341
Views
0
CrossRef citations to date
0
Altmetric
Review Article

APETALA2/ethylene-responsive factors in higher plant and their roles in regulation of plant stress response

, , , &
Received 18 Aug 2023, Accepted 30 Nov 2023, Published online: 24 Jan 2024

References

  • Heyman J, Canher B, Bisht A, et al. Emerging role of the plant ERF transcription factors in coordinating wound defense responses and repair. J Cell Sci. 2018;131:jcs208215. doi: 10.1242/jcs.208215.
  • Ritonga FN, Ngatia JN, Wang Y, et al. AP2/ERF, an important cold stress-related transcription factor family in plants: a review. Physiol Mol Biol Plants. 2021;27:1953–1968. doi: 10.1007/s12298-021-01061-8.
  • Mishra R, Shteinberg M, Shkolnik D, et al. Interplay between abiotic (drought) and biotic (virus) stresses in tomato plants. Mol Plant Pathol. 2022;23:475–488. doi: 10.1111/mpp.13172.
  • Raja B, Vidya R. Application of seaweed extracts to mitigate biotic and abiotic stresses in plants. Physiol Mol Biol Plants. 2023;29:641–661. doi: 10.1007/s12298-023-01313-9.
  • Xie ZL, Nolan TM, Jiang H, et al. AP2/ERF transcription factor regulatory networks in hormone and abiotic stress responses in Arabidopsis. Front Plant Sci. 2019;10:228. doi: 10.3389/fpls.2019.00228.
  • Zhang H, Liu Z, Luo R, et al. Genome-wide characterization, identification and expression profile of MYB transcription factor gene family during abiotic and biotic stresses in mango (Mangifera indica). Plants. 2022;11:3141. doi: 10.3390/plants11223141.
  • Xu Z-S, Chen M, Li L-C, et al. Functions and application of the AP2/ERF transcription factor family in crop improvement. J Integr Plant Biol. 2011;53:570–585. doi: 10.1111/j.1744-7909.2011.01062.x.
  • Viswanath KK, Kuo SY, Tu CW, et al. The role of plant transcription factors in the fight against plant viruses. Int J Mol Sci. 2023;24:8433–8455. doi: 10.3390/ijms24098433.
  • Jofuku KD, den Boer BGW, Montagu MV, et al. Control of Arabidopsis flower and seed development by the homeotic gene Apetala2. Plant Cell. 1994;6:1211–1225. doi: 10.2307/3869820.
  • Feng K, Hou XL, Xing GM, et al. Advances in AP2/ERF super-family transcription factors in plant. Crit Rev Biotechnol. 2020;40:750–776. doi: 10.1080/07388551.2020.1768509.
  • Ma Z, Jin YM, Wu T, et al. OsDREB2B, an AP2/ERF transcription factor, negatively regulates plant height by conferring GA metabolism in rice. Front Plant Sci. 2022;13:1007811. doi: 10.3389/fpls.2022.1007811.
  • Sakuma Y, Liu Q, Dubouzet JG, et al. DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration- and cold-inducible gene expression. Biochem Biophys Res Commun. 2002;290:998–1009. doi: 10.1006/bbrc.2001.6299.
  • Nakano T, Suzuki K, Fujimura T, et al. Genome-wide analysis of the ERF gene family in Arabidopsis and rice. Plant Physiol. 2006;140:411–432. doi: 10.1104/pp.105.073783.
  • Chandler JW. Class VIIIb APETALA2 ethylene response factors in plant development. Trends Plant Sci. 2018;23:151–162. doi: 10.1016/j.tplants.2017.09.016.
  • Huang Q, Sun MH, Yuan TP, et al. The AP2/ERF transcription factor SmERF1L1 regulates the biosynthesis of tanshinones and phenolic acids in Salvia miltiorrhiza. Food Chem. 2019;274:368–375. doi: 10.1016/j.foodchem.2018.08.119.
