208
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Global regulator IrrE on stress tolerance: a review

, , , , , & show all
Received 20 Dec 2022, Accepted 03 Aug 2023, Published online: 21 Jan 2024

References

  • Lin Z, Zhang Y, Wang J. Engineering of transcriptional regulators enhances microbial stress tolerance. Biotechnol Adv. 2013;31:986–991. doi: 10.1016/j.biotechadv.2013.02.010.
  • Lam FH, Ghaderi A, Fink GR, et al. Engineering alcohol tolerance in yeast. Science. 2014;346:71–75. doi: 10.1126/science.1257859.
  • Kumar A, Verma JP. Does plant-Microbe interaction confer stress tolerance in plants: a review? Microbiol Res. 2018;207:41–52. doi: 10.1016/j.micres.2017.11.004.
  • Vanhaelewyn L, Van Der Straeten D, De Coninck B, et al. Ultraviolet radiation from a plant perspective: the plant-microorganism context. Front Plant Sci. 2020;11:597642. doi: 10.3389/fpls.2020.597642.
  • Eid AM, Fouda A, Abdel-Rahman MA, et al. Harnessing bacterial endophytes for promotion of plant growth and biotechnological applications: an overview. Plants. 2021;10:935. doi: 10.3390/plants10050935.
  • Baatout S, De Boever P, Mergeay M. Temperature-induced changes in bacterial physiology as determined by flow cytometry. Ann Microbiol. 2005;55:73–80.
  • Blaustein RA, Pachepsky Y, Hill RL, et al. Escherichia coli survival in waters: temperature dependence. Water Res. 2013;47:569–578. doi: 10.1016/j.watres.2012.10.027.
  • Auesukaree C. Molecular mechanisms of the yeast adaptive response and tolerance to stresses encountered during ethanol fermentation. J Biosci Bioeng. 2017;124:133–142. doi: 10.1016/j.jbiosc.2017.03.009.
  • Zhu J-K. Salt and drought stress signal transduction in plants. Annu Rev Plant Biol. 2002;53:247–273. doi: 10.1146/annurev.arplant.53.091401.143329.
  • Xu K, Lee YS, Li J, et al. Resistance mechanisms and reprogramming of microorganisms for efficient biorefinery under multiple environmental stresses. Synth Syst Biotechnol. 2019;7.
  • Tao Y, Wang H, Wang J, et al. Strategies to improve the stress resistance of Escherichia coli in industrial biotechnology. Biofuels Bioprod Bioref. 2022;16:1130–1141. doi: 10.1002/bbb.2358.
  • Barrick JE, Lenski RE. Genome dynamics during experimental evolution. Nat Rev Genet. 2013;14:827–839. doi: 10.1038/nrg3564.
  • Tischer BK, Kaufer BB. Viral bacterial artificial chromosomes: generation, mutagenesis, and removal of Mini-F sequences. J Biomed Biotechnol. 2012;2012:472537–472514. doi: 10.1155/2012/472537.
  • Gong J, Zheng H, Wu Z, et al. Genome shuffling: progress and applications for phenotype improvement. Biotechnol Adv. 2009;27:996–1005. doi: 10.1016/j.biotechadv.2009.05.016.
  • Lu H, Chen H, Xu G, et al. DNA binding is essential for PprI function in response to radiation damage in Deinococcus radiodurans. DNA Repair (Amst). 2012;11:139–145. doi: 10.1016/j.dnarep.2011.10.013.
  • Vujicić-Zagar A, Dulermo R, Le Gorrec M, et al. Crystal structure of the IrrE protein, a central regulator of DNA damage repair in Deinococcaceae. J Mol Biol. 2009;386:704–716. doi: 10.1016/j.jmb.2008.12.062.
  • Ludanyi M, Blanchard L, Dulermo R, et al. Radiation response in Deinococcus deserti : irrE is a metalloprotease that cleaves repressor protein DdrO: radiation response in Deinococcus deserti. Mol Microbiol. 2014;94:434–449. doi: 10.1111/mmi.12774.
  • Wang Y, Xu Q, Lu H, et al. Protease activity of PprI facilitates DNA damage response: mn(2+)-dependence and substrate sequence-specificity of the proteolytic reaction. PLoS One. 2015;10:e0122071. doi: 10.1371/journal.pone.0122071.
  • Jin M, Xiao A, Zhu L, et al. The diversity and commonalities of the radiation-resistance mechanisms of Deinococcus and its up-to-date applications. AMB Express. 2019;9:138. doi: 10.1186/s13568-019-0862-x.
