262
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Microbial alchemy: upcycling of brewery spent grains into high-value products through fermentation

ORCID Icon, , , , , , , & ORCID Icon show all
Received 24 Aug 2023, Accepted 02 Nov 2023, Published online: 01 Jan 2024

References

  • Agrawal D, Gopaliya D, Willoughby N, et al. Recycling potential of brewer’s spent grains for circular biorefineries. Curr Opin Green Sustain Chem. 2023;40:100748. doi: 10.1016/j.cogsc.2022.100748.
  • Allegretti C, Bellinetto E, D’arrigo P, et al. Towards a complete exploitation of brewers’ spent grain from a circular economy perspective. Fermentation. 2022;8:151. doi: 10.3390/FERMENTATION8040151/S1.
  • Bianco A, Budroni M, Zara S, et al. The role of microorganisms on biotransformation of brewers’ spent grain. Appl Microbiol Biotechnol. 2020;104:8661–8678. doi: 10.1007/S00253-020-10843-1/TABLES/4.
  • Zeko-Pivač A, Tišma M, Žnidaršič-Plazl P, et al. The potential of brewer’s spent grain in the circular bioeconomy: state of the art and future perspectives. Front Bioeng Biotechnol. 2022;10:870744. doi: 10.3389/fbioe.2022.870744.
  • Abhinav Reddy. (2022) Brewing up new opportunities from spent grains. Brew. World. [cited 2023 Apr 18]. https://www.brewer-world.com/brewing-up-new-opportunities-from-spent-grains/.
  • Mitri S, Salameh S-J, Khelfa A, et al. Valorization of Brewers’ spent grains: pretreatments and fermentation, a review. Fermentation. 2022;8:50. doi: 10.3390/fermentation8020050.
  • Pandey LN, Shrestha R, K.c S, et al. Effects of brewery spent grain (BSG) included poultry diet on growth performance and meat quality of New Hampshire chicken. Arch Agric Environ Sci. 2023;8:14–19. doi: 10.26832/24566632.2023.080103.
  • Jaeger A, Sahin AW, Nyhan L, et al. Functional properties of brewer’s spent grain protein isolate: the missing piece in the plant protein portfolio. Foods. 2023;12:798. doi: 10.3390/FOODS12040798.
  • Junttila MH. Extraction of brewers’ spent grain in near subcritical conditions: a method to obtain high protein contents extracts. J Agric Food Res. 2022;10:100378. doi: 10.1016/j.jafr.2022.100378.
  • Shroti GK, Saini CS. Development of edible films from protein of brewer’s spent grain: effect of pH and protein concentration on physical, mechanical and barrier properties of films. Appl Food Res. 2022;2:100043. doi: 10.1016/j.afres.2022.100043.
  • Bhatia SK, Palai AK, Kumar A, et al. Trends in renewable energy production employing biomass-based biochar. Bioresour Technol. 2021;340:125644. doi: 10.1016/J.BIORTECH.2021.125644.
  • Yoo JH, Luyima D, Lee JH, et al. Effects of brewer’s spent grain biochar on the growth and quality of leaf lettuce (Lactuca sativa L. var. crispa.). Appl Biol Chem. 2021;64:10. doi: 10.1186/s13765-020-00577-z.
  • Madhavan A, Arun KB, Sindhu R, et al. Design and genome engineering of microbial cell factories for efficient conversion of lignocellulose to fuel. Bioresour Technol. 2023;370:128555. doi: 10.1016/J.BIORTECH.2022.128555.
  • Gupta VK, Pandey A, Koffas M, et al. Biobased biorefineries: sustainable bioprocesses and bioproducts from biomass/bioresources special issue. Renew Sustain Energy Rev. 2022;167:112683. doi: 10.1016/j.rser.2022.112683.
  • Errico M, Coelho JAP, Stateva RP, et al. Brewer’s spent grain, coffee grounds, burdock, and willow – four examples of biowaste and biomass valorization through advanced green extraction technologies. Foods. 2023;12:1295. doi: 10.3390/FOODS12061295.
  • Bhatia SK, Ahuja V, Chandel N, et al. Advances in algal biomass pretreatment and its valorisation into biochemical and bioenergy by the microbial processes. Bioresour Technol. 2022;358:127437. doi: 10.1016/J.BIORTECH.2022.127437.
  • Matebie BY, Tizazu BZ, Kadhem AA, et al. Synthesis of cellulose nanocrystals (CNCs) from brewer’s spent grain using acid hydrolysis: characterization and optimization. J Nanomater. 2021;2021:1–10. doi: 10.1155/2021/7133154.
  • Wagner E, Pería ME, Ortiz GE, et al. Valorization of brewer’s spent grain by different strategies of structural destabilization and enzymatic saccharification. Ind Crops Prod. 2021;163:113329. doi: 10.1016/j.indcrop.2021.113329.