  • Franco-Zorrilla JM, Lopez-Vidriero I, Carrasco JL, et al. DNA-binding specificities of plant transcription factors and their potential to define target genes. Proc Natl Acad Sci USA. 2014;111:2367–2372. doi: 10.1073/pnas.1316278111.
  • Song XM, Li Y, Hou XL. Genome-wide analysis of the AP2/ERF transcription factor superfamily in Chinese cabbage (Brassica rapa ssp pekinensis). BMC Genomics. 2013;14:573. doi: 10.1186/1471-2164-14-573.
  • Li H, Wang Y, Wu M, et al. Genome-wide identification of AP2/ERF transcription factors in cauliflower and expression profiling of the ERF family under salt and drought stresses. Front Plant Sci. 2017;8:946. doi: 10.3389/fpls.2017.00946.
  • Owji H, Hajiebrahimi A, Seradj H, et al. Identification and functional prediction of stress responsive AP2/ERF transcription factors in Brassica napus by genome-wide analysis. Comput Biol Chem. 2017;71:32–56. doi: 10.1016/j.compbiolchem.2017.09.004.
  • Srivastava R, Kumar R. The expanding roles of APETALA2/ethylene responsive factors and their potential applications in crop improvement. Brief Funct Genomics. 2018;18:240–254. doi: 10.1093/bfgp/elz001.
  • Agarwal PK, Gupta K, Lopato S, et al. Dehydration responsive element binding transcription factors and their applications for the engineering of stress tolerance. J Exp Bot. 2017;68:2135–2148. doi: 10.1093/jxb/erx118.
  • Kim NY, Jang YJ, Park OK. AP2/ERF family transcription factors ORA59 and RAP2.3 interact in the nucleus and function together in ethylene response (vol 9, 1675, 2018). Front Plant Sci. 2019;10:42. doi: 10.3389/fpls.2019.00042.
  • Shi H, Tan DX, Reiter RJ, et al. Melatonin induces class A1 heat-shock factors (HSFA1s) and their possible involvement of thermotolerance in Arabidopsis. J Pineal Res. 2015;58:335–342. doi: 10.1111/jpi.12219.
  • Zhang LX, Li ZF, Quan RD, et al. An AP2 domain-containing gene, ESE1, targeted by the ethylene signaling component EIN3 is important for the salt response in Arabidopsis. Plant Physiol. 2011;157:854–865. doi: 10.1104/pp.111.179028.
  • Zhang Y, Ji AJ, Xu ZC, et al. The AP2/ERF transcription factor SmERF128 positively regulates diterpenoid biosynthesis in Salvia miltiorrhiza. Plant Mol Biol. 2019;100:83–93. doi: 10.1007/s11103-019-00845-7.
  • Matsukura S, Mizoi J, Yoshida T, et al. Comprehensive analysis of rice DREB2-type genes that encode transcription factors involved in the expression of abiotic stress-responsive genes. Mol Genet Genomics. 2010;283:185–196. doi: 10.1007/s00438-009-0506-y.
  • Qin F, Kakimoto M, Sakuma Y, et al. Regulation and functional analysis of ZmDREB2A in response to drought and heat stresses in Zea mays L. Plant J. 2007;50:54–69. doi: 10.1111/j.1365-313X.2007.03034.x.
  • Egawa C, Kobayashi F, Ishibashi M, et al. Differential regulation of transcript accumulation and alternative splicing of a DREB2 homolog under abiotic stress conditions in common wheat. Genes Genet Syst. 2006;81:77–91. doi: 10.1266/ggs.81.77.
  • Xue GP, Loveridge CW. HvDRF1 is involved in abscisic acid-mediated gene regulation in barley and produces two forms of AP2 transcriptional activators, interacting preferably with a CT-rich element. Plant J. 2004;37:326–339. doi: 10.1046/j.1365-313x.2003.01963.x.
  • Kavas M, Kizildogan A, Gökdemir G, et al. Genome-Wide Investigation And Expression Analysis Of AP2-ERF Gene Family In Salt Tolerant Common Bean [J]. Excli J. 2015;14:1187–1206. doi: 10.17179/excli2015-600.
