175
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Recent insights into glucans biosynthesis and engineering strategies in edible fungi

ORCID Icon, , , , &
Received 27 Jun 2022, Accepted 21 Apr 2023, Published online: 17 Dec 2023

References

  • Colosimo R, Warren FJ, Edwards CH, et al. Comparison of the behavior of fungal and plant cell wall during gastrointestinal digestion and resulting health effects: a review. Trends Food Sci Technol. 2021;110:132–141. doi: 10.1016/j.tifs.2021.02.001.
  • Roncero-Ramos I, Delgado-Andrade C. The beneficial role of edible mushrooms in human health. Curr Opin Food Sci. 2017;14:122–128. doi: 10.1016/j.cofs.2017.04.002.
  • Ruthes AC, Cantu-Jungles TM, Cordeiro LM, et al. Prebiotic potential of mushroom D-glucans: implications of physicochemical properties and structural features. Carbohydr Polym. 2021;262:117940. doi: 10.1016/j.carbpol.2021.117940.
  • Ruthes AC, Smiderle FR, Iacomini M. D-Glucans from edible mushrooms: a review on the extraction, purification and chemical characterization approaches. Carbohydr Polym. 2015;117:753–761. doi: 10.1016/j.carbpol.2014.10.051.
  • Shah A, Ul Ashraf Z, Gani A, et al. β-Glucan from mushrooms and dates as a wall material for targeted delivery of model bioactive compound: nutraceutical profiling and bioavailability. Ultrason Sonochem. 2022;82:105884. doi: 10.1016/j.ultsonch.2021.105884.
  • Hochstenbach F, Klis FM, Van Den Ende H, et al. Identification of a putative alpha-glucan synthase essential for cell wall construction and morphogenesis in fission yeast. Proc Natl Acad Sci USA. 1998;95:9161–9166. doi: 10.1073/pnas.95.16.9161.
  • Ruiz-Herrera J, Ortiz-Castellanos L. Cell wall glucans of fungi. A review. Cell Surf. 2019;5:100022. doi: 10.1016/j.tcsw.2019.100022.
  • Chakraborty A, Fernando LD, Fang W, et al. A molecular vision of fungal cell wall organization by functional genomics and solid-state NMR. Nat Commun. 2021;12:6346. doi: 10.1038/s41467-021-26749-z.
  • Miyazawa K, Yoshimi A, Abe K. The mechanisms of hyphal pellet formation mediated by polysaccharides, α-1,3-glucan and galactosaminogalactan, in Aspergillus species. Fungal Biol Biotechnol. 2020;7:10. doi: 10.1186/s40694-020-00101-4.
  • Bittencourt VCB, Figueiredo RT, da Silva RB, et al. An α-glucan of Pseudallescheria boydii is involved in fungal phagocytosis and toll-like receptor activation. J Biol Chem. 2006;281:22614–22623. doi: 10.1074/jbc.M511417200.
  • Patra S, Maity P, Chakraborty I, et al. Structural studies of immunomodulatory (1→3), (1→4)-α-glucan from an edible mushroom Polyporus grammocephalus. Int J Biol Macromol. 2021;168:649–655. doi: 10.1016/j.ijbiomac.2020.11.121.
  • Cui FJ, Jiang LH, Qian LS, et al. A macromolecular α-glucan from fruiting bodies of Volvariella volvacea activating RAW264. 7 macrophages through MAPKs pathway. Carbohydr Polym. 2020;230:115674. doi: 10.1016/j.carbpol.2019.115674.
  • Masuda Y, Nakayama Y, Mukae T, et al. Maturation of dendritic cells by maitake α-glucan enhances anti-cancer effect of dendritic cell vaccination. Int Immunopharmacol. 2019;67:408–416. doi: 10.1016/j.intimp.2018.12.039.
  • Mondal S, Chakraborty I, Pramanik M, et al. Structural studies of water-soluble polysaccharides of an edible mushroom, Termitomyces eurhizus. A reinvestigation. Carbohydr Res. 2004;339:1135–1140. doi: 10.1016/j.carres.2004.02.019.
