: novel concepts, new perspectives, and outstanding issues. Antioxid Redox Signal. 2020;32:463–485. doi: 10.1089/ars.2019.7819.
  • Foyer CH, Lelandais M. A comparison of the relative rates of transport of ascorbate and glucose across the thylakoid, chloroplast and plasmalemma membranes of pea leaf mesophyll cells. J Plant Physiol. 1996;148:391–398. doi: 10.1016/S0176-1617(96)80271-9.
  • Rivas C, Zúñiga F, Salas-Burgos A, et al. Vitamin C transporters. J Physiol Biochem. 2008;64:357–375. doi: 10.1007/BF03174092.
  • Hoang MTT, Almeida D, Chay S, et al. AtDTX25, a member of the multidrug and toxic compound extrusion family, is a vacuolar ascorbate transporter that controls intracellular iron cycling in Arabidopsis. New Phytol. 2021;231:1956–1967. doi: 10.1111/nph.17526.
  • Miyaji T, Kuromori T, Takeuchi Y, et al. AtPHT4; 4 is a chloroplast-localized ascorbate transporter in Arabidopsis. Nat Commun. 2015;6:5928. doi: 10.1038/ncomms6928.
  • Sharova E, Medvedev S, Demidchik V. Ascorbate in the apoplast: metabolism and functions. Russ J Plant Physiol. 2020;67:207–220. doi: 10.1134/S1021443720020156.
  • Franceschi VR, Tarlyn NM. l-Ascorbic acid is accumulated in source leaf phloem and transported to sink tissues in plants. Plant Physiol. 2002;130:649–656. doi: 10.1104/pp.007062.
  • Tedone L, Hancock RD, Alberino S, et al. Long-distance transport of l-ascorbic acid in potato. BMC Plant Biol. 2004;4:16. doi: 10.1186/1471-2229-4-16.
  • Chatzopoulou F, Sanmartin M, Mellidou I, et al. Silencing of ascorbate oxidase results in reduced growth, altered ascorbic acid levels and ripening pattern in melon fruit. Plant Physiol Biochem. 2020;156:291–303. doi: 10.1016/j.plaphy.2020.08.040.
  • Karima F, Abdelgawad M, El-Mogy M, et al. Increasing ascorbic acid content and salinity tolerance of cherry tomato plants by suppressed expression of the ascorbate oxidase gene. Agronomy. 2019;9:51. MIA doi: 10.3390/agronomy9020051.
  • Ye N, Zhu G, Liu Y, et al. Ascorbic acid and reactive oxygen species are involved in the inhibition of seed germination by abscisic acid in rice seeds. J Exp Bot. 2012;63:1809–1822. doi: 10.1093/jxb/err336.
  • Kawaguchi R, Suriyasak C, Matsumoto R, et al. Regulation of reactive oxygen species and phytohormones in osmotic stress tolerance during seed germination in indica rice. Front Plant Sci. 2023;14:1186960. doi: 10.3389/fpls.2023.1186960.
  • Yu Y, Wang J, Li S, et al. Ascorbic acid integrates the antagonistic modulation of ethylene and abscisic acid in the accumulation of reactive oxygen species. Plant Physiol. 2019;179:1861–1875. doi: 10.1104/pp.18.01250.
  • Hirota K, Matsui M, Iwata S, et al. AP-1 transcriptional activity is regulated by a direct association between thioredoxin and Ref-1. Proc Natl Acad Sci U S A. 1997;94:3633–3638. doi: 10.1073/pnas.94.8.3633.
  • Liu X, Wu R, Bulley SM, et al. Kiwifruit MYBS1-like and GBF3 transcription factors influence l-ascorbic acid biosynthesis by activating transcription of GDP-l-galactose phosphorylase 3. New Phytol. 2022;234:1782–1800. doi: 10.1111/nph.18097.
  • Xu X, Huang B, Fang X, et al. SlMYB99-mediated auxin and abscisic acid antagonistically regulate ascorbic acids biosynthesis in tomato. New Phytol. 2023;239:949–963. doi: 10.1111/nph.18988.