  • Feng CZ, Chen Y, Wang C, et al. Arabidopsis RAV1 transcription factor, phosphorylated by SnRK2 kinases, regulates the expression of ABI3, ABI4, and ABI5 during seed germination and early seedling development. Plant J. 2014;80:654–668. doi: 10.1111/tpj.12670.
  • Bethke G, Unthan T, Uhrig JF, et al. Flg22 regulates the release of an ethylene response factor substrate from MAP kinase 6 in Arabidopsis thaliana via ethylene signaling [J]. Proc Natl Acad Sci USA. 2009;106:8067–8072. doi: 10.1073/pnas.0810206106.
  • Meng X, Xu J, He Y, et al. Phosphorylation of an ERF transcription factor by Arabidopsis MPK3/MPK6 regulates plant defense gene induction and fungal resistance. Plant Cell. 2013;25:1126–1142. doi: 10.1105/tpc.112.109074.
  • Mizoi J, Kanazawa N, Kidokoro S, et al. Heat-induced inhibition of phosphorylation of the stress-protective transcription factor DREB2A promotes thermotolerance of Arabidopsis thaliana. J Biol Chem. 2019;294:902–917. doi: 10.1074/jbc.RA118.002662.
  • Qin F, Sakuma Y, Tran LSP, et al. Arabidopsis DREB2A-interacting proteins function as RING E3 ligases and negatively regulate plant drought stress-responsive gene expression. Plant Cell. 2008;20:1693–1707. doi: 10.1105/tpc.107.057380.
  • Cheng MC, Hsieh EJ, Chen JH, et al. Arabidopsis RGLG2, functioning as a RING E3 ligase, interacts with AtERF53 and negatively regulates the plant drought stress response (vol 158, pg 363, 2012). Plant Physiol. 2016;158:363–375. doi: 10.1104/pp.111.189738.
  • Papdi C, Pérez-Salamó I, Joseph MP, et al. The low oxygen, oxidative and osmotic stress responses synergistically act through the ethylene response factor VII genes RAP2.12, RAP2.2 and RAP2.3. Plant J. 2015;82:772–784. doi: 10.1111/tpj.12848.
  • Avramova Z. Defence-related priming and responses to recurring drought: two manifestations of plant transcriptional memory mediated by the ABA and JA signalling pathways. Plant Cell Environ. 2019;42:983–997. doi: 10.1111/pce.13458.
  • Xiong R, Chu Z, Peng X, et al. Transcript-wide identification and expression pattern analysis to comprehend the roles of AP2/ERF genes under development and abiotic stress in Trichosanthes kirilowii. BMC Plant Biol. 2023;23:354. doi: 10.1186/s12870-023-04362-0.
  • Zhao Y, Wei T, Yin KQ, et al. Arabidopsis RAP2.2 plays an important role in plant resistance to Botrytis cinerea and ethylene responses. New Phytol. 2012;195:450–460. doi: 10.1111/j.1469-8137.2012.04160.x.
  • Sun S, Yu JP, Chen F, et al. TINY, a dehydration-responsive element (DRE)-binding protein-like transcription factor connecting the DRE- and ethylene-responsive element-mediated signaling pathways in Arabidopsis. J Biol Chem. 2008;283:6261–6271. doi: 10.1074/jbc.M706800200.
  • Yang S, Wang S, Liu X, et al. Four divergent Arabidopsis ethylene-responsive element-binding factor domains bind to a target DNA motif with a universal CG step core recognition and different flanking bases preference. Febs J. 2009;276:7177–7186. doi: 10.1111/j.1742-4658.2009.07428.x.
  • Lee SY, Hwang EY, Seok HY, et al. Arabidopsis AtERF71/HRE2 functions as transcriptional activator via cis-acting GCC box or DRE/CRT element and is involved in root development through regulation of root cell expansion. Plant Cell Rep. 2015;34:223–231. doi: 10.1007/s00299-014-1701-9.
  • Zhu D, Wu Z, Cao G, et al. TRANSLUCENT GREEN, an ERF family transcription factor, controls water balance in Arabidopsis by activating the expression of aquaporin genes. Mol Plant. 2014;7:601–615. doi: 10.1093/mp/sst152.