  • Outeiriño D, Costa-Trigo I, Pinheiro de Souza Oliveira R, et al. Biorefinery of brewery spent grain by solid-state fermentation and ionic liquids. Foods. 2022;11:3711. doi: 10.3390/FOODS11223711.
  • Bhatia SK, Rajesh Banu J, Singh V, et al. Algal biomass to biohydrogen: pretreatment, influencing factors, and conversion strategies. Bioresour Technol. 2023;368:128332. doi: 10.1016/J.BIORTECH.2022.128332.
  • Anoopkumar AN, Reshmy R, Aneesh EM, et al. Progress and challenges of microwave-assisted pretreatment of lignocellulosic biomass from circular bioeconomy perspectives. Bioresour Technol. 2023;369:128459. doi: 10.1016/J.BIORTECH.2022.128459.
  • Bhatia SK, Jagtap SS, Bedekar AA, et al. Renewable biohydrogen production from lignocellulosic biomass using fermentation and integration of systems with other energy generation technologies. Sci Total Environ. 2021;765:144429. doi: 10.1016/J.SCITOTENV.2020.144429.
  • Bhatia SK, Jagtap SS, Bedekar AA, et al. Recent developments in pretreatment technologies on lignocellulosic biomass: effect of key parameters, technological improvements, and challenges. Bioresour Technol. 2020;300:122724. doi: 10.1016/J.BIORTECH.2019.122724.
  • Zheng B, Yu S, Chen Z, et al. A consolidated review of commercial-scale high-value products from lignocellulosic biomass. Front Microbiol. 2022;13:933882. doi: 10.3389/FMICB.2022.933882.
  • Bhatia SK, Hwang JH, Oh SJ, et al. Macroalgae as a source of sugar and detoxifier biochar for polyhydroxyalkanoates production by Halomonas sp. YLGW01 under the unsterile condition. Bioresour Technol. 2023;384:129290. doi: 10.1016/J.BIORTECH.2023.129290.
  • Ahuja V, Dasgupta D, Kshirsagar S, et al. Crystalline xylitol production from corncob biomass with oral toxicity analysis. Ind Crops Prod. 2022;187:115407. doi: 10.1016/j.indcrop.2022.115407.
  • Ahuja V, Bhatt AK, Mehta S, et al. Xylitol production by Pseudomonas gessardii VXlt-16 from sugarcane bagasse hydrolysate and cost analysis. Bioprocess Biosyst Eng. 2022;45:1019–1031. doi: 10.1007/S00449-022-02721-Z/METRICS.
  • Lins LP, Martinez DG, Furtado AC, et al. Biomethane generation and CO2 recovery through biogas production using brewers’ spent Grains. Biocatal Agric Biotechnol. 2023;48:102579. doi: 10.1016/j.bcab.2022.102579.
  • Wagner E, Sierra-Ibarra E, Rojas NL, et al. One-pot bioethanol production from brewery spent grain using the ethanologenic Escherichia coli MS04. Renew Energy. 2022;189:717–725. doi: 10.1016/j.renene.2022.03.014.
  • Corchado-Lopo C, Martínez-Avila O, Marti E, et al. Brewer’s spent grain as a no-cost substrate for polyhydroxyalkanoates production: assessment of pretreatment strategies and different bacterial strains. N Biotechnol. 2021;62:60–67. doi: 10.1016/J.NBT.2021.01.009.
  • dos Remedios Araújo Vieira Neta M, Azevedo MA, Camargo FP, et al. Potential of acid-hydrolysated brewer’s spent grain as substrate for biosurfactant production by Rhodotorula mucilaginosa LBP5 oleaginous yeast. Biomass Conv Bioref. 2023. doi: 10.1007/s13399-023-03837-2.
  • Casas-Godoy L, González-Escobar JL, Mathis AG, et al. Revalorization of untreated brewer’s spent grain: novel and versatile feedstock to produce cellulases, lipases, and yeast biomass in a biorefinery approach. Biomass Conv Bioref. 2020;13:1659–1670. doi: 10.1007/S13399-020-01157-3/METRICS.
  • Penagos-Tabares F, Sulyok M, Nagl V, et al. Mixtures of mycotoxins, phytoestrogens and pesticides co-occurring in wet spent brewery grains (BSG) intended for dairy cattle feeding in Austria. Food Addit Contam A Chem Anal Control Expo Risk Assess. 2022;39:1855–1877. doi: 10.1080/19440049.2022.2121430.
  • Grasso S. Extruded snacks from industrial by-products: a review. Trends Food Sci Technol. 2020;99:284–294. doi: 10.1016/j.tifs.2020.03.012.
  • Verni M, Rizzello CG, Coda R. Fermentation biotechnology applied to cereal industry by-products: nutritional and functional insights. Front Nutr. 2019;6:42. doi: 10.3389/FNUT.2019.00042/BIBTEX.