  • Xu X, Zhang Q, Gao X, et al. Auxin and abscisic acid antagonistically regulate ascorbic acid production via the SlMAPK8–SlARF4–SlMYB11 module in tomato. Plant Cell. 2022;34:4409–4427. doi: 10.1093/plcell/koac262.
  • Bao G, Zhuo C, Qian C, et al. Co-expression of NCED and ALO improves vitamin C level and tolerance to drought and chilling in transgenic tobacco and stylo plants. Plant Biotechnol J. 2016;14:206–214. doi: 10.1111/pbi.12374.
  • Li X, Ye J, Munir S, et al. Biosynthetic gene pyramiding leads to ascorbate accumulation with enhanced oxidative stress tolerance in tomato. Int J Mol Sci. 2019;20:1558. doi: 10.3390/ijms20071558.
  • Raja V, Wani UM, Wani ZA, et al. Pyramiding ascorbate–glutathione pathway in Lycopersicum esculentum confers tolerance to drought and salinity stress. Plant Cell Rep. 2022;41:619–637. doi: 10.1007/s00299-021-02764-8.
  • Bashir S, Jan N, Wani UM, et al. Co-over expression of ascorbate glutathione pathway enzymes improve mercury tolerance in tomato. Plant Physiol Biochem. 2022;186:170–181. doi: 10.1016/j.plaphy.2022.07.015.
  • Cai X, Zhang C, Shu W, et al. The transcription factor SlDof22 involved in ascorbate accumulation and salinity stress in tomato. Biochem Biophys Res Commun. 2016;474:736–741. doi: 10.1016/j.bbrc.2016.04.148.
  • Ye J, Li W, Ai G, et al. Genome-wide association analysis identifies a natural variation in basic helix-loop-helix transcription factor regulating ascorbate biosynthesis via d-mannose/l-galactose pathway in tomato. PLoS Genet. 2019;15:e1008149. doi: 10.1371/journal.pgen.1008149.
  • Aarabi F, Ghigi A, Ahchige MW, et al. Genome-wide association study unveils ascorbate regulation by PAS/LOV PROTEIN during high light acclimation. Plant Physiol. 2023;193:2037–2054. doi: 10.1093/plphys/kiad323.
  • Bournonville C, Mori K, Deslous P, et al. Blue light promotes ascorbate synthesis by deactivating the PAS/LOV photoreceptor that inhibits GDP-l-galactose phosphorylase. Plant Cell. 2023;35:2615–2634. doi: 10.1093/plcell/koad108.
  • Zhang H, Si X, Ji X, et al. Genome editing of upstream open reading frames enables translational control in plants. Nat Biotechnol. 2018;36:894–898. doi: 10.1038/nbt.4202.
  • Foyer CH, Noctor G. Redox sensing and signalling associated with reactive oxygen in chloroplasts, peroxisomes and mitochondria. Physiol Plant. 2003;119:355–364. doi: 10.1034/j.1399-3054.2003.00223.x.
  • Hao W, Liu G, Wang W, et al. RNA editing and its roles in plant organelles. Front Genet. 2021;12:757109. doi: 10.3389/fgene.2021.757109.
  • Yang L, Zhang J, He J, et al. ABA-mediated ROS in mitochondria regulate root meristem activity by controlling PLETHORA expression in Arabidopsis. PLoS Genet. 2014;10:e1004791. doi: 10.1371/journal.pgen.1004791.
  • Zeng J, Dong Z, Wu H, et al. Redox regulation of plant stem cell fate. EMBO J. 2017;36:2844–2855. doi: 10.15252/embj.201695955.
  • Sundaravelpandian K, Chandrika NNP, Schmidt W. PFT 1, a transcriptional mediator complex subunit, controls root hair differentiation through reactive oxygen species (ROS) distribution in Arabidopsis. New Phytol. 2013;197:151–161. doi: 10.1111/nph.12000.
  • Kelliher T, Walbot V. Hypoxia triggers meiotic fate acquisition in maize. Science. 2012;337:345–348. doi: 10.1126/science.1220080.
