237
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Advances in high-throughput screening approaches for biosurfactants: current trends, bottlenecks and perspectives

, , &
Received 03 Jan 2023, Accepted 27 Jul 2023, Published online: 17 Jan 2024

References

  • Banat IM, Carboué Q, Saucedo-Castaneda G, et al. Biosurfactants: the green generation of specialty chemicals and potential production using solid-state fermentation (SSF) technology. Bioresour Technol. 2021;320:124222. doi: 10.1016/j.biortech.2020.124222.
  • Barbosa FG, Ribeaux DR, Rocha T, et al. Biosurfactants: sustainable and versatile molecules. J Braz Chem Soc. 2022;33:870–893.
  • Barbosa JR, da Silva Martins LH, da Silva SB, et al. Characterization and screening of biosurfactants from microorganisms with a wide application in food industries. In: Inamuddin Adetunji CO, editors. Applications of next generation biosurfactants in the food sector. Amsterdam: Elsevier Inc., Academic Press, 2023. p. 449–458.
  • Eras-Muñoz E, Farré A, Sánchez A, et al. Microbial biosurfactants: a review of recent environmental applications. Bioengineered. 2022;13:12365–12391. doi: 10.1080/21655979.2022.2074621.
  • Srivastava RK, Bothra N, Singh R, et al. Microbial originated surfactants with multiple applications: a comprehensive review. Arch Microbiol. 2022;204:452. doi: 10.1007/s00203-022-03086-3.
  • Mgbechidinma CL, Akan OD, Zhang C, et al. Integration of green economy concepts for sustainable biosurfactant production-a review. Bioresour Technol. 2022;364:128021. doi: 10.1016/j.biortech.2022.128021.
  • Tian X, Li Y, Chen Y, et al. System optimization of an embedding protocol to immobilize cells from Candida bombicola to improve the efficiency of sophorolipids production. Bioresour Technol. 2021;340:125700. doi: 10.1016/j.biortech.2021.125700.
  • Sophorolipid Market Forecast. 2020–2027. Sophorolipid market forecast to 2027 – COVID-19 impact and global analysis by type (lactonic sophorolipid and acidic sophorolipid) and application (household detergents, personal care, industrial & institutional cleaners, food processing, oilfield chemicals, and others). 127. https://www.theinsightpartners.com/reports/toc/sophorolipid-market.
  • Astuti DI, Rahmatunisa N, Kamarisima Nugroho GGS, Suhardi VSH, Taufik I. Enhancement of biosurfactant production by bacteria isolated from crude oil through adaptation laboratory evolution. Geomicrobiol J. 123–130. 2022;40. doi: 10.1080/01490451.2022.2128112.
  • Bouassida M, Ghazala I, Ellouze-Chaabouni S, et al. Improved biosurfactant production by Bacillus subtilis SPB1 mutant obtained by random mutagenesis and its application in enhanced oil recovery in a sand system. J Microbiol Biotechnol. 2018;28:95–104. doi: 10.4014/jmb.1701.01033.
  • Suryadi H, Irianti MI, Septiarini TH. Methods of random mutagenesis of Aspergillus strain for increasing kojic acid production. Curr Pharm Biotechnol. 2022;23:486–494. doi: 10.2174/1389201022666210615125004.
  • Zeng W, Guo L, Xu S, et al. High-throughput screening technology in industrial biotechnology. Trends Biotechnol. 2020;38:888–906. doi: 10.1016/j.tibtech.2020.01.001.
  • Jimoh AA, Senbadejo TY, Adeleke R, et al. Development and genetic engineering of hyper-producing microbial strains for improved synthesis of biosurfactants. Mol Biotechnol. 2021;63:267–288. doi: 10.1007/s12033-021-00302-1.
  • Meyer F, Keller P, Hartl J, et al. Methanol-essential growth of Escherichia coli. Nat Commun. 2018;9:1508. 2018). doi: 10.1038/s41467-018-03937-y.
  • Cao M, Feng J, Sirisansaneeyakul S, et al. Genetic and metabolic engineering for microbial production of poly-γ-glutamic acid. Biotechnol Adv. 2018;36:1424–1433. doi: 10.1016/j.biotechadv.2018.05.006.
  • Leavell MD, Singh AH, Kaufmann-Malaga BB. High-throughput screening for improved microbial cell factories, perspective and promise. Curr Opin Biotechnol. 2020;62:22–28. doi: 10.1016/j.copbio.2019.07.002.
  • Xiao H, Bao Z, Zhao H. High throughput screening and selection methods for directed enzyme evolution. Ind Eng Chem Res. 2015;54:4011–4020. doi: 10.1021/ie503060a.