  • Welsch R, Maass D, Voegel T, et al. Transcription factor RAP2.2 and its interacting partner SINAT2: stable elements in the carotenogenesis of Arabidopsis leaves. Plant Physiol. 2007;145:1073–1085. doi: 10.1104/pp.107.104828.
  • Chen HY, Hsieh EJ, Cheng MC, et al. ORA47 (octadecanoid-responsive AP2/ERF-domain transcription factor 47) regulates jasmonic acid and abscisic acid biosynthesis and signaling through binding to a novel cis-element. New Phytol. 2016;211:599–613. doi: 10.1111/nph.13914.
  • Gasch P, Fundinger M, Müller JT, et al. Redundant ERF-VII transcription factors bind to an evolutionarily conserved cis-motif to regulate hypoxia-responsive gene expression in Arabidopsis. Plant Cell. 2016;28:160–180. doi: 10.1105/tpc.15.00866.
  • Causier B, Ashworth M, Guo W, et al. The TOPLESS interactome: a framework for gene repression in Arabidopsis. Plant Physiol. 2012;158:423–438. doi: 10.1104/pp.111.186999.
  • Song CP, Agarwal M, Ohta M, et al. Role of an Arabidopsis AP2/EREBP-type transcriptional repressor in abscisic acid and drought stress responses. Plant Cell. 2005;17:2384–2396. doi: 10.1105/tpc.105.033043.
  • Song CP, Galbraith DW. AtSAP18, an orthologue of human SAP18, is involved in the regulation of salt stress and mediates transcriptional repression in Arabidopsis. Plant Mol Biol. 2006;60:241–257. doi: 10.1007/s11103-005-3880-9.
  • Xing XJ, Jiang JF, Huang YY, et al. The constitutive expression of a chrysanthemum ERF transcription factor influences flowering time in Arabidopsis thaliana. Mol Biotechnol. 2019;61:20–31. doi: 10.1007/s12033-018-0134-z.
  • Long L, Yang WW, Liao P, et al. Transcriptome analysis reveals differentially expressed ERF transcription factors associated with salt response in cotton. Plant Sci. 2019;281:72–81. doi: 10.1016/j.plantsci.2019.01.012.
  • Jiang M, Ye ZH, Zhang HJ, et al. Broccoli plants over-expressing an ERF transcription factor gene BoERF1 facilitates both salt stress and sclerotinia stem rot resistance. J Plant Growth Regul. 2019;38:1–13. doi: 10.1007/s00344-018-9799-6.
  • Wu Y, Li X, Zhang J, et al. ERF subfamily transcription factors and their function in plant responses to abiotic stresses. Front Plant Sci. 2022;13:1042084. doi: 10.3389/fpls.2022.1042084.
  • Khoudi H. SHINE clade of ERF transcription factors: a significant player in abiotic and biotic stress tolerance in plants. Plant Physiol Biochem. 2023;195:77–88. doi: 10.1016/j.plaphy.2022.12.030.
  • Djemal R, Mila I, Bouzayen M, et al. Molecular cloning and characterization of novel WIN1/SHN1 ethylene responsive transcription factor HvSHN1 in barley (Hordeum vulgare L.). J Plant Physiol. 2018;228:39–46. doi: 10.1016/j.jplph.2018.04.019.
  • Lv K, Li J, Zhao K, et al. Overexpression of an AP2/ERF family gene, BpERF13, in birch enhances cold tolerance through upregulating CBF genes and mitigating reactive oxygen species. Plant Sci. 2020;292:110375. doi: 10.1016/j.plantsci.2019.110375.
  • Hu Z, Huang X, Amombo E, et al. The ethylene responsive factor CdERF1 from bermudagrass (Cynodon dactylon) positively regulates cold tolerance. Plant Sci. 2020;294:110432. doi: 10.1016/j.plantsci.2020.110432.