  • Rout D, Mondal S, Chakraborty I, et al. Structural characterisation of an immunomodulating polysaccharide isolated from aqueous extract of Pleurotus florida fruit-bodies. Med Chem Res. 2004;13:509–517. doi: 10.1007/s00044-004-0050-6.
  • Mizuno M, Morimoto M, Minato KI, et al. Polysaccharides from Agaricus blazei stimulate lymphocyte T-cell subsets in mice. Biosci Biotechnol Biochem. 1998;62:434–437. doi: 10.1271/bbb.62.434.
  • Hoshi H, Yagi Y, Iijima H, et al. Isolation and characterization of a novel immunomodulatory α-glucan-protein complex from the mycelium of Tricholoma matsutake in basidiomycetes. J Agric Food Chem. 2005;53:8948–8956. doi: 10.1021/jf0510743.
  • Mäkelä N, Brinck O, Sontag-Strohm T. Viscosity of β-glucan from oat products at the intestinal phase of the gastrointestinal model. Food Hydrocoll. 2020;100:105422. doi: 10.1016/j.foodhyd.2019.105422.
  • Chihara G, Maeda Y, Hamuro J, et al. Inhibition of mouse Sarcoma 180 by polysaccharides from Lentinus edodes (Berk.) Sing. Nature. 1969;222:687–688. doi: 10.1038/222687a0.
  • Xu H, Zou S, Xu X, et al. Anti-tumor effect of β-glucan from Lentinus edodes and the underlying mechanism. Sci Rep. 2016;6:28802. doi: 10.1038/srep28802.
  • Wani SM, Gani A, Mir SA, et al. β-Glucan: a dual regulator of apoptosis and cell proliferation. Int J Biol Macromol. 2021;182:1229–1237. doi: 10.1016/j.ijbiomac.2021.05.065.
  • Chang YJ, Zhang M, Jiang YF, et al. Preclinical and clinical studies of Coriolus versicolor polysaccharopeptide as an immunotherapeutic in China. Discovery Medicine. 2017;23:207–219.
  • Namba H. Maitake D-fraction: healing and preventive potential for cancer. J Orthomol Med. 1997;12:43–49.
  • Kanagasabapathy G, Chua KH, Malek SNA, et al. AMP-activated protein kinase mediates insulin-like and lipo-mobilising effects of β-glucan-rich polysaccharides isolated from Pleurotus sajor-caju (Fr.), Singer mushroom, in 3T3-L1 cells. Food Chem. 2014;145:198–204. doi: 10.1016/j.foodchem.2013.08.051.
  • Ishimoto Y, Ishibashi KI, Yamanaka D, et al. Production of low-molecular weight soluble yeast β-glucan by an acid degradation method. Int J Biol Macromol. 2018;107:2269–2278. doi: 10.1016/j.ijbiomac.2017.10.094.
  • Bae IY, Kim HW, Yoo HJ, et al. Correlation of branching structure of mushroom β-glucan with its physiological activities. Food Res Int. 2013;51:195–200. doi: 10.1016/j.foodres.2012.12.008.
  • Schmid J, Sieber V, Rehm B. Bacterial exopolysaccharides: biosynthesis pathways and engineering strategies. Front Microbiol. 2015;6:496. doi: 10.3389/fmicb.2015.00496.
  • Kim SY, Kim JG, Lee BM, et al. Mutational analysis of the gum gene cluster required for xanthan biosynthesis in Xanthomonas oryzae pv oryzae. Biotechnol Lett. 2009;31:265–270. doi: 10.1007/s10529-008-9858-3.
  • Yuan M, Fu G, Sun Y, et al. Biosynthesis and applications of curdlan. Carbohydr Polym. 2021;273:118597. doi: 10.1016/j.carbpol.2021.118597.