  • Schallmey M, Frunzke J, Eggeling L, et al. Looking for the pick of the bunch: high-throughput screening of producing microorganisms with biosensors. Curr Opin Biotechnol. 2014;26:148–154. doi: 10.1016/j.copbio.2014.01.005.
  • Kubicki S, Bator I, Jankowski S, et al. A straightforward assay for screening and quantification of biosurfactants in microbial culture supernatants. Front Bioeng Biotechnol. 2020;8:958. doi: 10.3389/fbioe.2020.00958.
  • Ong SA, Wu JC. A simple method for rapid screening of biosurfactant-producing strains using bromothymol blue alone. Biocatal Agric Biotechnol. 2018;16:121–125. doi: 10.1016/j.bcab.2018.07.027.
  • Yang H, Yu H, Shen Z. A novel high-throughput and quantitative method based on visible color shifts for screening Bacillus subtilis THY-15 for surfactin production. J Ind Microbiol Biotechnol. 2015;42:1139–1147. doi: 10.1007/s10295-015-1635-4.
  • Guo M, Cheng S, Chen G, et al. Improvement of lipid production in oleaginous yeast Rhodosporidium toruloides by ultraviolet mutagenesis. Eng Life Sci. 2019;19:548–556. doi: 10.1002/elsc.201800203.
  • Asgher M, Arshad S, Qamar SA, et al. Improved biosurfactant production from Aspergillus niger through chemical mutagenesis: characterization and RSM optimization. SN Appl Sci. 2020;2:966. 2020). doi: 10.1007/s42452-020-2783-3.
  • Chen Y, Tian X, Li Q, et al. Target-site directed rational high-throughput screening system for high sophorolipids production by Candida bombicola. Bioresour Technol. 2020;315:123856. doi: 10.1016/j.biortech.2020.123856.
  • Lin Y, Chen Y, Li Q, et al. Rational high-throughput screening system for high sophorolipids production in Candida bombicola by co-utilizing glycerol and glucose capacity. Bioresour Bioprocess. 2019;6:17. 2019). doi: 10.1186/s40643-019-0252-x.
  • Zhou G, Tian X, Lin Y, et al. Rational high-throughput system for screening of high sophorolipids-producing strains of Candida bombicola. Bioprocess Biosyst Eng. 2019;42:575–582. doi: 10.1007/s00449-018-02062-w.
  • Lee HJ, Kim HJ, Lee SJ. CRISPR-Cas9-mediated pinpoint microbial genome editing aided by target-mismatched sgRNAs. Genome Res. 2020;30:768–775. doi: 10.1101/gr.257493.119.
  • Selle K, Barrangou R. Harnessing CRISPR–Cas systems for bacterial genome editing. Trends Microbiol. 2015;23:225–232. doi: 10.1016/j.tim.2015.01.008.
  • Zhang M, Shi Y, Zhang L, et al. A CRISPR–Cas12a system for multi-gene editing (CCMGE) and metabolic pathway assembly in Starmerella bombicola. Syst Microbiol and Biomanuf. 2022;2:665–675. doi: 10.1007/s43393-022-00093-9.
  • Williams W, Kunorozva L, Klaiber I, et al. Novel metagenome-derived ornithine lipids identified by functional screening for biosurfactants. Appl Microbiol Biotechnol. 2019;103:5061. doi: 10.1007/s00253-019-09860-6.
  • Sałek K, Euston SR, Janek T. Phase behavior, functionality, and physicochemical characteristics of glycolipid surfactants of microbial origin. Front Bioeng Biotechnol. 2022;10:816613. doi: 10.3389/fbioe.2022.816613.
  • Konishi M, Morita T, Fukuoka T, et al. Efficient production of acid-form sophorolipids from waste glycerol and fatty acid methyl esters by Candida floricola. J Oleo Sci. 2018;67:489–496. doi: 10.5650/jos.ess17219.
  • Mnif I, Ellouz-Chaabouni S, Ghribi D. Glycolipid biosurfactants, main classes, functional properties and related potential applications in environmental biotechnology. J Polym Environ. 2018;26:2192–2206. doi: 10.1007/s10924-017-1076-4.
  • Rooney AP, Price NP, Ray KJ, et al. Isolation and characterization of rhamnolipid-producing bacterial strains from a biodiesel facility. FEMS Microbiol Lett. 2009;295:82–87. doi: 10.1111/j.1574-6968.2009.01581.x.