  • Bilal M, Wang Z, Cui J, et al. Environmental impact of lignocellulosic wastes and their effective exploitation as smart carriers – a drive towards greener and eco-friendlier biocatalytic systems. Sci Total Environ. 2020;722:137903. doi: 10.1016/J.SCITOTENV.2020.137903.
  • Pires EJ, Ruiz HA, Teixeira JA, et al. A new approach on brewer’s spent grains treatment and potential use as lignocellulosic yeast cells carriers. J Agric Food Chem. 2012;60:5994–5999. doi: 10.1021/JF300299M/ASSET/IMAGES/MEDIUM/JF-2012-00299M_0005.GIF.
  • Pospiskova K, Safarik I. Magnetically modified spent grain as a low-cost, biocompatible and smart carrier for enzyme immobilisation. J Sci Food Agric. 2013;93:1598–1602. doi: 10.1002/JSFA.5930.
  • Lynch KM, Steffen EJ, Arendt EK. Brewers’ spent grain: a review with an emphasis on food and health. J Inst Brew. 2016;122:553–568. doi: 10.1002/jib.363.
  • Abeynayake R, Zhang S, Yang W, et al. Development of antioxidant peptides from brewers’ spent grain proteins. LWT. 2022;158:113162. doi: 10.1016/j.lwt.2022.113162.
  • Chetrariu A, Dabija A. Spent grain: a functional ingredient for food applications. Foods. 2023;12:1533. doi: 10.3390/FOODS12071533.
  • Arce C, Kratky L. Mechanical pretreatment of lignocellulosic biomass toward enzymatic/fermentative valorization. iScience. 2022;25:104610. doi: 10.1016/J.ISCI.2022.104610.
  • Mankar AR, Pandey A, Modak A, et al. Pretreatment of lignocellulosic biomass: a review on recent advances. Bioresour Technol. 2021;334:125235. doi: 10.1016/J.BIORTECH.2021.125235.
  • José ÁHM, Moura EAB, Rodrigues D, et al. A residue-free and effective corncob extrusion pretreatment for the enhancement of high solids loading enzymatic hydrolysis to produce sugars. Ind Crops Prod. 2022;188:115655. doi: 10.1016/j.indcrop.2022.115655.
  • Lee KM, Quek JD, Tey WY, et al. Biomass valorization by integrating ultrasonication and deep eutectic solvents: delignification, cellulose digestibility and solvent reuse. Biochem Eng J. 2022;187:108587. doi: 10.1016/j.bej.2022.108587.
  • Hassan SS, Ravindran R, Jaiswal S, et al. An evaluation of sonication pretreatment for enhancing saccharification of brewers’ spent grain. Waste Manag. 2020;105:240–247. doi: 10.1016/J.WASMAN.2020.02.012.
  • Mikulski D, Kłosowski G. High-pressure microwave-assisted pretreatment of softwood, hardwood and non-wood biomass using different solvents in the production of cellulosic ethanol. Biotechnol Biofuels Bioprod. 2023;16:19. doi: 10.1186/s13068-023-02272-9.
  • Macheiner D, Adamitsch BF, Karner F, et al. Pretreatment and hydrolysis of brewer’s spent grains. Eng Life Sci. 2003;3:401–405. doi: 10.1002/elsc.200301831.
  • Chen H, Liu J, Chang X, et al. A review on the pretreatment of lignocellulose for high-value chemicals. Fuel Process Technol. 2017;160:196–206. doi: 10.1016/j.fuproc.2016.12.007.
  • Paz A, Outeiriño D, Pérez Guerra N, et al. Enzymatic hydrolysis of brewer’s spent grain to obtain fermentable sugars. Bioresour Technol. 2019;275:402–409. doi: 10.1016/J.BIORTECH.2018.12.082.
  • Bhatia SK, Gurav R, Kim B, et al. Coproduction of exopolysaccharide and polyhydroxyalkanoates from Sphingobium yanoikuyae BBL01 using biochar pretreated plant biomass hydrolysate. Bioresour Technol. 2022;361:127753. doi: 10.1016/J.BIORTECH.2022.127753.
  • Zhai R, Hu J, Jin M. Towards efficient enzymatic saccharification of pretreated lignocellulose: enzyme inhibition by lignin-derived phenolics and recent trends in mitigation strategies. Biotechnol Adv. 2022;61:108044. doi: 10.1016/J.BIOTECHADV.2022.108044.
  • Alzagameem A, Klein SE, Bergs M, et al. Antimicrobial activity of lignin and lignin-derived cellulose and chitosan composites against selected pathogenic and spoilage microorganisms. Polymers. 2019;11:670. doi: 10.3390/POLYM11040670.
  • Fagbemi KO, Aina DA, Adeoye-Isijola MO, et al. Bioactive compounds, antibacterial and antioxidant activities of methanol extract of Tamarindus indica Linn. Sci Rep. 2022;12:9432. doi: 10.1038/s41598-022-13716-x.