  • Huang Q, Qian X, Jiang T, et al. Effect of eugenol fumigation treatment on chilling injury and CBF gene expression in eggplant fruit during cold storage. Food Chem. 2019;292:143–150. doi: 10.1016/j.foodchem.2019.04.048.
  • Kashyap P, Deswal R. Two ICE isoforms showing differential transcriptional regulation by cold and hormones participate in Brassica juncea cold stress signaling. Gene. 2019;695:32–41. doi: 10.1016/j.gene.2019.02.005.
  • Luo C, Liu H, Ren J, et al. Cold-inducible expression of an Arabidopsis thaliana AP2 transcription factor gene, AtCRAP2, promotes flowering under unsuitable low-temperatures in chrysanthemum. Plant Physiol Biochem. 2020;146:220–230. doi: 10.1016/j.plaphy.2019.11.022.
  • Wang G, Xu X, Wang H, et al. A tomato transcription factor, SlDREB3 enhances the tolerance to chilling in transgenic tomato. Plant Physiol Biochem. 2019;142:254–262. doi: 10.1016/j.plaphy.2019.07.017.
  • Zhang X, Yu J, Wang R, et al. Genome-wide identification and expression profiles of C-repeat binding factor transcription factors in Betula platyphylla under abiotic stress. Int J Mol Sci. 2023;24:10573. doi: 10.3390/ijms241310573.
  • Yu F, Liang K, Fang T, et al. A group VII ethylene response factor gene, ZmEREB180, coordinates waterlogging tolerance in maize seedlings. Plant Biotechnol J. 2019;17:2286–2298. doi: 10.1111/pbi.13140.
  • Liu K, Yang Q, Yang T, et al. Transcriptome-based identification and expression profiling of AP2/ERF members in Caragana intermedia and functional analysis of CiDREB3. Mol Biol Rep. 2021;48:7953–7965. doi: 10.1007/s11033-021-06826-8.
  • Xie Z, Nolan T, Jiang H, et al. The AP2/ERF transcription factor TINY modulates brassinosteroid-regulated plant growth and drought responses in Arabidopsis. Plant Cell. 2019;31:1788–1806. doi: 10.1105/tpc.18.00918.
  • Jung SE, Bang SW, Kim SH, et al. Overexpression of OsERF83, a vascular tissue-specific transcription factor gene, confers drought tolerance in rice. Int J Mol Sci. 2021;22:7656. doi: 10.3390/ijms22147656.
  • Wang Z, Zhao X, Ren Z, et al. ZmERF21 directly regulates hormone signaling and stress-responsive gene expression to influence drought tolerance in maize seedlings. Plant Cell Environ. 2022;45:312–328. doi: 10.1111/pce.14243.
  • Yang SU, Kim H, Kim RJ, et al. AP2/DREB transcription factor RAP2.4 activates cuticular Wax biosynthesis in Arabidopsis leaves under drought. Front Plant Sci. 2020;11:895. doi: 10.3389/fpls.2020.00895.
  • Du X, Li W, Sheng L, et al. Over-expression of chrysanthemum CmDREB6 enhanced tolerance of chrysanthemum to heat stress. BMC Plant Biol. 2018;18:178. doi: 10.1186/s12870-018-1400-8.
  • Chen JQ, Dong Y, Wang YJ, et al. An AP2/EREBP-type transcription-factor gene from rice is cold-inducible and encodes a nuclear-localized protein. Theor Appl Genet. 2003;107:972–979. doi: 10.1007/s00122-003-1346-5.
  • Feng W, Li J, Long S, et al. A DREB1 gene from zoysiagrass enhances Arabidopsis tolerance to temperature stresses without growth inhibition. Plant Sci. 2019;278:20–31. doi: 10.1016/j.plantsci.2018.10.009.
  • Lu L, Qanmber G, Li J, et al. Identification and characterization of the ERF subfamily B3 group revealed GhERF13.12 improves salt tolerance in upland cotton. Front Plant Sci. 2021;12:705883. doi: 10.3389/fpls.2021.705883.