  • Wu S-Y, Hou L-L, Zhu J, et al. Ascorbic acid-mediated reactive oxygen species homeostasis modulates the switch from tapetal cell division to cell differentiation in Arabidopsis. Plant Cell. 2023;35:1474–1495. doi: 10.1093/plcell/koad037.
  • Lan X, Yang J, Abhinandan K, et al. Flavonoids and ROS play opposing roles in mediating pollination in ornamental kale (Brassica oleracea var. acephala). Mol Plant. 2017;10:1361–1364. doi: 10.1016/j.molp.2017.08.002.
  • Zhang L, Huang J, Su S, et al. FERONIA receptor kinase-regulated reactive oxygen species mediate self-incompatibility in Brassica rapa. Curr Biol. 2021;31:3004–3016.e4. doi: 10.1016/j.cub.2021.04.060.
  • Lassig R, Gutermuth T, Bey TD, et al. Pollen tube NAD(P)H oxidases act as a speed control to dampen growth rate oscillations during polarized cell growth. Plant J. 2014;78:94–106. doi: 10.1111/tpj.12452.
  • Sahel DK, Vora LK, Saraswat A, et al. CRISPR/Cas9 genome editing for tissue-specific in vivo targeting: nanomaterials and translational perspective. Adv Sci. 2023;10:2207512. doi: 10.1002/advs.202207512.
  • Mousavi S, Bereswill S, Heimesaat MM. Immunomodulatory and antimicrobial effects of vitamin C. Eur J Microbiol Immunol. 2019;9:73–79. doi: 10.1556/1886.2019.00016.
  • Mukherjee M, Larrimore KE, Ahmed NJ, et al. Ascorbic acid deficiency in Arabidopsis induces constitutive priming that is dependent on hydrogen peroxide, salicylic acid, and the NPR1 gene. Mol Plant Microbe Interact. 2010;23:340–351. doi: 10.1094/MPMI-23-3-0340.
  • Sachdev S, Ansari MI. Role of plant microbiome under stress environment to enhance crop productivity. In: Ansari SA, Ansari MI, Husen A, editors. Augmenting crop productivity in stress environment. Singapore: Springer; 2022. p. 205–221.
  • Ullah I, Waqas M, Khan MA, et al. Exogenous ascorbic acid mitigates flood stress damages of Vigna angularis. Appl Biol Chem. 2017;60:603–614. doi: 10.1007/s13765-017-0316-6.
  • Sharma R, Bhardwaj R, Thukral AK, et al. Oxidative stress mitigation and initiation of antioxidant and osmoprotectant responses mediated by ascorbic acid in Brassica juncea L. subjected to copper(II) stress. Ecotoxicol Environ Saf. 2019;182:109436. doi: 10.1016/j.ecoenv.2019.109436.
  • Koukara J, Papadopoulou KK. Advances in plant synthetic biology approaches to control expression of gene circuits. Biochem Biophys Res Commun. 2023;654:55–61. doi: 10.1016/j.bbrc.2023.02.061.
  • Long BM, Hee WY, Sharwood RE, et al. Carboxysome encapsulation of the CO2-fixing enzyme RuBisCo in tobacco chloroplasts. Nat Commun. 2018;9:3570. doi: 10.1038/s41467-018-06044-0.
  • Lee JE, Neumann M, Duro DI, et al. CRISPR-based tools for targeted transcriptional and epigenetic regulation in plants. PLOS One. 2019;14:e0222778. doi: 10.1371/journal.pone.0222778.
  • Shanidze N, Lenkeit F, Hartig JS, et al. A theophylline-responsive riboswitch regulates expression of nuclear-encoded genes. Plant Physiol. 2020;182:123–135. doi: 10.1104/pp.19.00625.
  • Wang F, Liu Y, Zhang L, et al. Photoelectrochemical biosensor based on CdS quantum dots anchored h-BN nanosheets and tripodal DNA walker for sensitive detection of miRNA-141. Anal Chim Acta. 2022;1226:340265. doi: 10.1016/j.aca.2022.340265.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.