  • Vasić K, Knez Ž, Leitgeb M. Bioethanol production by enzymatic hydrolysis from different lignocellulosic sources. Molecules. 2021;26:753. doi: 10.3390/MOLECULES26030753.
  • Llimós J, Martínez-Avila O, Marti E, et al. Brewer’s spent grain biotransformation to produce lignocellulolytic enzymes and polyhydroxyalkanoates in a two-stage valorization scheme. Biomass Conv Bioref. 2022;12:3921–3932. doi: 10.1007/S13399-020-00918-4/METRICS.
  • Fortunati E, Luzi F, Puglia D, et al. Extraction of lignocellulosic materials from waste products. Multifunct Polym Nanocomposites Based Cellul Reinf. 2016:1–38. doi: 10.1016/B978-0-323-44248-0.00001-8.
  • Spinelli S, Conte A, Lecce L, et al. Supercritical carbon dioxide extraction of brewer’s spent grain. J Supercrit Fluids. 2016;107:69–74. doi: 10.1016/j.supflu.2015.08.017.
  • Alonso-Riaño P, Sanz MT, Benito-Román O, et al. Subcritical water as hydrolytic medium to recover and fractionate the protein fraction and phenolic compounds from craft brewer’s spent grain. Food Chem. 2021;351:129264. doi: 10.1016/J.FOODCHEM.2021.129264.
  • Rehman MU, Abdullah Khan F, Niaz K, et al. Introduction to natural products analysis. Recent Adv Nat Prod Anal. 2020:3–15. doi: 10.1016/B978-0-12-816455-6.00001-9.
  • Lei Z, Chen B, Koo YM, et al. Introduction: ionic liquids. Chem Rev. 2017;117:6633–6635. doi: 10.1021/ACS.CHEMREV.7B00246.
  • Wang FL, Li S, Sun YX, et al. Ionic liquids as efficient pretreatment solvents for lignocellulosic biomass. RSC Adv. 2017;7:47990–47998. doi: 10.1039/C7RA08110C.
  • Alonso-Riaño P, Melgosa R, Trigueros E, et al. Valorization of brewer’s spent grain by consecutive supercritical carbon dioxide extraction and enzymatic hydrolysis. Food Chem. 2022;396:133493. doi: 10.1016/J.FOODCHEM.2022.133493.
  • Amin FR, Khalid H, Zhang H, et al. Pretreatment methods of lignocellulosic biomass for anaerobic digestion. AMB Expr. 2017;7:72. doi: 10.1186/s13568-017-0375-4.
  • Haykir NI, Nizan Shikh Zahari SMS, Harirchi S, et al. Applications of ionic liquids for the biochemical transformation of lignocellulosic biomass into biofuels and biochemicals: a critical review. Biochem Eng J. 2023;193:108850. doi: 10.1016/j.bej.2023.108850.
  • Li X, Shi Y, Kong W, et al. Improving enzymatic hydrolysis of lignocellulosic biomass by bio-coordinated physicochemical pretreatment—a review. Energy Rep. 2022;8:696–709. doi: 10.1016/j.egyr.2021.12.015.
  • Kovács E, Szűcs C, Farkas A, et al. Pretreatment of lignocellulosic biogas substrates by filamentous fungi. J Biotechnol. 2022;360:160–170. doi: 10.1016/J.JBIOTEC.2022.10.013.
  • Thomas CM, Scheel RA, Nomura CT, et al. Production of polyhydroxybutyrate and polyhydroxybutyrate-co-MCL copolymers from brewer’s spent grains by recombinant Escherichia coli LSBJ. Biomass Convers Biorefinery. 2021:1–12. doi: 10.1007/S13399-021-01738-W/METRICS.
  • Hejna A. Poly(ε-caprolactone)/brewers’ spent grain composites—the impact of filler treatment on the mechanical performance. J Compos Sci. 2020;4:167. doi: 10.3390/jcs4040167.
  • Mendez DA, Marti E, Puyuelo B, et al. Evaluation of pre-treatments of brewery’s spent grain for growing bacteria in the production of polyhydroxyalkanoates. Chem Eng Trans. 2018;65:403–408. doi: 10.3303/CET1865068.
  • Panjičko M, Zupančič GD, Fanedl L, et al. Biogas production from brewery spent grain as a mono-substrate in a two-stage process composed of solid-state anaerobic digestion and granular biomass reactors. J Clean Prod. 2017;166:519–529. doi: 10.1016/j.jclepro.2017.07.197.
  • Szaja A, Montusiewicz A, Lebiocka M, et al. The effect of brewery spent grain application on biogas yields and kinetics in co-digestion with sewage sludge. PeerJ. 2020;8:e10590. doi: 10.7717/PEERJ.10590/SUPP-1.
  • Ogidi CO, George OH, Aladejana OM, et al. Fruit preservation with bioethanol obtained from the fermentation of brewer’s spent grain with Saccharomyces carlsbergensis. Rev Fac Nac Agron Medellín. 2020;73:9321–9331. doi: 10.15446/rfnam.v73n3.85316.