  • Wang W, Ma Y, He J, et al. Gene regulation for the extreme resistance to ionizing radiation of Deinococcus radiodurans. Gene. 2019;715:144008. doi: 10.1016/j.gene.2019.144008.
  • Earl AM, Mohundro MM, Mian IS, et al. The IrrE Protein of Deinococcus radiodurans R1 Is a Novel Regulator of recA Expression. J Bacteriol. 2002;184:6216–6224. doi: 10.1128/JB.184.22.6216-6224.2002.
  • Hua Y, Narumi I, Gao G, et al. PprI: a general switch responsible for extreme radioresistance of Deinococcus radiodurans. Biochem Biophys Res Commun. 2003;306:354–360. doi: 10.1016/s0006-291x(03)00965-3.
  • Lu H, Gao G, Xu G, et al. Deinococcus radiodurans PprI Switches on DNA damage response and cellular survival networks after radiation damage. Mol Cell Proteomics. 2009;8:481–494. doi: 10.1074/mcp.M800123-MCP200.
  • De Groot A, Siponen MI, Magerand R, et al. Crystal structure of the transcriptional repressor DdrO: insight into the metalloprotease/repressor-controlled radiation response in Deinococcus. Nucleic Acids Res. 2019;47:11403–11417. doi: 10.1093/nar/gkz883.
  • Devigne A, Ithurbide S, Bouthier de la Tour C, et al. DdrO is an essential protein that regulates the radiation desiccation response and the apoptotic-like cell death in the radioresistant Deinococcus radiodurans bacterium. Mol Microbiol. 2015;96:1069–1084. doi: 10.1111/mmi.12991.
  • Lu H, Wang L, Li S, et al. Structure and DNA damage-dependent derepression mechanism for the XRE family member DG-DdrO. Nucleic Acids Res. 2019;47:9925–9933. doi: 10.1093/nar/gkz720.
  • Maret W. Zinc coordination environments in proteins as redox sensors and signal transducers. Antioxid Redox Signal. 2006;8:1419–1441. doi: 10.1089/ars.2006.8.1419.
  • Kröncke K-D, Klotz L-O. Zinc fingers as biologic redox switches? Antioxid Redox Signal. 2009;11:1015–1027. doi: 10.1089/ARS.2008.2269.
  • Magerand R, Rey P, Blanchard L, et al. Redox signaling through zinc activates the radiation response in Deinococcus bacteria. Sci Rep. 2021;11:4528. doi: 10.1038/s41598-021-84026-x.
  • Qi H, Wang W, He J, et al. Antioxidative system of Deinococcus radiodurans. Res Microbiol. 2020;171:45–54. doi: 10.1016/j.resmic.2019.11.002.
  • Blanchard L, Guérin P, Roche D, et al. Conservation and diversity of the IrrE/DdrO-controlled radiation response in radiation-resistant Deinococcus bacteria. Microbiologyopen. 2017;6:e00477. doi: 10.1002/mbo3.477.
  • Narasimha A, Basu B. New insights into the activation of radiation desiccation response regulon in Deinococcus radiodurans. J Biosci. 2021;46:1–16. doi: 10.1007/s12038-020-00123-5.
  • Zhou C, Dai J, Lu H, et al. Succinylome analysis reveals the involvement of lysine succinylation in the extreme resistance of Deinococcus radiodurans. Proteomics. 2019;19:e1900158. doi: 10.1002/pmic.201900158.
  • Li M, Sun H, Feng Q, et al. Extracellular dGMP enhances Deinococcus radiodurans tolerance to oxidative stress. PLoS One. 2013;8:e54420. doi: 10.1371/journal.pone.0054420.
  • Lu H, Hua Y. PprI: the key protein in response to DNA damage in Deinococcus. Front Cell Dev Biol. 2020;8:609714. doi: 10.3389/fcell.2020.609714.
  • Warnecke T, Gill RT. Organic acid toxicity, tolerance, and production in Escherichia coli biorefining applications. Microb Cell Fact. 2005;4:25. doi: 10.1186/1475-2859-4-25.
  • Fischer CR, Klein-Marcuschamer D, Stephanopoulos G. Selection and optimization of microbial hosts for biofuels production. Metab Eng. 2008;10:295–304. doi: 10.1016/j.ymben.2008.06.009.
  • Mills TY, Sandoval NR, Gill RT. Cellulosic hydrolysate toxicity and tolerance mechanisms in Escherichia coli. Biotechnol Biofuels. 2009;2:26. doi: 10.1186/1754-6834-2-26.
  • Ling H, Teo W, Chen B, et al. Microbial tolerance engineering toward biochemical production: from lignocellulose to products. Curr Opin Biotechnol. 2014;29:99–106. doi: 10.1016/j.copbio.2014.03.005.