  • Nayak AS, Vijaykumar MH, Karegoudar TB. Characterization of biosurfactant produced by Pseudoxanthomonas sp. PNK-04 and its application in bioremediation. Int Biodeterior Biodegrad. 2009;63:73–79. doi: 10.1016/j.ibiod.2008.07.003.
  • Toribio J, Escalante AE, Soberón-Chávez G. Rhamnolipids: production in bacteria other than Pseudomonas aeruginosa. Euro J Lipid Sci Tech. 2010;112:1082–1087. doi: 10.1002/ejlt.200900256.
  • Phulpoto IA, Wang Y, Qazi MA, et al. Bioprospecting of rhamnolipids production and optimization by an oil-degrading Pseudomonas sp. S2WE isolated from freshwater lake. Bioresour Technol. 2021;323:124601. doi: 10.1016/j.biortech.2020.124601.
  • Kashif A, Rehman R, Fuwad A, et al. Current advances in the classification, production, properties and applications of microbial biosurfactants–a critical review. Adv Colloid Interface Sci. 2022;306:102718. doi: 10.1016/j.cis.2022.102718.
  • Liepins J, Balina K, Soloha R, et al. Glycolipid biosurfactant production from waste cooking oils by yeast: review of substrates, producers and products. Fermentation. 2021;7:136. doi: 10.3390/fermentation7030136.
  • Saikia RR, Deka S, Sarma H. Biosurfactants from Bacteria and Fungi: perspectives on Advanced Biomedical Applications. In: Sarma H, Prasad MNV, editors. Biosurfactants for a sustainable future: production and applications in the environment and biomedicine. New York: John Wiley & Sons Ltd, 2021. p. 293–315.
  • Umar A, Zafar A, Wali H, et al. Low-cost production and application of lipopeptide for bioremediation and plant growth by Bacillus subtilis SNW3. AMB Express. 2021;11:165. doi: 10.1186/s13568-021-01327-0.
  • Durval IJB, Mendonça AHR, Rocha IV, et al. Production, characterization, evaluation and toxicity assessment of a Bacillus cereus UCP 1615 biosurfactant for marine oil spills bioremediation. Mar Pollut Bull. 2020;157:111357. doi: 10.1016/j.marpolbul.2020.111357.
  • Chen XY, Sun HZ, Qiao B, et al. Improved the lipopeptide production of Bacillus amyloliquefaciens HM618 under co-culture with the recombinant Corynebacterium glutamicum producing high-level proline. Bioresour Technol. 2022;349:126863. doi: 10.1016/j.biortech.2022.126863.
  • Jakinala P, Lingampally N, Kyama A, et al. Enhancement of atrazine biodegradation by marine isolate Bacillus velezensis MHNK1 in presence of surfactin lipopeptide. Ecotoxicol Environ Saf. 2019;182:109372. doi: 10.1016/j.ecoenv.2019.109372.
  • Paraszkiewicz K, Moryl M, Płaza G, et al. Surfactants of microbial origin as antibiofilm agents. Int J Environ Health Res. 2019;31:401–420. doi: 10.1080/09603123.2019.1664729.
  • Kuiper I, Lagendijk EL, Pickford R, et al. Characterization of two Pseudomonas putida lipopeptide biosurfactants, putisolvin I and II, which inhibit biofilm formation and break down existing biofilms. Mol Microbiol. 2004;51:97–113. doi: 10.1046/j.1365-2958.2003.03751.x.
  • Roelants SL, Ciesielska K, De Maeseneire SL, et al. Towards the industrialization of new biosurfactants: biotechnological opportunities for the lactone esterase gene from Starmerella bombicola. Biotechnol Bioeng. 2016;113:550–559. doi: 10.1002/bit.25815.
  • Dierickx S, Castelein M, Remmery J, et al. From bumblebee to bioeconomy: recent developments and perspectives for sophorolipids biosynthesis. Biotechnol Adv. 2022;54:107788. doi: 10.1016/j.biotechadv.2021.107788.
  • Qazi MA, Wang Q, Dai Z. Sophorolipids bioproduction in the yeast Starmerella bombicola: current trends and perspectives. Bioresour Technol. 2021;346:126593. doi: 10.1016/j.biortech.2021.126593.
  • Rehman R, Ali MI, Ali N, et al. Crude oil biodegradation potential of biosurfactant-producing Pseudomonas aeruginosa and Meyerozyma sp. J Hazard Mater. 2021;418:126276. doi: 10.1016/j.jhazmat.2021.126276.
  • Blunt W, Blanchard C, Morley K. Effects of environmental parameters on microbial rhamnolipid biosynthesis and bioreactor strategies for enhanced productivity. Biochem Eng J. 2022;108:108436.