  • Amorim C, Silvério SC, Rodrigues LR. One-step process for producing prebiotic arabino-xylooligosaccharides from brewer’s spent grain employing Trichoderma species. Food Chem. 2019;270:86–94. doi: 10.1016/J.FOODCHEM.2018.07.080.
  • Araújo D, Costa T, Freitas F. Biovalorization of lignocellulosic materials for xylitol production by the yeast komagataella pastoris. Appl Sci. 2021;11:5516. doi: 10.3390/APP11125516/S1.
  • Akermann A, Weiermüller J, Christmann J, et al. Brewers’ spent grain liquor as a feedstock for lactate production with Lactobacillus delbrueckii subsp. lactis. Eng Life Sci. 2020;20:168–180. doi: 10.1002/ELSC.201900143.
  • Tišma M, Jurić A, Bucić-Kojić A, et al. Biovalorization of brewers’ spent grain for the production of laccase and polyphenols. J Inst Brew. 2018;124:182–186. doi: 10.1002/jib.479.
  • Faria NT, Marques S, Ferreira FC, et al. Production of xylanolytic enzymes by Moesziomyces spp. using xylose, xylan and brewery’s spent grain as substrates. N Biotechnol. 2019;49:137–143. doi: 10.1016/J.NBT.2018.11.001.
  • Farcas AC, Socaci SA, Chiș MS, et al. Reintegration of brewers spent grains in the food chain: nutritional, functional and sensorial aspects. Plants. 2021;10:2504. doi: 10.3390/PLANTS10112504.
  • Eliopoulos C, Arapoglou D, Chorianopoulos N, et al. Conversion of brewers’ spent grain into proteinaceous animal feed using solid state fermentation. Environ Sci Pollut Res Int. 2022;29:29562–29569. doi: 10.1007/s11356-021-15495-w.
  • Tan YX, Mok WK, Chen WN. Potential novel nutritional beverage using submerged fermentation with Bacillus subtilis WX-17 on brewers’ spent grains. Heliyon. 2020;6:e04155. doi: 10.1016/J.HELIYON.2020.E04155.
  • Lalić A, Karlović A, Marić M. Use of brewers’ spent grains as a potential functional ingredient for the production of traditional herzegovinian product Ćupter. Ferment. 2023;9:123. doi: 10.3390/fermentation9020123.
  • Gmoser R, Fristedt R, Larsson K, et al. From stale bread and brewers spent grain to a new food source using edible filamentous fungi. Bioengineered. 2020;11:582–598. doi: 10.1080/21655979.2020.1768694.
  • Bhatia SK, Otari SV, Jeon JM, et al. Biowaste-to-bioplastic (polyhydroxyalkanoates): conversion technologies, strategies, challenges, and perspective. Bioresour Technol. 2021;326:124733. doi: 10.1016/J.BIORTECH.2021.124733.
  • Lee SM, Cho DH, Jung HJ, et al. Finding of novel polyhydroxybutyrate producer Loktanella sp. SM43 capable of balanced utilization of glucose and xylose from lignocellulosic biomass. Int J Biol Macromol. 2022;208:809–818. doi: 10.1016/J.IJBIOMAC.2022.03.155.
  • Jung HJ, Kim SH, Shin N, et al. Polyhydroxybutyrate (PHB) production from sugar cane molasses and tap water without sterilization using novel strain, Priestia sp. YH4. Int J Biol Macromol. 2023;250:126152. doi: 10.1016/J.IJBIOMAC.2023.126152.
  • Bhatia SK, Gurav R, Choi TR, et al. Bioconversion of plant biomass hydrolysate into bioplastic (polyhydroxyalkanoates) using Ralstonia eutropha 5119. Bioresour Technol. 2019;271:306–315. doi: 10.1016/J.BIORTECH.2018.09.122.
  • Khatami K, Perez-Zabaleta M, Owusu-Agyeman I, et al. Waste to bioplastics: how close are we to sustainable polyhydroxyalkanoates production? Waste Manag. 2021;119:374–388. doi: 10.1016/J.WASMAN.2020.10.008.
  • Martínez-Avila O, Llimós J, Ponsá S. Integrated solid-state enzymatic hydrolysis and solid-state fermentation for producing sustainable polyhydroxyalkanoates from low-cost agro-industrial residues. Food Bioprod Process. 2021;126:334–344. doi: 10.1016/j.fbp.2021.01.015.
  • Carvalheira M, Amorim CL, Oliveira AC, et al. Valorization of brewery waste through polyhydroxyalkanoates production supported by a metabolic specialized microbiome. Life. 2022;12:1347. doi: 10.3390/LIFE12091347.
  • Riaz S, Fatima N, Rasheed A, et al. Metabolic engineered biocatalyst: a solution for PLA based problems. Int J Biomater. 2018;2018:1963024–1963029. doi: 10.1155/2018/1963024.