  • Zhu L, Zhu Y, Zhang Y, et al. Engineering the robustness of industrial microbes through synthetic biology. Trends Microbiol. 2012;20:94–101. doi: 10.1016/j.tim.2011.12.003.
  • Liu Y, Tang H, Lin Z, et al. Mechanisms of acid tolerance in bacteria and prospects in biotechnology and bioremediation. Biotechnol Adv. 2015;33:1484–1492. doi: 10.1016/j.biotechadv.2015.06.001.
  • Zhang H, Zhu J, Gong Z, et al. Abiotic stress responses in plants. Nat Rev Genet. 2022;23:104–119. doi: 10.1038/s41576-021-00413-0.
  • Dong Q, Wallrad L, Almutairi BO, et al. Ca2+ signaling in plant responses to abiotic stresses. J Integr Plant Biol. 2022;64:287–300. doi: 10.1111/jipb.13228.
  • Reed JL, Vo TD, Schilling CH, et al. An expanded genome-scale model of Escherichia coli K-12 (iJR904). Genome Biol. 2003;4: r 54. doi: 10.1186/gb-2003-4-9-r54.
  • Han M-J, Lee SY. The Escherichia coli proteome: past, present, and future prospects. Microbiol Mol Biol Rev. 2006;70:362–439. doi: 10.1128/MMBR.00036-05.
  • Yu H, Gerstein M. Genomic analysis of the hierarchical structure of regulatory networks. Proc Natl Acad Sci U S A. 2006;103:14724–14731. doi: 10.1073/pnas.0508637103.
  • Blount ZD. The unexhausted potential of E. coli. Elife. 2015;4:e05826. doi: 10.7554/eLife.05826.
  • Gao G, Tian B, Liu L, et al. Expression of Deinococcus radiodurans PprI enhances the radioresistance of Escherichia coli. DNA Repair (Amst). 2003;2:1419–1427. doi: 10.1016/j.dnarep.2003.08.012.
  • Wen L, Yue L, Shi Y, et al. Deinococcus radiodurans pprI expression enhances the radioresistance of eukaryotes. Oncotarget. 2016;7:15339–15355. doi: 10.18632/oncotarget.8137.
  • Pan J, Wang J, Zhou Z, et al. IrrE, a global regulator of extreme radiation resistance in Deinococcus radiodurans, enhances salt tolerance in Escherichia coli and Brassica napus. PLoS One. 2009;4:e4422. doi: 10.1371/journal.pone.0004422.
  • Liu X, Zhao M, Xu Z, et al. Construction of a robust Sphingomonas sp. strain for Welan gum production via the expression of global transcriptional regulator IrrE. Front Bioeng Biotechnol. 2020;8:674. doi: 10.3389/fbioe.2020.00674.
  • Wang L, Wang X, He Z-Q, et al. Engineering prokaryotic regulator IrrE to enhance stress tolerance in budding yeast. Biotechnol Biofuels. 2020;13:193. doi: 10.1186/s13068-020-01833-6.
  • Ma R, Zhang Y, Hong H, et al. Improved osmotic tolerance and ethanol production of ethanologenic Escherichia coli by IrrE, a global regulator of radiation-resistance of Deinococcus radiodurans. Curr Microbiol. 2011;62:659–664. doi: 10.1007/s00284-010-9759-2.
  • Purvis JE, Yomano LP, Ingram LO. Enhanced trehalose production improves growth of Escherichia coli under osmotic stress. Appl Environ Microbiol. 2005;71:3761–3769. doi: 10.1128/AEM.71.7.3761-3769.2005.
  • Miller EN, Ingram LO. Sucrose and overexpression of trehalose biosynthetic genes (otsBA) increase desiccation tolerance of recombinant Escherichia coli. Biotechnol Lett. 2008;30:503–508. doi: 10.1007/s10529-007-9573-5.
  • Zhang W, Zhu J, Zhu X, et al. Expression of global regulator IrrE for improved succinate production under high salt stress by Escherichia coli. Bioresour Technol. 2018;254:151–156. doi: 10.1016/j.biortech.2018.01.091.
  • Ying Z. irrE, an exogenous gene from Deinococcus radiodurans, improves the Growth of and Ethanol Production by a Zymomonas mobilis Strain under Ethanol and Acid Stresses. J Microbiol Biotechnol. 2010;20:1156–1162.
  • Dong X, Tian B, Dai S, et al. Expression of PprI from Deinococcus radiodurans improves lactic acid production and stress tolerance in Lactococcus lactis. PLoS One. 2015;10:e0142918. doi: 10.1371/journal.pone.0142918.