  • Correia J, Gudiña EJ, Lazar Z, et al. Cost-effective rhamnolipid production by Burkholderia thailandensis E264 using agro-industrial residues. Appl Microbiol Biotechnol. 2022;106:7477–7489. doi: 10.1007/s00253-022-12225-1.
  • Gaur VK, Tripathi V, Gupta P, et al. Rhamnolipids from Planococcus spp. and their mechanism of action against pathogenic bacteria. Bioresour Technol. 2020;307:123206. doi: 10.1016/j.biortech.2020.123206.
  • Kourmentza C, Costa J, Azevedo Z, et al. Burkholderia thailandensis as a microbial cell factory for the bioconversion of used cooking oil to polyhydroxyalkanoates and rhamnolipids. Bioresour Technol. 2018;247:829–837. doi: 10.1016/j.biortech.2017.09.138.
  • Phulpoto IA, Yu Z, Li J, et al. Evaluation of di-rhamnolipid biosurfactants production by a novel Pseudomonas sp. S1WB: optimization, characterization and effect on petroleum-hydrocarbon degradation. Ecotoxicol Environ Saf. 2022;242:113892.
  • Wittgens A, Santiago-Schuebel B, Henkel M, et al. Heterologous production of long-chain rhamnolipids from Burkholderia glumae in Pseudomonas putida—a step forward to tailor-made rhamnolipids. Appl Microbiol Biotechnol. 2018;102:1229–1239. doi: 10.1007/s00253-017-8702-x.
  • Zhu P, Zhang S, Kumar R, et al. Rhamnolipids from non-pathogenic Acinetobacter calcoaceticus: bioreactor-scale production, characterization and wound healing potency. N Biotechnol. 2022;67:23–31. doi: 10.1016/j.nbt.2021.12.001.
  • Bages-Estopa S, White DA, Winterburn JB, et al. Production and separation of a trehalolipid biosurfactant. Biochem Eng J. 2018;139:85–94. doi: 10.1016/j.bej.2018.07.006.
  • Kuyukina MS, Ivshina IB. Production of trehalolipid biosurfactants by Rhodococcus. In: Alvarez HM, editors. Biology of rhodococcus. Cham: Springer, 2019. p. 271–298.
  • Sukirtha TH, Usharani MV. Production and qualitative analysis of biosurfactant and biodegradation of the organophosphate by Nocardia mediterranie. J Biorem Biodegrad. 2013;4:4–11.
  • Morita T, Fukuoka T, Imura T, et al. Production of mannosylerythritol lipids and their application in cosmetics. Appl Microbiol Biotechnol. 2013;97:4691–4700. doi: 10.1007/s00253-013-4858-1.
  • De Andrade CJ, Coelho AL, Feuser PE, et al. Mannosylerythritol lipids: production, downstream processing, and potential applications. Curr Opin Biotechnol. 2022;77:102769. doi: 10.1016/j.copbio.2022.102769.
  • Becker F, Linne U, Xie X, et al. Import and export of mannosylerythritol lipids by Ustilago maydis. Mbio. 2022;13:e02123-22. doi: 10.1128/mbio.02123-22.
  • Sato S, Fukuoka T, Saika A, et al. A new screening approach for glycolipid-type biosurfactant producers using MALDI-TOF/MS. J Oleo Sci. 2019;68:1287–1294. doi: 10.5650/jos.ess19177.
  • Teichmann B, Linne U, Hewald S, et al. A biosynthetic gene cluster for a secreted cellobiose lipid with antifungal activity from Ustilago maydis. Mol Microbiol. 2007;66:525–533. doi: 10.1111/j.1365-2958.2007.05941.x.
  • Morita T, Ishibashi Y, Fukuoka T, et al. Production of glycolipid biosurfactants, cellobiose lipids, by Cryptococcus humicola JCM 1461 and their interfacial properties. Biosci Biotechnol Biochem. 2011;75:1597–1599. doi: 10.1271/bbb.110036.
  • Oraby A, Werner N, Sungur Z, et al. Factors affecting the synthesis of cellobiose lipids by Sporisorium scitamineum. Front Bioeng Biotechnol. 2020;8:555647. doi: 10.3389/fbioe.2020.555647.
  • Ahmadi-Ashtiani HR, Baldisserotto A, Cesa E, et al. Microbial biosurfactants as key multifunctional ingredients for sustainable cosmetics. Cosmetics. 2020;7:46. doi: 10.3390/cosmetics7020046.
  • Joshi-Navare K, Singh PK, Prabhune AA. New yeast isolate Pichia caribbica synthesizes xylolipid biosurfactant with enhanced functionality. Euro J Lipid Sci Tech. 2014;116:1070–1079. doi: 10.1002/ejlt.201300363.