  • Saini  , Hemansi JK. Enhanced cellulosic ethanol production via fed-batch simultaneous saccharification and fermentation of sequential dilute acid-alkali pretreated sugarcane bagasse. Bioresour Technol. 2023;372:128671. doi: 10.1016/J.BIORTECH.2023.128671.
  • Sandri JP, Ordeñana J, Milessi TS, et al. Solid feeding and co-culture strategies for an efficient enzymatic hydrolysis and ethanol production from sugarcane bagasse. Environ Technol Innov. 2023;30:103082. doi: 10.1016/j.eti.2023.103082.
  • Yu J, Xu Z, He H, et al. Integration of corn ethanol and corn stover ethanol processes for improving xylose fermentation performance. Biomass Conv Bioref. 2023;13:6989–6999. doi: 10.1007/S13399-021-01642-3/METRICS.
  • Zhang N, Wang F, Nwamba MC, et al. Enhancing tolerance of Kluyveromyces marxianus to lignocellulose-derived inhibitors and its ethanol production from corn cob via overexpression of a nitroreductase gene. Ind Crops Prod. 2023;203:117136. doi: 10.1016/j.indcrop.2023.117136.
  • Poomani MS, Mariappan I, Muthan K, et al. A thermotolerant yeast from cow’s rumen utilize lignocellulosic biomass from wheat straw for xylanase production and fermentation to ethanol. Biocatal Agric Biotechnol. 2023;50:102741. doi: 10.1016/j.bcab.2023.102741.
  • Devi MH, Munjam S. Bioethanol production from rice straw and cellulose degradation using Aspergillus terreus and Trichoderma harzanium. Biosci, Biotech Res Asia. 2022;19:699–711. doi: 10.13005/bbra/3022.
  • Verma D, Jadhav SK, Tiwari S. Bioconversion of rice husk for bioethanol production from a novel bacteria Enterobacter cloacae Nc231221. SSRN Electron J. 2023; doi: 10.2139/SSRN.4378129.
  • Persson M, Galbe M, Wallberg O. Mitigation of pretreatment-derived inhibitors during lignocellulosic ethanol fermentation using spent grain as a nitrogen source. Biomass Conv Bioref. 2021;13:3349–3360. doi: 10.1007/S13399-021-01454-5/FIGURES/4.
  • Amraoui Y, Prabhu AA, Narisetty V, et al. Enhanced 2,3-Butanediol production by mutant Enterobacter ludwigii using brewers’ spent grain hydrolysate: process optimization for a pragmatic biorefinery loom. Chem Eng J. 2022;427:130851. doi: 10.1016/j.cej.2021.130851.
  • Didak Ljubas B, Novak M, Trontel A, et al. Production of different biochemicals by Paenibacillus polymyxa DSM 742 from pretreated brewers’ spent grains. Front Microbiol. 2022;13:812457. doi: 10.3389/FMICB.2022.812457.
  • Mailaram S, Narisetty V, Ranade VV, et al. Techno-economic analysis for the production of 2,3-butanediol from brewers’ spent grain using pinch technology. Ind Eng Chem Res. 2022;61:2195–2205. doi: 10.1021/acs.iecr.1c04410.
  • Zupančič GD, Panjičko M, Zelić B. Biogas production from brewer’s yeast using an anaerobic sequencing batch reactor. Food Technol Biotechnol. 2017;55:187–196. doi: 10.17113/FTB.55.02.17.5080.
  • Sganzerla WG, Costa JM, Tena-Villares M, et al. Dry anaerobic digestion of brewer’s spent grains toward a more sustainable brewery: operational performance, kinetic analysis, and bioenergy potential. Ferment. 2022;9:2. doi: 10.3390/fermentation9010002.
  • Buller LS, Sganzerla WG, Lima MN, et al. Ultrasonic pretreatment of brewers’ spent grains for anaerobic digestion: biogas production for a sustainable industrial development. J Clean Prod. 2022;355:131802. doi: 10.1016/j.jclepro.2022.131802.
  • Rajesh Banu J, Ginni G, Kavitha S, et al. Integrated biorefinery routes of biohydrogen: possible utilization of acidogenic fermentative effluent. Bioresour Technol. 2021;319:124241. doi: 10.1016/J.BIORTECH.2020.124241.
  • Zhang J, Zang L. Enhancement of biohydrogen production from brewers’ spent grain by calcined-red mud pretreatment. Bioresour Technol. 2016;209:73–79. doi: 10.1016/J.BIORTECH.2016.02.110.
  • Dange P, Pandit S, Jadhav D, et al. Recent Developments in microbial electrolysis cell-based biohydrogen production utilizing wastewater as a feedstock. Sustain. 2021;13:8796. doi: 10.3390/su13168796.
  • Brar KK, Cortez AA, Pellegrini VOA, et al. An overview on progress, advances, and future outlook for biohydrogen production technology. Int J Hydrogen Energy. 2022;47:37264–37281. doi: 10.1016/j.ijhydene.2022.01.156.