  • Shematek EM, Braatz JA, Cabib E. Biosynthesis of the yeast cell wall. I. Preparation and properties of beta-(1 leads to 3) glucan synthetase. J Biol Chem. 1980;255:888–894. doi: 10.1016/S0021-9258(19)86116-1.
  • Sánchez-León E, Riquelme M. Live imaging of β-1, 3-glucan synthase FKS-1 in Neurospora crassa hyphae. Fungal Genet Biol. 2015;82:104–107. doi: 10.1016/j.fgb.2015.07.001.
  • Aimanianda V, Simenel C, Garnaud C, et al. The dual activity responsible for the elongation and branching of β-(1, 3)-glucan in the fungal cell wall. MBIO. 2017;8:e00619-17. doi: 10.1128/mBio.00619-17.
  • Chhetri A. The role of (1,3)-β-glucan synthase in fungal cell wall biosynthesis [dissertation]. Duke University; 2020.
  • Cui FJ, Wu XH, Tao TL, et al. Functions of a glucan synthase gene GFGLS in mycelial growth and polysaccharide production of Grifola frondosa. J Agric Food Chem. 2019;67:8875–8883. doi: 10.1021/acs.jafc.9b03569.
  • Cabib E, Arroyo J. How carbohydrates sculpt cells: chemical control of morphogenesis in the yeast cell wall. Nat Rev Microbiol. 2013;11:648–655. doi: 10.1038/nrmicro3090.
  • Daran JM, Dallies N, Thines-Sempoux D, et al. Genetic and biochemical characterization of the UGP1 gene encoding the UDP-glucose pyrophosphorylase from Saccharomyces cerevisiae. Eur J Biochem. 1995;233:520–530. doi: 10.1111/j.1432-1033.1995.520_2.x.
  • Roeben A, Plitzko JM, Körner R, et al. Structural basis for subunit assembly in UDP-glucose pyrophosphorylase from Saccharomyces cerevisiae. J Mol Biol. 2006;364:551–560. doi: 10.1016/j.jmb.2006.08.079.
  • Zan XY, Zhu HA, Jiang LH, et al. The role of Rho1 gene in the cell wall integrity and polysaccharides biosynthesis of the edible mushroom Grifola frondosa. Int J Biol Macromol. 2020;165:1593–1603. doi: 10.1016/j.ijbiomac.2020.09.239.
  • Jiang L, Wu S, Kim JM. Effect of different nitrogen sources on activities of UDPG-pyrophosphorylase involved in pullulan synthesis and pullulan production by Aureobasidium pullulans. Carbohydr Polym. 2011;86:1085–1088. doi: 10.1016/j.carbpol.2011.05.016.
  • Li MJ, Chen TX, Gao T, et al. UDP-glucose pyrophosphorylase influences polysaccharide synthesis, cell wall components, and hyphal branching in Ganoderma lucidum via regulation of the balance between glucose-1-phosphate and UDP-glucose. Fungal Genet Biol. 2015;82:251–263. doi: 10.1016/j.fgb.2015.07.012.
  • Zhou JS, Bai Y, Dai RJ, et al. Improved polysaccharide production by homologous co-overexpression of phosphoglucomutase and UDP-glucose pyrophosphorylase genes in the mushroom Coprinopsis cinerea. J Agric Food Chem. 2018;66:4702–4709. doi: 10.1021/acs.jafc.8b01343.
  • Zhu ZY, Liu XC, Dong FY, et al. Influence of fermentation conditions on polysaccharide production and the activities of enzymes involved in the polysaccharide synthesis of Cordyceps militaris. Appl Microbiol Biotechnol. 2016;100:3909–3921. doi: 10.1007/s00253-015-7235-4.
  • Ma ZB, Ye C, Deng WW, et al. Reconstruction and analysis of a genome-scale metabolic model of Ganoderma lucidum for improved extracellular polysaccharide production. Front Microbiol. 2018;9:3076. doi: 10.3389/fmicb.2018.0307.