  • Wang C, Wang H, Zhang J, et al. A seed-specific AP2-domain transcription factor from soybean plays a certain role in regulation of seed germination. Sci China C Life Sci. 2008;51:336–345. doi: 10.1007/s11427-008-0044-6.
  • Qu Y, Nong Q, Jian S, et al. An AP2/ERF gene, HuERF1, from Pitaya (Hylocereus undatus) positively regulates salt tolerance. Int J Mol Sci. 2020;21:4586. doi: 10.3390/ijms21134586.
  • Tang Y, Liu K, Zhang J, et al. JcDREB2, a Physic Nut AP2/ERF gene, alters plant growth and salinity stress responses in transgenic rice. Front Plant Sci. 2017;8:306. doi: 10.3389/fpls.2017.00306.
  • Sun ZM, Zhou ML, Xiao XG, et al. Genome-wide analysis of AP2/ERF family genes from Lotus corniculatus shows LcERF054 enhances salt tolerance. Funct Integr Genomics. 2014;14:453–466. doi: 10.1007/s10142-014-0372-5.
  • Hong Y, Wang H, Gao Y, et al. ERF transcription factor OsBIERF3 positively contributes to immunity against fungal and bacterial diseases but negatively regulates cold tolerance in rice. Int J Mol Sci. 2022;23:606. doi: 10.3390/ijms23020606.
  • Zang Z, Lv Y, Liu S, et al. A novel ERF transcription factor, ZmERF105, positively regulates maize resistance to Exserohilum turcicum. Front Plant Sci. 2020;11:850. doi: 10.3389/fpls.2020.00850.
  • Hawku MD, Goher F, Islam MA, et al. TaAP2-15, An AP2/ERF transcription factor, is positively involved in wheat resistance to Puccinia striiformis f. sp. tritici. Int J Mol Sci. 2021;22:2080. doi: 10.3390/ijms22042080.
  • Li D, Liu X, Shu L, et al. Global analysis of the AP2/ERF gene family in rose (Rosa chinensis) genome unveils the role of RcERF099 in Botrytis resistance. BMC Plant Biol. 2020;20:533. doi: 10.1186/s12870-020-02740-6.
  • Giri MK, Swain S, Gautam JK, et al. The Arabidopsis thaliana At4g13040 gene, a unique member of the AP2/EREBP family, is a positive regulator for salicylic acid accumulation and basal defense against bacterial pathogens. J Plant Physiol. 2014;171:860–867. doi: 10.1016/j.jplph.2013.12.015.
  • Lu X, Zhang L, Zhang F, et al. AaORA, a trichome-specific AP2/ERF transcription factor of Artemisia annua, is a positive regulator in the artemisinin biosynthetic pathway and in disease resistance to Botrytis cinerea. New Phytol. 2013;198:1191–1202. doi: 10.1111/nph.12207.
  • Gao H, Wu X, Yang X, et al. Silicon inhibits gummosis in peach via ethylene and PpERF-PpPG1 pathway. Plant Sci. 2022;322:111362. doi: 10.1016/j.plantsci.2022.111362.
  • Shoji T, Hashimoto T. Tobacco MYC2 regulates jasmonate-inducible nicotine biosynthesis genes directly and by way of the NIC2-locus ERF genes. Plant Cell Physiol. 2011;52:1117–1130. J doi: 10.1093/pcp/pcr063.
  • Yang H, Sun Y, Wang H, et al. Genome-wide identification and functional analysis of the ERF2 gene family in response to disease resistance against Stemphylium lycopersici in tomato. BMC Plant Biol. 2021;21:72. doi: 10.1186/s12870-021-02848-3.
  • Wang L, Liu W, Wang Y. Heterologous expression of Chinese wild grapevine VqERFs in Arabidopsis thaliana enhance resistance to Pseudomonas syringae pv. tomato DC3000 and to Botrytis cinerea. Plant Sci. 2020;293:110421. doi: 10.1016/j.plantsci.2020.110421.
  • Liu D, Chen X, Liu J, et al. The rice ERF transcription factor OsERF922 negatively regulates resistance to Magnaporthe oryzae and salt tolerance. J Exp Bot. 2012;63:3899–3911. doi: 10.1093/jxb/ers079.