  • Androga DD, Özgür E, Eroglu I, et al. Photofermentative hydrogen production in outdoor conditions. Hydrog Energy - Challenges Perspect. 2012. doi: 10.5772/50390.
  • Kamran M. Bioenergy. Renew Energy Convers Syst. 2021;243–264. doi: 10.1016/B978-0-12-823538-6.00002-6.
  • Sarkar O, Rova U, Christakopoulos P, et al. Influence of initial uncontrolled pH on acidogenic fermentation of brewery spent grains to biohydrogen and volatile fatty acids production: optimization and scale-up. Bioresour Technol. 2021;319:124233. doi: 10.1016/J.BIORTECH.2020.124233.
  • Sarkar O, Rova U, Christakopoulos P, et al. Effect of metals on the regulation of acidogenic metabolism enhancing biohydrogen and carboxylic acids production from brewery spent grains: microbial dynamics and biochemical analysis. Eng Life Sci. 2022;22:650–661. doi: 10.1002/ELSC.202200030.
  • Mirzoyan S, Toleugazykyzy A, Bekbayev K, et al. Enhanced hydrogen gas production from mixture of beer spent grains (BSG) and distiller’s grains (DG) with glycerol by Escherichia coli. Int J Hydrogen Energy. 2020;45:17233–17240. doi: 10.1016/j.ijhydene.2020.04.207.
  • Narisetty V, Cox R, Bommareddy R, et al. Valorisation of xylose to renewable fuels and chemicals, an essential step in augmenting the commercial viability of lignocellulosic biorefineries. Sustain Energy Fuels. 2021;6:29–65. doi: 10.1039/D1SE00927C.
  • Ahuja V, Bhatt AK, Sharma V, et al. Advances in glucosamine production from waste biomass and microbial fermentation technology and its applications. Biomass Convers Biorefinery. 2021:1–23. doi: 10.1007/S13399-021-01968-Y.
  • Hassan SS, Tiwari BK, Williams GA, et al. Bioprocessing of brewers’ spent grain for production of xylanopectinolytic enzymes by Mucor sp. Bioresour Technol Reports. 2020;9:100371. doi: 10.1016/j.biteb.2019.100371.
  • Pejin J, Radosavljević M, Kocić-Tanackov S, et al. Lactic acid fermentation of brewer’s spent grain hydrolysate by Lactobacillus rhamnosus with yeast extract addition and pH control. J Inst Brew. 2017;123:98–104. doi: 10.1002/jib.403.
  • Edwards C, McNerney CC, Lawton LA, et al. Recoverable resources from pot ale & spent wash from Scotch Whisky production. Resour Conserv Recycl. 2022;179:106114. doi: 10.1016/j.resconrec.2021.106114.
  • Bhatia SK, Gurav R, Choi TR, et al. Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) production from engineered Ralstonia eutropha using synthetic and anaerobically digested food waste derived volatile fatty acids. Int J Biol Macromol. 2019;133:1–10. doi: 10.1016/J.IJBIOMAC.2019.04.083.
  • Ribau Teixeira M, Guarda EC, Freitas EB, et al. Valorization of raw brewers’ spent grain through the production of volatile fatty acids. N Biotechnol. 2020;57:4–10. doi: 10.1016/J.NBT.2020.01.007.
  • Castilla-Archilla J, Heiberger J, Mills S, et al. Continuous volatile fatty acid production from acid brewery spent grain leachate in expanded granular sludge bed reactors. Front Sustain Food Syst. 2021;5 doi: 10.3389/FSUFS.2021.664944/BIBTEX.
  • Tan YX, Mok WK, Lee J, et al. Solid State fermentation of brewers’ spent grains for improved nutritional profile using Bacillus subtilis WX-17. Fermentation. 2019;5:52. doi: 10.3390/fermentation5030052.
  • Merten D, Erman L, Marabelli GP, et al. Potential health effects of brewers’ spent grain as a functional food ingredient assessed by markers of oxidative stress and inflammation following gastro-intestinal digestion and in a cell model of the small intestine. Food Funct. 2022;13:5327–5342. doi: 10.1039/D1FO03090F.
  • Koirala P, Costantini A, Maina HN, et al. Fermented brewers’ spent grain containing dextran and oligosaccharides as ingredient for composite wheat bread and its impact on gut metabolome in vitro. Fermentation. 2022;8:487. doi: 10.3390/FERMENTATION8100487/S1.
  • Colpo I, Rabenschlag DR, de Lima MS, et al. Economic and financial feasibility of a biorefinery for conversion of brewers’ spent grain into a special flour. J Open Innov Technol Mark Complex. 2022;8:79. doi: 10.3390/joitmc8020079.
  • Sganzerla WG, da Silva MF, Zabot GL, et al. Techno-economic assessment of subcritical water hydrolysis of brewer’s spent grains to recover xylo-oligosaccharides. J Supercrit Fluids. 2023;196:105895. doi: 10.1016/j.supflu.2023.105895.