  • Nageshwar L, Parameshwar J, Rahman PK, et al. Anti-oxidative property of xylolipid produced by Lactococcus lactis LNH70 and its potential use as fruit juice preservative. Braz J Microbiol. 2022;53:2157–2172. doi: 10.1007/s42770-022-00837-8.
  • Vollbrecht E, Heckmann R, Wray V, et al. Production and structure elucidation of di-and oligosaccharide lipids (biosurfactants) from Tsukamurella sp. nov. Appl Microbiol Biotechnol. 1998;50:530–537. doi: 10.1007/s002530051330.
  • Vollbrecht E, Rau U, Lang S. Microbial conversion of vegetable oils into surface-active di-, tri-, and tetrasaccharide lipids (biosurfactants) by the bacterial strain Tsukamurella spec. Fett/Lipid. 1999;101:389–394. doi: 10.1002/(SICI)1521-4133(199910)101:10<389::AID-LIPI389>3.0.CO;2-9.
  • Mnif I, Ghribi D. Microbial derived surface-active compounds: properties and screening concept. World J Microbiol Biotechnol. 2015;31:1001–1020. doi: 10.1007/s11274-015-1866-6.
  • Zhao F, Liang X, Ban Y, et al. Comparison of methods to quantify rhamnolipid and optimization of oil spreading method. Tenside Surfactants Deterg. 2016;53:243–248. doi: 10.3139/113.110429.
  • Twigg MS, Baccile N, Banat IM, et al. Microbial biosurfactant research: time to improve the rigour in the reporting of synthesis, functional characterization and process development. Microb Biotechnol. 2021;14:147–170. doi: 10.1111/1751-7915.13704.
  • Trindade M, Sithole N, Kubicki S, et al. Screening strategies for biosurfactant discovery. In: Hausmann R, Henkel M, editors. Biosurfactants for the biobased economy. Advances in biochemical engineering/biotechnology. Vol. 181. Cham: Springer, 2021. p. 17–52.
  • Luo Z, Zeng W, Du G, et al. A high-throughput screening procedure for enhancing pyruvate production in Candida glabrata by random mutagenesis. Bioprocess Biosyst Eng. 2017;40:693–701. doi: 10.1007/s00449-017-1734-x.
  • Machillot P, Quintal C, Dalonneau F, et al. Automated buildup of biomimetic films in cell culture microplates for high-throughput screening of cellular behaviors. Adv Mater. 2018;30:e1801097. doi: 10.1002/adma.201801097.
  • Cao X, Luo Z, Zeng W, et al. Enhanced avermectin production by Streptomyces avermitilis ATCC 31267 using high-throughput screening aided by fluorescence-activated cell sorting. Appl Microbiol Biotechnol. 2018;102:703–712. doi: 10.1007/s00253-017-8658-x.
  • Feng W, Ueda E, Levkin PA. Droplet microarrays: from surface patterning to high-throughput applications. Adv Mater. 2018;30:e1706111. doi: 10.1002/adma.201706111.
  • Gaur VK, Sharma P, Gupta S, et al. Opportunities and challenges in omics approaches for biosurfactant production and feasibility of site remediation: strategies and advancements. Environ Technol Innovation. 2022;25:102132. doi: 10.1016/j.eti.2021.102132.
  • Datta S, Rajnish KN, Samuel MS, et al. Metagenomic applications in microbial diversity, bioremediation, pollution monitoring, enzyme and drug discovery. A review. Environ Chem Lett. 2020;18:1229–1241. doi: 10.1007/s10311-020-01010-z.
  • Vinayak V, Khan MJ, Varjani S, et al. Microbial fuel cells for remediation of environmental pollutants and value addition: special focus on coupling diatom microbial fuel cells with photocatalytic and photoelectric fuel cells. J Biotechnol. 2021;338:5–19. doi: 10.1016/j.jbiotec.2021.07.003.
  • Burch AY, Shimada BK, Browne PJ, et al. Novel high-throughput detection method to assess bacterial surfactant production. Appl Environ Microbiol. 2010;76:5363–5372. doi: 10.1128/AEM.00592-10.
  • Maczek J, Junne S, Götz P. Examining biosurfactant producing bacteria—an example for an automated search for natural compounds. Application Note CyBio AG. 16, 2007.
  • Lindahl M, Faris A, Wadström T, et al. A new test based on ‘salting out’ to measure relative hydrophobicity of bacterial cells. Biochim Biophys Acta. 1981;677:471–476. doi: 10.1016/0304-4165(81)90261-0.