  • Okada H, Abe M, Asakawa-Minemura M, et al. Multiple functional domains of the yeast l,3-β-glucan synthase subunit Fks1p revealed by quantitative phenotypic analysis of temperature-sensitive mutants. Genetics. 2010;184:1013–1024. doi: 10.1534/genetics.109.109892.
  • Beauvais A, Bruneau JM, Mol PC, et al. Glucan synthase complex of Aspergillus fumigatus. J Bacteriol. 2001;183:2273–2279. doi: 10.1128/JB.183.7.2273-2279.2001.
  • Chai R, Qiu C, Liu D, et al. β-Glucan synthase gene overexpression and β-glucans overproduction in Pleurotus ostreatus using promoter swapping. PLOS One. 2013;8:e61693. doi: 10.1371/journal.pone.0061693.
  • Verdín J, Sánchez-León E, Rico-Ramírez AM, et al. Off the wall: the rhyme and reason of Neurospora crassa hyphal morphogenesis. Cell Surf. 2019;5:100020. doi: 10.1016/j.tcsw.2019.100020.
  • Xu JW, Ji SL, Li HJ, et al. Increased polysaccharide production and biosynthetic gene expressions in a submerged culture of Ganoderma lucidum by the overexpression of the homologous α-phosphoglucomutase gene. Bioprocess Biosyst Eng. 2015;38:399–405. doi: 10.1007/s00449-014-1279-1.
  • Tanaka Y, Ogawa T, Maruta T, et al. Glucan synthase-like 2 is indispensable for paramylon synthesis in Euglena gracilis. FEBS Lett. 2017;591:1360–1370. doi: 10.1002/1873-3468.12659.
  • Ha YS, Covert SF, Momany M. FsFKS1, the 1, 3-β-glucan synthase from the caspofungin-resistant fungus Fusarium solani. Eukaryot Cell. 2006;5:1036–1042. doi: 10.1128/EC.00030-06.
  • Douglas CM, D'ippolito JA, Shei GJ, et al. Identification of the FKS1 gene of Candida albicans as the essential target of 1, 3-beta-D-glucan synthase inhibitors. Antimicrob Agents Chemother. 1997;41:2471–2479. doi: 10.1128/AAC.41.11.2471.
  • Mazur P, Morin N, Baginsky W, et al. Differential expression and function of two homologous subunits of yeast 1,3-beta-D-glucan synthase. Mol Cell Biol. 1995;15:5671–5681. doi: 10.1128/MCB.15.10.5671.
  • Cortés JCG, Ishiguro J, Durán A, et al. Localization of the (1, 3) β-D-glucan synthase catalytic subunit homologue Bgs1p/Cps1p from fission yeast suggests that it is involved in septation, polarized growth, mating, spore wall formation and spore germination. J Cell Sci. 2002;115:4081–4096. doi: 10.1242/jcs.00085.
  • Kelly R, Register E, Hsu MJ, et al. Isolation of a gene involved in 1, 3-beta-glucan synthesis in Aspergillus nidulans and purification of the corresponding protein. J Bacteriol. 1996;178:4381–4391. doi: 10.1128/jb.178.15.4381-4391.1996.
  • Li H, Wu S, Ma X, et al. The genome sequences of 90 mushrooms. Sci Rep. 2018;8:9982. doi: 10.1038/s41598-018-28303-2.
  • Watson M, Warr A. Errors in long-read assemblies can critically affect protein prediction. Nat Biotechnol. 2019;37:124–126. doi: 10.1038/s41587-018-0004-z.
  • Jiang LH, Li XF, Zan XY, et al. The β-1, 3-glucan synthase gene GFGLS2 plays major roles in mycelial growth and polysaccharide synthesis in Grifola frondosa. Appl Microbiol Biotechnol. 2022;106:563–578. doi: 10.1007/s00253-021-11734-9.
  • Yang YH, Kang HW, Ro HS. Cloning and molecular characterization of β-1, 3-glucan synthase from Sparassis crispa. Mycobiology. 2014;42:167–173. doi: 10.5941/MYCO.2014.42.2.167.