  • Voogt J, Humblet-Hua N-P, Geerdink P, et al. Valorisation of multiple components from residual biomass for food and biofuel applications: a virtual biorefinery evaluation. Food Bioprod Process. 2023;139:1–10. doi: 10.1016/j.fbp.2023.02.002.
  • Faccenda A, Zambom MA, Castagnara DD, et al. Use of dried brewers’ grains instead of soybean meal to feed lactating cows. R Bras Zootec. 2017;46:39–46. doi: 10.1590/s1806-92902017000100007.
  • El-Hack MEA, Alagawany M, Patra A, et al. Use of brewers dried grains as an unconventional feed ingredient in the diets of broiler chickens: a review. Adv Anim Vet Sci. 2019;7:218–224. doi: 10.17582/journal.aavs/2019/7.3.218.224.
  • Radzik-Rant A, Rant W, Niznikowski R, et al. The effect of the addition of wet brewers grain to the diet of lambs on body weight gain, slaughter value and meat quality. Arch Anim Breed. 2018;61:245–251. doi: 10.5194/aab-61-245-2018.
  • Neylon E, Arendt EK, Zannini E, et al. Fermentation as a tool to revitalise brewers’ spent grain and elevate techno-functional properties and nutritional value in high fibre bread. Foods. 2021;10:1639. doi: 10.3390/FOODS10071639.
  • Combest S, Warren C, Patterson M. Upcycling brewers’ spent grain: the development of muffins and biomarker response after consuming muffins for 8-weeks in healthy adults from randomized-controlled trial. Curr Dev Nutr. 2020;4:nzaa052_014. doi: 10.1093/cdn/nzaa052_014.
  • Schettino R, Verni M, Acin-albiac M, et al. Bioprocessed brewers’ spent grain improves nutritional and antioxidant properties of pasta. Antioxidants. 2021;10:742. doi: 10.3390/ANTIOX10050742/S1.
  • Stelick A, Sogari G, Rodolfi M, et al. Impact of sustainability and nutritional messaging on Italian consumers’ purchase intent of cereal bars made with brewery spent grains. J Food Sci. 2021;86:531–539. doi: 10.1111/1750-3841.15601.
  • Naibaho J, Butula N, Jonuzi E, et al. Potential of brewers’ spent grain in yogurt fermentation and evaluation of its impact in rheological behaviour, consistency, microstructural properties and acidity profile during the refrigerated storage. Food Hydrocoll. 2022;125:107412. doi: 10.1016/j.foodhyd.2021.107412.
  • Lao EJ. Scrutinizing the opportunities, challenges and sustainability of brewers’ spent grain as a feed source for dairy cattle. BigdataAgr. 2021;3:56–64. doi: 10.26480/bda.02.2021.56.64.
  • Lim S, Hoong S, Chuetor S, et al. From waste biomass to cellulosic ethanol by separate hydrolysis and fermentation (SHF) with Trichoderma viride. Sustain. 2022;15:168. doi: 10.3390/SU15010168.
  • Alonso-Riaño P, Illera AE, Amândio MST, et al. Valorization of brewer’s spent grain by furfural recovery/removal from subcritical water hydrolysates by pervaporation. Sep Purif Technol. 2023;309:123008. doi: 10.1016/j.seppur.2022.123008.
  • Jin T, Xing X, Xie Y, et al. Evaluation of preparation and detoxification of hemicellulose hydrolysate for improved xylitol production from quinoa straw. Int J Mol Sci. 2022;24:516. doi: 10.3390/IJMS24010516.
  • Bhatia SK, Gurav R, Cho DH, et al. Algal biochar mediated detoxification of plant biomass hydrolysate: mechanism study and valorization into polyhydroxyalkanoates. Bioresour Technol. 2023;370:128571. doi: 10.1016/J.BIORTECH.2022.128571.
  • Dasgupta D, Ahuja V, Singh R, et al. Food-grade xylitol production from corncob biomass with acute oral toxicity studies. World J Microbiol Biotechnol. 2023;39:102. doi: 10.1007/S11274-023-03542-2/METRICS.
  • Muthuminal RM, Priya R. Experimental investigation on utilization of brewers waste as fine aggregate in concrete. Mater Today Proc. 2023. doi: 10.1016/j.matpr.2023.05.136.
  • Ferraz E, Coroado J, Gamelas J, et al. Spent brewery grains for improvement of thermal insulation of ceramic bricks. J Mater Civ Eng. 2012;25:1638–1646. doi: 10.1061/(ASCE)MT.1943-5533.0000729.
  • Dhasmana H, Sanchez X, Romero L. An exploratory study on the use of biobinder derived from brewer’s spent grains as an asphalt modifier. J Mater Civ Eng. 2023;35:4023070. doi: 10.1061/(ASCE)MT.1943-5533.0004732.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.