  • Vaux DJ, Cottingham M. Method and apparatus for measuring surface configuration. 2001; Patent number GB0001568.5.
  • Chen CY, Baker SC, Darton RC. The application of a high throughput analysis method for the screening of potential biosurfactants from natural sources. J Microbiol Methods. 2007;70:503–510. doi: 10.1016/j.mimet.2007.06.006.
  • Heuson E, Etchegaray A, Filipe SL, et al. Screening of lipopeptide-producing strains of Bacillus sp. using a new automated and sensitive fluorescence detection method. Biotechnol J. 2019;14:e1800314. doi: 10.1002/biot.201800314.
  • Biniarz P, Łukaszewicz M, Janek T. Screening concepts, characterization and structural analysis of microbial-derived bioactive lipopeptides: a review. Crit Rev Biotechnol. 2017;37:393–410. doi: 10.3109/07388551.2016.1163324.
  • Franzetti A, Bestetti G, Caredda P, et al. Surface-active compounds and their role in the access to hydrocarbons in Gordonia strains. FEMS Microbiol Ecol. 2008;63:238–248. doi: 10.1111/j.1574-6941.2007.00406.x.
  • Jain DK, Collins-Thompson DL, Lee H, et al. A drop-collapsing test for screening surfactant-producing microorganisms. J Microbiol Methods. 1991;13:271–279. doi: 10.1016/0167-7012(91)90064-W.
  • Bodour AA, Miller-Maier RM. Application of a modified drop-collapse technique for surfactant quantitation and screening of biosurfactant-producing microorganisms. J Microbiol Methods. 1998;32:273–280. doi: 10.1016/S0167-7012(98)00031-1.
  • Youssef NH, Duncan KE, Nagle DP, et al. Comparison of methods to detect biosurfactant production by diverse microorganisms. J Microbiol Methods. 2004;56:339–347. doi: 10.1016/j.mimet.2003.11.001.
  • Satpute SK, Bhawsar BD, Dhakephalkar PK, et al. Assessment of different screening methods for selecting biosurfactant producing marine bacteria. Indian J Mar Sci. 2008;37:243–250.
  • Mishra N, Agsar D, Deepthi SS, et al. Novel application of Nerium leaf and Image J software in drop collapse assay for rapid screening of biosurfactant producing microorganisms. Indian J Exp Biol. 2021;59:484–492.
  • Saruni NH, Razak SA, Habib S, et al. Comparative screening methods for the detection of biosurfactant-producing capability of Antarctic hydrocarbon-degrading Pseudomonas sp. J Environ Microbiol Toxicol. 2019;7:44–47. doi: 10.54987/jemat.v7i1.471.
  • Cottingham MG, Bain CD, Vaux DJ. Rapid method for measurement of surface tension in multiwell plates. Lab Invest. 2004;84:523–529. doi: 10.1038/labinvest.|3700054.
  • Xu Y, Jing Y, Zhang Y, et al. Single-cell-based high-throughput cultivation and functional characterization of biosurfactant-producing bacteria from soil and oilfield-produced water. Microorganisms. 2022;10:2216. doi: 10.3390/microorganisms10112216.
  • Mohanram R, Jagtap C, Kumar P. Isolation, screening, and characterization of surface-active agent-producing, oil-degrading marine bacteria of Mumbai Harbor. Mar Pollut Bull. 2016;105:131–138. doi: 10.1016/j.marpolbul.2016.02.040.
  • Balan SS, Kumar CG, Jayalakshmi S. Aneurinifactin, a new lipopeptide biosurfactant produced by a marine Aneurinibacillus aneurinilyticus SBP-11 isolated from Gulf of Mannar: purification, characterization and its biological evaluation. Microbiol Res. 2017;194:1–9. doi: 10.1016/j.micres.2016.10.005.
  • Chittepu OR. Isolation and characterization of biosurfactant producing bacteria from groundnut oil cake dumping site for the control of foodborne pathogens. Grain Oil Sci Technol. 2019;2:15–20. doi: 10.1016/j.gaost.2019.04.004.
  • Jameel AA, Haider NH. Determination of the optimum conditions for biosurfactant production by local isolate of Lactobacillus plantarum and evaluate its antimicrobial activity. Iraqi J Agric Sci. 2021;52:170–188.
  • Jackson SA, Borchert E, O'Gara F, et al. Metagenomics for the discovery of novel biosurfactants of environmental interest from marine ecosystems. Curr Opin Biotechnol. 2015;33:176–182. doi: 10.1016/j.copbio.2015.03.004.