  • Zhou Z, Liu Y, Zanaroli G, et al. Enhancing bioremediation potential of Pseudomonas putida by developing its acid stress tolerance with glutamate decarboxylase dependent system and global regulator of extreme radiation resistance. Front Microbiol. 2019;10:2033. doi: 10.3389/fmicb.2019.02033.
  • Bussineau C, Shuster J. Genetic stability of protein expression systems in yeast. Dev Biol Stand. 1994;83:13–19.
  • Luo P, Zhang Y, Suo Y, et al. The global regulator IrrE from Deinococcus radiodurans enhances the furfural tolerance of Saccharomyces cerevisiae. Biochem Eng J. 2018;136:69–77. doi: 10.1016/j.bej.2018.05.009.
  • Hossein Helalat S, Bidaj S, Samani S, et al. Producing alcohol and salt stress tolerant strain of Saccharomyces cerevisiae by heterologous expression of pprI gene. Enzyme Microb Technol. 2019;124:17–22. doi: 10.1016/j.enzmictec.2019.01.008.
  • Chen T, Wang J, Yang R, et al. Laboratory-Evolved Mutants of an Exogenous Global Regulator, IrrE from Deinococcus radiodurans, Enhance Stress Tolerances of Escherichia coli. PLoS One. 2011;6:e16228. doi: 10.1371/journal.pone.0016228.
  • Luo J, Li X, Zhang J, et al. Global regulator engineering enhances bioelectricity generation in Pseudomonas aeruginosa-inoculated MFCs. Biosens Bioelectron. 2020;163:112269. doi: 10.1016/j.bios.2020.112269.
  • Wang J, Zhang Y, Chen Y, et al. Global regulator engineering significantly improved Escherichia coli tolerances toward inhibitors of lignocellulosic hydrolysates. Biotechnol Bioeng. 2012;109:3133–3142. doi: 10.1002/bit.24574.
  • Heipieper HJ, Neumann G, Cornelissen S, et al. Solvent-tolerant bacteria for biotransformations in two-phase fermentation systems. Appl Microbiol Biotechnol. 2007;74:961–973. doi: 10.1007/s00253-006-0833-4.
  • Palmqvist E. Fermentation of lignocellulosic hydrolysates. I: inhibition and detoxification. Bioresour Technol. 2000;8.
  • Palmqvist E, Hahn-Hägerdal B. Fermentation of lignocellulosic hydrolysates. II: inhibitors and mechanisms of inhibition. Bioresour Technol. 2000;74:25–33. doi: 10.1016/S0960-8524(99)00161-3.
  • Brandt BA, Jansen T, Görgens JF, et al. Overcoming lignocellulose-derived microbial inhibitors: advancing the Saccharomyces cerevisiae resistance toolbox. Biofuels Bioprod Bioref. 2019;13:1520–1536. doi: 10.1002/bbb.2042.
  • Mariano AP, Qureshi N, Maciel Filho R, et al. Assessment of in situ butanol recovery by vacuum during acetone butanol ethanol (ABE) fermentation. J Chemical Tech Biotech. 2012;87:334–340. doi: 10.1002/jctb.2717.
  • Song B, Zhou Q, Xue H-J, et al. IrrE improves organic solvent tolerance and Δ1-dehydrogenation productivity of Arthrobacter simplex. J Agric Food Chem. 2018;66:5210–5220. doi: 10.1021/acs.jafc.8b01311.
  • Bai Z, Harvey LM, McNeil B. Oxidative stress in submerged cultures of fungi. Crit Rev Biotechnol. 2003;23:267–302. doi: 10.1080/07388550390449294.
  • Gómez R, Vicino P, Carrillo N, et al. Manipulation of oxidative stress responses as a strategy to generate stress-tolerant crops. From damage to signaling to tolerance. Crit Rev Biotechnol. 2019;39:693–708. doi: 10.1080/07388551.2019.1597829.
  • Li Q, Harvey LM, McNeil B. Oxidative stress in industrial fungi. Crit Rev Biotechnol. 2009;29:199–213. doi: 10.1080/07388550903004795.
  • Pilzecker B, Buoninfante OA, Jacobs H. DNA damage tolerance in stem cells, ageing, mutagenesis, disease and cancer therapy. Nucleic Acids Res. 2019;47:7163–7181. doi: 10.1093/nar/gkz531.
  • Luo J, Wang T, Li X, et al. Enhancement of bioelectricity generation via heterologous expression of IrrE in Pseudomonas aeruginosa-inoculated MFCs. Biosens Bioelectron. 2018;117:23–31. doi: 10.1016/j.bios.2018.05.052.