  • Ujita M, Katsuno Y, Suzuki K, et al. Molecular cloning and sequence analysis of the β-1, 3-glucan synthase catalytic subunit gene from a medicinal fungus, Cordyceps militaris. Mycoscience. 2006;47:98–105. doi: 10.1007/S10267-005-0278-0.
  • Fu X, Zan XY, Sun L, et al. Functional characterization and structural basis of the β-1, 3-glucan synthase CMGLS from mushroom Cordyceps militaris. J Agric Food Chem. 2022;70:8725–−8737. doi: 10.1021/acs.jafc.2c03410.
  • Damveld RA, Arentshorst M, Klis FM, et al. Expression of agsA, one of five 1, 3-α-D-glucan synthase-encoding genes in Aspergillus niger, is induced in response to cell wall stress. Fungal Genet Biol. 2005;42:165–177. doi: 10.1016/j.fgb.2004.11.006.
  • Henry C, Latgé JP, Beauvais A. α-1, 3 glucans are dispensable in Aspergillus fumigatus. Eukaryot Cell. 2012;11:26–29. doi: 10.1128/EC.05270-11.
  • Konomi M, Fujimoto K, Toda T, et al. Characterization and behaviour of α-glucan synthase in Schizosaccharomyces pombe as revealed by electron microscopy. Yeast. 2003;20:427–438. doi: 10.1002/yea.974.
  • Vos A, Dekker N, Distel B, et al. Role of the synthase domain of Ags1p in cell wall α-glucan biosynthesis in fission yeast. J Biol Chem. 2007;282:18969–18979. doi: 10.1074/jbc.M605147200.
  • Fu C, Tanaka A, Free SJ. Neurospora crassa 1, 3-α-glucan synthase, AGS-1, is required for cell wall biosynthesis during macroconidia development. Microbiology. 2014;160:1618–1627. doi: 10.1099/mic.0.080002-0.
  • Sorais F, Barreto L, Leal JA, et al. Cell wall glucan synthases and GTPases in Paracoccidioides brasiliensis. Med Mycol. 2010;48:35–47. doi: 10.3109/13693780802713356.
  • Uechi K, Yaguchi H, Tokashiki J, et al. Identification of genes involved in the synthesis of the fungal cell wall component nigeran and regulation of its polymerization in Aspergillus luchuensis. Appl Environ Microbiol. 2021;87:e01144-21. doi: 10.1128/AEM.01144-21.
  • Maubon D, Park S, Tanguy M, et al. AGS3, an α-(1-3) glucan synthase gene family member of Aspergillus fumigatus, modulates mycelium growth in the lung of experimentally infected mice. Fungal Genet Biol. 2006;43:366–375. doi: 10.1016/j.fgb.2006.01.006.
  • He X, Li S, Kaminskyj SG. Characterization of Aspergillus nidulans α-glucan synthesis: roles for two synthases and two amylases. Mol Microbiol. 2014;91:579–595. doi: 10.1111/mmi.12480.
  • Schimoler-O'Rourke R, Renault S, Mo W, et al. Neurospora crassa FKS protein binds to the (1, 3)-β-glucan synthase substrate, UDP-glucose. Curr Microbiol. 2003;46:408–412. doi: 10.1007/s00284-002-3884-5.
  • Wu ZL, Ethen CM, Prather B, et al. Universal phosphatase-coupled glycosyltransferase assay. Glycobiology. 2011;21:727–733. doi: 10.1093/glycob/cwq187.
  • Liang YY, Zan XY, Sun L, et al. A uridine diphosphate-glycosyltransferase GFUGT88A1 derived from edible mushroom Grifola frondosa extends oligosaccharide chains. Process Biochem. 2022;112:80–91. doi: 10.1016/j.procbio.2021.11.024.
  • Kang MS, Elango N, Mattia E, et al. Isolation of chitin synthetase from Saccharomyces cerevisiae. Purification of an enzyme by entrapment in the reaction product. J Biol Chem. 1984;259:14966–14972. doi: 10.1016/S0021-9258(17)42698-6.