  • Williams W, Trindade M. Metagenomics for the discovery of novel biosurfactants. In: Charles T, Liles M, Sessitsch A, editors. Functional metagenomics: tools and applications. Cham: Springer, 2017; 95–117.
  • Martinez S, Humery A, Groleau MC, et al. Quorum sensing controls both rhamnolipid and polyhydroxyalkanoate production in Burkholderia thailandensis through ScmR regulation. Front Bioeng Biotechnol. 2020;8:1033. doi: 10.3389/fbioe.2020.01033.
  • Lee D, Oh T, Kang B, et al. Throughput screening of Bacillus subtilis strains that abundantly secrete surfactin in vitro identifies effective probiotic candidates. PLoS One. 2022;17:e0277412. doi: 10.1371/journal.pone.0277412.
  • Alves AR, Sequeira AM, Cunha Â. Increase in bacterial biosurfactant production by co-cultivation with biofilm-forming bacteria. Lett Appl Microbiol. 2019;69:79–86. doi: 10.1111/lam.13169.
  • Dmitrović S, Pajčin I, Vlajkov V, et al. Dairy and wine industry effluents as alternative media for the production of bacillus-based biocontrol agents. Bioeng. 2022;9:663. doi: 10.3390/bioengineering9110663.
  • Roosloot R, Schoen P. A colorimetric assay for determination of residual detergent levels in reconstituted membrane protein preparations. Anal Biochem. 2011;413:72–74. doi: 10.1016/j.ab.2011.01.031.
  • Vulliez-Le Normand B, Eiselé JL. Determination of detergent critical micellar concentration by solubilization of a colored dye. Anal Biochem. 1993;208:241–243. doi: 10.1006/abio.1993.1039.
  • Vamecq J. Chlorpromazine and carnitine-dependency of rat liver peroxisomal β-oxidation of long-chain fatty acids. Biochem J. 1987;241:783–791. doi: 10.1042/bj2410783.
  • Peng J, Shuaiwu M, Yingming H, et al. Two-step enrichment and double-time replica plating technology for Candida tropicalis mutant selection. J Tsinghua Univ (Sci Technol). 2000;40:22–25.
  • Van Bogaert I, Fleurackers S, Van Kerrebroeck S, et al. Production of new-to-nature sophorolipids by cultivating the yeast Candida bombicola on unconventional hydrophobic substrates. Biotechnol Bioeng. 2011;108:734–741. doi: 10.1002/bit.23004.
  • Kuyukina MS, Ivshina IB, Baeva TA, et al. Trehalolipid biosurfactants from nonpathogenic Rhodococcus actinobacteria with diverse immunomodulatory activities. N Biotechnol. 2015;32:559–568. doi: 10.1016/j.nbt.2015.03.006.
  • Li Y, Chen Y, Tian X, et al. Advances in sophorolipids-producing strain performance improvement and fermentation optimization technology. Appl Microbiol Biotechnol. 2020;104:10325–10337. doi: 10.1007/s00253-020-10964-7.
  • De Graeve M, De Maeseneire SL, Roelants SL, et al. Starmerella bombicola, an industrially relevant, yet fundamentally underexplored yeast. FEMS Yeast Res. 2018;18:foy072. doi: 10.1093/femsyr/foy072.
  • Roelants S, Solaiman D, Ashby RD, et al. Production and applications of sophorolipids. In: Hayes DG, Solaiman D, Ashby RD, editors. Biobased surfactants: synthesis, properties, and applications. Amsterdam: Elsevier Academic Press; AOCS Press, 2019. p. 65–119.
  • Sarubbo LA, Maria da Gloria CS, Durval IJB, et al. Biosurfactants: production, properties, applications, trends, and general perspectives. Biochem Eng J. 2022;181:108377. doi: 10.1016/j.bej.2022.108377.
  • Tripathi L, Twigg MS, Zompra A, et al. Biosynthesis of rhamnolipid by a Marinobacter species expands the paradigm of biosurfactant synthesis to a new genus of the marine microflora. Microb Cell Fact. 2019;18:164. 164(2019). doi: 10.1186/s12934-019-1216-8.
  • Baccile N, Seyrig C, Poirier A, et al. Self-assembly, interfacial properties, interactions with macromolecules and molecular modelling and simulation of microbial bio-based amphiphiles (biosurfactants). A tutorial review. Green Chem. 2021;23:3842–3944. doi: 10.1039/D1GC00097G.
  • Souza KST, Gudiña EJ, Azevedo Z, et al. New glycolipid biosurfactants produced by the yeast strain Wickerhamomyces anomalus CCMA 0358. Colloids Surf B Biointerfaces. 2017;154:373–382. doi: 10.1016/j.colsurfb.2017.03.041.