  • Tian Z, He Q, Wang H, et al. The potato ERF transcription factor StERF3 negatively regulates resistance to Phytophthora infestans and salt tolerance in potato. Plant Cell Physiol. 2015;56:992–1005. doi: 10.1093/pcp/pcv025.
  • Huang PY, Zhang J, Jiang B, et al. NINJA-associated ERF19 negatively regulates Arabidopsis pattern-triggered immunity. J Exp Bot. 2019;70:1033–1047. doi: 10.1093/jxb/ery414.
  • Debbarma J, Sarki YN, Saikia B, et al. Ethylene response factor (ERF) family proteins in abiotic stresses and CRISPR-Cas9 genome editing of ERFs for multiple abiotic stress tolerance in crop plants: a review. Mol Biotechnol. 2019;61:153–172. doi: 10.1007/s12033-018-0144-x.
  • VAN DEN Broeck L, Dubois M, Vermeersch M, et al. From network to phenotype: the dynamic wiring of an Arabidopsis transcriptional network induced by osmotic stress. Mol Syst Biol. 2017;13:961. doi: 10.15252/msb.20177840.
  • Nolan T, Chen J, Yin Y. Cross-talk of Brassinosteroid signaling in controlling growth and stress responses. Biochem J. 2017;474:2641–2661. doi: 10.1042/BCJ20160633.
  • Bechtold U, Field B. Molecular mechanisms controlling plant growth during abiotic stress. J Exp Bot. 2018;69:2753–2758. doi: 10.1093/jxb/ery157.
  • Liu J, Shi Y, Yang S. Insights into the regulation of C-repeat binding factors in plant cold signaling. J Integr Plant Biol. 2018;60:780–795. doi: 10.1111/jipb.12657.
  • Han Y, Cai M, Zhang S, et al. Genome-Wide Identification of AP2/ERF transcription factor family and functional analysis of DcAP2/ERF96 associated with abiotic stress in Dendrobium catenatum. Int J Mol Sci. 2022;23:21.
  • Peng YL, Wang YS, Fei J, et al. Isolation and expression analysis of two novel C-repeat binding factor (CBF) genes involved in plant growth and abiotic stress response in mangrove Kandelia obovata. Ecotoxicology. 2020;29:718–725. doi: 10.1007/s10646-020-02219-y.
  • Hu X, Liang J, Wang W, et al. Comprehensive genome-wide analysis of the DREB gene family in Moso bamboo (Phyllostachys edulis): evidence for the role of PeDREB28 in plant abiotic stress response. Plant J. 2023;116:1248–1270. doi: 10.1111/tpj.16420.
  • Zhang Y, Xia P. The DREB transcription factor, a biomacromolecule, responds to abiotic stress by regulating the expression of stress-related genes. Int J Biol Macromol. 2023;243:125231. doi: 10.1016/j.ijbiomac.2023.125231.
  • Wang D, Cui B, Guo H, et al. Genome-wide identification and expression analysis of the CBF transcription factor family in Lolium perenne under abiotic stress. Plant Signal Behav. 2022;18:2086733. doi: 10.1080/15592324.2022.2086733.
  • Hu Z, Ban Q, Hao J, et al. Genome-wide characterization of the C-repeat binding factor (CBF) gene family involved in the response to abiotic stresses in tea plant (Camellia sinensis). Front Plant Sci. 2020;11:921. doi: 10.3389/fpls.2020.00921.
  • Dong CJ, Liu JY. The Arabidopsis EAR-motif-containing protein RAP2.1 functions as an active transcriptional repressor to keep stress responses under tight control. BMC Plant Biol. 2010;10:47. doi: 10.1186/1471-2229-10-47.
  • Wu Y, Zhang L, Nie L, et al. Genome-wide analysis of the DREB family genes and functional identification of the involvement of BrDREB2B in abiotic stress in wucai (Brassica campestris L.). BMC Genomics. 2022;23:598. doi: 10.1186/s12864-022-08812-1.