  • Inoue SB, Takewakt N, Takasuka T, et al. Characterization and gene cloning of 1, 3-β-d-glucan synthase from Saccharomyces cerevisiae. Eur J Biochem. 1995;231:845–854. doi: 10.1111/j.1432-1033.1995.0845d.x.
  • Chhetri A, Loksztejn A, Yokoyama K. Quantitative characterization of the amount and length of (1, 3)-β-D-glucan for functional and mechanistic analysis of fungal (1, 3)-β-D-glucan synthase. Bio Protoc. 2021;11:e3995-e3995. doi: 10.21769/BioProtoc.3995.
  • Ujita M, Inoue R, Makino Y, et al. Binding specificity of the recombinant cytoplasmic domain of Cordyceps militaris β-1, 3-glucan synthase catalytic subunit. Biosci Biotechnol Biochem. 2011;75:171–174. doi: 10.1271/bbb.100660.
  • Beauvais A, Drake R, Ng K, et al. Characterization of the 1, 3-β-glucan synthase of Aspergillus fumigatus. J Gen Microbiol. 1993;139:3071–3078. doi: 10.1099/00221287-139-12-3071.
  • Antelo L, Cosio EG, Hertkorn N, et al. Partial purification of a GTP-insensitive (1→ 3)-β-glucan synthase from Phytophthora sojae. FEBS Lett. 1998;433:191–195. doi: 10.1016/S0014-5793(98)00904-1.
  • Garcia-Effron G, Lee S, Park S, et al. Effect of Candida glabrata FKS1 and FKS2 mutations on echinocandin sensitivity and kinetics of 1, 3-β-d-glucan synthase: implication for the existing susceptibility breakpoint. Antimicrob Agents Chemother. 2009;53:3690–3699. doi: 10.1128/AAC.00443-09.
  • Mazur P, Baginsky W. In vitro activity of 1,3-β-D-glucan synthase requires the GTP-binding protein Rho1. J Biol Chem. 1996;271:14604–14609. doi: 10.1074/jbc.271.24.14604.
  • Inoue SB, Qadota H, Arisawa M, et al. Prenylation of Rho1p is required for activation of yeast 1, 3-β-glucan synthase. J Biol Chem. 1999;274:38119–38124. doi: 10.1074/jbc.274.53.38119.
  • Bickle M, Delley PA, Schmidt A, et al. Cell wall integrity modulates RHO1 activity via the exchange factor ROM2. Embo J. 1998;17:2235–2245. doi: 10.1093/emboj/17.8.2235.
  • Levin DE. Regulation of cell wall biogenesis in Saccharomyces cerevisiae: the cell wall integrity signaling pathway. Genetics. 2011;189:1145–1175. doi: 10.1534/genetics.111.128264.
  • Zhang X, Jia XD, Tian SG, et al. Role of the small GTPase Rho1 in cell wall integrity, stress response, and pathogenesis of Aspergillus fumigatus. Fungal Genet Biol. 2018;120:30–41. doi: 10.1016/j.fgb.2018.09.003.
  • Zan XY, Wu XH, Cui FJ, et al. UDP-glucose pyrophosphorylase gene affects mycelia growth and polysaccharide synthesis of Grifola frondosa. Int J Biol Macromol. 2020;161:1161–1170. doi: 10.1016/j.ijbiomac.2020.06.139.
  • Bohl H, Bai L, Li H. Recent progress in structural studies on the GT-C superfamily of protein glycosyltransferases. Subcell Biochem. 2021;96:259–271. doi: 10.1007/978-3-030-58971-4_6.
  • Fulton Z, McAlister A, Wilce MCJ, et al. Crystal structure of a UDP-glucose-specific glycosyltransferase from a Mycobacterium species. J Biol Chem. 2008;283:27881–27890. doi: 10.1074/jbc.M801853200.