  • Holmberg K, Jönsson B, Kronberg B, et al. Surfactant micellization. In: Surfactants and Polymers in Aqueous Solutions. New York: John Wiley & Sons, Ltd., 2002. p. 39–66.
  • Baccile N, Poirier A. Microbial biobased amphiphiles (biosurfactants): general aspects on CMC, surface tension and phase behavior. Amsterdam: Elsevier, 2022.
  • Nguyen TT, Morgan C, Poindexter L, et al. Application of the hydrophilic–lipophilic deviation concept to surfactant characterization and surfactant selection for enhanced oil recovery. J Surfact Detergents. 2019;22:983–999. doi: 10.1002/jsde.12305.
  • Yamashita Y, Sakamoto K. Hydrophilic–lipophilic balance (HLB): classical indexation and novel indexation of surfactant. Encycl Biocolloid Biointerface Sci. 2016;2V Set:570–574.
  • Griffin WC. Classification of surface-active agents by HLB. J Soc Cosmet Chem. 1949;1:311–326.
  • Salager JL. Quantifying the concept of physico-chemical formulation in surfactant-oil-water systems—state of the art. Trends Colloid Interface Sci. 1996;X:37–142.
  • Salager JL, Bourrel M, Schechter RS, et al. Mixing rules for optimum phase-behavior formulations of surfactant/oil/water systems. Soc Pet Eng J. 1979;19:271–278. doi: 10.2118/7584-PA.
  • Dos Santos LFM, Coutte F, Ravallec R, et al. An improvement of surfactin production by B. subtilis BBG131 using design of experiments in microbioreactors and continuous process in bubbleless membrane bioreactor. Bioresour Technol. 2016;218:944–952. doi: 10.1016/j.biortech.2016.07.053.
  • Mayr LM, Fuerst P. The future of high-throughput screening. J Biomol Screen. 2008;13:443–448. doi: 10.1177/1087057108319644.
  • Tan J, Chu J, Hao Y, et al. High-throughput system for screening of cephalosporin C high-yield strain by 48-deep-well microtiter plates. Appl Biochem Biotechnol. 2013;169:1683–1695. doi: 10.1007/s12010-013-0095-4.
  • Kang A, Meadows CW, Canu N, et al. High-throughput enzyme screening platform for the IPP-bypass mevalonate pathway for isopentenol production. Metab Eng. 2017;41:125–134. doi: 10.1016/j.ymben.2017.03.010.
  • Li X, Zhang X, Xu S, et al. Simultaneous cell disruption and semi-quantitative activity assays for high-throughput screening of thermostable L-asparaginases. Sci Rep. 2018;8:1–12.
  • Harris SR, Garlick RK, Miller JJ, et al. Complement C5a receptor assay for high throughput screening. J Recept Res. 1991;11:115–128. doi: 10.3109/10799899109066393.
  • Mayr LM, Bojanic D. Novel trends in high-throughput screening. Curr Opin Pharmacol. 2009;9:580–588. doi: 10.1016/j.coph.2009.08.004.
  • Huang M, Bai Y, Sjostrom SL, et al. Microfluidic screening and whole-genome sequencing identifies mutations associated with improved protein secretion by yeast. Proc Natl Acad Sci. 2015;112: e 4689–E4696. doi: 10.1073/pnas.1506460112.
  • Nishioka K, Miyazaki H, Soejima H. Unbiased shRNA screening, using a combination of FACS and high-throughput sequencing, enables identification of novel modifiers of polycomb silencing. Sci Rep. 2018;8:12128. 2018). doi: 10.1038/s41598-018-30649-6.
  • Dörr M, Fibinger MP, Last D, et al. Fully automatized high-throughput enzyme library screening using a robotic platform. Biotechnol Bioeng. 2016;113:1421–1432. doi: 10.1002/bit.25925.
  • Du G, Fang Q, den Toonder JM. Microfluidics for cell-based high throughput screening platforms—a review. Anal Chim Acta. 2016;903:36–50. doi: 10.1016/j.aca.2015.11.023.
  • Qiu X, Xu P, Zhao X, et al. Combining genetically-encoded biosensors with high throughput strain screening to maximize erythritol production in Yarrowia lipolytica. Metab Eng. 2020;60:66–76. doi: 10.1016/j.ymben.2020.03.006.
  • Singh PK, Mukherji R, Joshi-Navare K, et al. Fluorescent sophorolipids molecular assembly and its magnetic nanoparticle loading: a pulsed laser process. Green Chem. 2013;15:943–953. doi: 10.1039/c3gc40108a.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.