  • Zhou Z, Zhang W, Chen M, et al. Genome-wide transcriptome and proteome analysis of Escherichia coli expressing IrrE, a global regulator of Deinococcus radiodurans. Mol Biosyst. 2011;7:1613–1620. doi: 10.1039/c0mb00336k.
  • Zhao P, Zhou Z, Zhang W, et al. Global transcriptional analysis of Escherichia coli expressing IrrE, a regulator from Deinococcus radiodurans, in response to NaCl shock. Mol Biosyst. 2015;11:1165–1171. doi: 10.1039/c5mb00080g.
  • Heer D, Heine D, Sauer U. Resistance of Saccharomyces cerevisiae to high concentrations of furfural is based on NADPH-dependent reduction by at least two oxireductases. Appl Environ Microbiol. 2009;75:7631–7638. doi: 10.1128/AEM.01649-09.
  • Sies H, Jones DP. Reactive oxygen species (ROS) as pleiotropic physiological signalling agents. Nat Rev Mol Cell Biol. 2020;21:363–383. doi: 10.1038/s41580-020-0230-3.
  • Heid ME, Keyel PA, Kamga C, et al. Mitochondrial reactive oxygen species induces NLRP3-dependent lysosomal damage and inflammasome activation. J Immunol. 2013;191:5230–5238. doi: 10.4049/jimmunol.1301490.
  • You J, Chan Z. ROS regulation during abiotic stress responses in crop plants. Front Plant Sci. 2015;6:1092. doi: 10.3389/fpls.2015.01092.
  • Mailloux RJ. An update on mitochondrial reactive oxygen species production. Antioxidants. 2020;9:472. doi: 10.3390/antiox9060472.
  • Chen T, Wang J, Zeng L, et al. Significant rewiring of the transcriptome and proteome of an Escherichia coli strain harboring a tailored exogenous global regulator IrrE. PLoS One. 2012;7:e37126. doi: 10.1371/journal.pone.0037126.
  • Poole R. Nitric oxide and nitrosative stress tolerance in bacteria. Biochem Soc Trans. 2005;33:176–180. doi: 10.1042/BST0330176.
  • Hirakawa H, Inazumi Y, Masaki T, et al. Indole induces the expression of multidrug exporter genes in Escherichia coli. Mol Microbiol. 2005;55:1113–1126. doi: 10.1111/j.1365-2958.2004.04449.x.
  • Lee HH, Molla MN, Cantor CR, et al. Bacterial charity work leads to population-wide resistance. Nature. 2010;467:82–85. doi: 10.1038/nature09354.
  • Horinouchi T, Tamaoka K, Furusawa C, et al. Transcriptome analysis of parallel-evolved Escherichia coli strains under ethanol stress. BMC Genomics. 2010;11:579. doi: 10.1186/1471-2164-11-579.
  • Atsumi S, Wu T-Y, Machado IM, et al. Evolution, genomic analysis, and reconstruction of isobutanol tolerance in Escherichia coli. Mol Syst Biol. 2010;6:449.
  • Torres S, Pandey A, Castro GR. Organic solvent adaptation of Gram positive bacteria: applications and biotechnological potentials. Biotechnol Adv. 2011;29:442–452. doi: 10.1016/j.biotechadv.2011.04.002.
  • Wang X, Li B-Z, Ding M-Z, et al. Metabolomic analysis reveals key metabolites related to the rapid adaptation of Saccharomyce cerevisiae to multiple inhibitors of furfural, acetic acid, and phenol. OMICS. 2013;17:150–159. doi: 10.1089/omi.2012.0093.
  • Wang X, Bai X, Chen D-F, et al. Increasing proline and myo-inositol improves tolerance of Saccharomyces cerevisiae to the mixture of multiple lignocellulose-derived inhibitors. Biotechnol Biofuels. 2015;8:142. doi: 10.1186/s13068-015-0329-5.
  • Hottiger T, DE Virgilio C, Hall MN, et al. The role of trehalose synthesis for the acquisition of thermotolerance in yeast: II. Physiological concentrations of trehalose increase the thermal stability of proteins in vitro. Eur J Biochem. 1994;219:187–193. doi: 10.1111/j.1432-1033.1994.tb19929.x.
  • Kaushik JK, Bhat R. Why is trehalose an exceptional protein stabilizer? An analysis of the thermal stability of proteins in the presence of the compatible osmolyte trehalose. J Biol Chem. 2003;278:26458–26465. doi: 10.1074/jbc.M300815200.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.