  • Saxena IM, Brown RM, Jr, Fevre M, et al. Multidomain architecture of beta-glycosyl transferases: implications for mechanism of action. J Bacteriol. 1995;177:1419–1424. doi: 10.1128/jb.177.6.1419-1424.1995.
  • Pereira M, Felipe MSS,, Brígido MM, et al. Molecular cloning and characterization of a glucan synthase gene from the human pathogenic fungus Paracoccidioides brasiliensis. Yeast. 2000;116(5):451–462. doi: 10.1002/(SICI)1097-0061(20000330)16:5<451::AID-YEA540>3.0.CO;2-O.
  • Moremen KW, Haltiwanger RS. Emerging structural insights into glycosyltransferase-mediated synthesis of glycans. Nat Chem Biol. 2019;15:853–864. doi: 10.1038/s41589-019-0350-2.
  • Meng X, Gangoiti J, Bai Y, et al. Structure–function relationships of family GH70 glucansucrase and 4, 6-α-glucanotransferase enzymes, and their evolutionary relationships with family GH13 enzymes. Cell Mol Life Sci. 2016;73:2681–2706. doi: 10.1007/s00018-016-2245-7.
  • Morgan JL, Strumillo J, Zimmer J. Crystallographic snapshot of cellulose synthesis and membrane translocation. Nature. 2013;493:181–186. doi: 10.1038/nature11744.
  • McManus JB, Yang H, Wilson L, et al. Initiation, elongation, and termination of bacterial cellulose synthesis. ACS Omega. 2018;3:2690–2698. doi: 10.1021/acsomega.7b01808.
  • Hartland RP, Fontaine T, Debeaupuis JP, et al. A novel β-(1, 2, 3)-glucanosyltransferase from the cell wall of Aspergillus fumigatus. J Biol Chem. 1996;271:26843–26849. doi: 10.1074/jbc.271.43.26843.
  • Ji SL, Liu R, Ren MF, et al. Enhanced production of polysaccharide through the overexpression of homologous uridine diphosphate glucose pyrophosphorylase gene in a submerged culture of Lingzhi or Reishi medicinal mushroom, Ganoderma lucidum (higher Basidiomycetes). Int J Med Mushrooms. 2015;17:435–442. doi: 10.1615/IntJMedMushrooms.v17.i5.30.
  • Wang Y, Yang X, Chen P, et al. Homologous overexpression of genes in Cordyceps militaris improves the production of polysaccharides. Food Res Int. 2021;147:110452. doi: 10.1016/j.foodres.2021.110452.
  • Forster H, Shuai B. RNAi-mediated knockdown of β-1, 3-glucan synthase suppresses growth of the phytopathogenic fungus Macrophomina phaseolina. Physiol Mol Plant P. 2020;110:101486. doi: 10.1016/j.pmpp.2020.101486.
  • Liu Y, Ma X, Long Y, et al. Effects of β-1, 6-glucan synthase gene (FfGS6) overexpression on stress response and fruit body development in Flammulina filiformis. Genes. 2022;13:1753. doi: 10.3390/genes13101753.
  • He X, Li S, Kaminskyj SG. Overexpression of Aspergillus nidulans α-1, 3-glucan synthase increases cellular adhesion and causes cell wall defects. Med Mycol. 2018;56:645–648. doi: 10.1093/mmy/myx090.
  • Zhou X, He J, Wang L, et al. Metabolic engineering of Saccharomyces cerevisiae to improve glucan biosynthesis. J Microbiol Biotechnol. 2019;29:758–764. doi: 10.4014/jmb.1812.12049.
  • Bai JY, Li L, Xu Z, et al. Mutation of glucan synthase catalytic subunit in Beauveria bassiana affects fungal growth and virulence. Fungal Genet Biol. 2022;158:103637. doi: 10.1016/j.fgb.2021.103637.
  • Han Q, Wang N, Yao GY, et al. Blocking β-1,6-glucan synthesis by deleting KRE6 and SKN1 attenuates the virulence of Candida albicans. Mol Microbiol. 2019;111:604–620. doi: 10.1111/mmi.14176.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.