  • Ren M, Wang Z, Xue M, et al. Correction: constitutive expression of an A-5 subgroup member in the DREB transcription factor subfamily from Ammopiptanthus mongolicus enhanced abiotic stress tolerance and anthocyanin accumulation in transgenic Arabidopsis. PLoS One. 2019;14:e0227290. doi: 10.1371/journal.pone.0227290.
  • Karaba A, Dixit S, Greco R, et al. Improvement of water use efficiency in rice by expression of HARDY, an Arabidopsis drought and salt tolerance gene. Proc Natl Acad Sci USA. 2007;104:15270–15275. doi: 10.1073/pnas.0707294104.
  • Dubouzet JG, Sakuma Y, Ito Y, et al. OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought-, high-salt- and cold-responsive gene expression. Plant J. 2003;33:751–763. doi: 10.1046/j.1365-313x.2003.01661.x.
  • Niu X, Luo T, Zhao H, et al. Identification of wheat DREB genes and functional characterization of TaDREB3 in response to abiotic stresses. Gene. 2020;740:144514. doi: 10.1016/j.gene.2020.144514.
  • Liang YS, Ermawati N, Cha JY, et al. Overexpression of an AP2/ERF-type transcription factor CRF5 confers pathogen resistance to arabidopsis plants. J Korean Soc Appl Biol Chem. 2010;53:142–148. doi: 10.3839/jksabc.2010.024.
  • Rashotte AM, Goertzen LR. The CRF domain defines cytokinin response factor proteins in plants. BMC Plant Biol. 2010;10:74–74. doi: 10.1186/1471-2229-10-74.
  • Bui L T, Giuntoli B, Kosmacz M, et al. Constitutively expressed ERF-VII transcription factors redundantly activate the core anaerobic response in Arabidopsis thaliana. Plant Sci. 2015;236:37–43. doi: 10.1016/j.plantsci.2015.03.008.
  • Yao Y, He RJ, Xie QL, et al. ETHYLENE RESPONSE FACTOR 74 (ERF74) plays an essential role in controlling a respiratory burst oxidase homolog D (RbohD)-dependent mechanism in response to different stresses in Arabidopsis. New Phytol. 2017;213:1667–1681. doi: 10.1111/nph.14278.
  • Mittal A, Jiang YW, Ritchie GL, et al. AtRAV1 and AtRAV2 overexpression in cotton increases fiber length differentially under drought stress and delays flowering. Plant Sci. 2015;241:78–95. doi: 10.1016/j.plantsci.2015.09.013.
  • Klay I, Gouia S, Liu M, et al. Ethylene response factors (ERF) are differentially regulated by different abiotic stress types in tomato plants. Plant Sci. 2018;274:137–145. doi: 10.1016/j.plantsci.2018.05.023.
  • Sun XH, Yu G, Li JT, et al. AcERF2, an ethylene-responsive factor of Atriplex canescens, positively modulates osmotic and disease resistance in Arabidopsis thaliana. Plant Sci. 2018;274:32–43. doi: 10.1016/j.plantsci.2018.05.004.
  • Tezuka D, Kawamata A, Kato H, et al. The rice ethylene response factor OsERF83 positively regulates disease resistance to Magnaporthe oryzae. Plant Physiol Biochem. 2019;135:263–271. doi: 10.1016/j.plaphy.2018.12.017.
  • Lai Y, Dang FF, Lin J, et al. Overexpression of a pepper CaERF5 gene in tobacco plants enhances resistance to Ralstonia solanacearum infection. Funct Plant Biol. 2014;41:758–767. doi: 10.1071/FP13305.
  • Liu AC, Cheng CP. Pathogen-induced ERF68 regulates hypersensitive cell death in tomato. Mol Plant Pathol. 2017;18:1062–1074. doi: 10.1111/mpp.12460.
  • Zhang G Y, Chen M, Li LC, et al. Overexpression of the soybean GmERF3 gene, an AP2/ERF type transcription factor for increased tolerances to salt, drought, and diseases in transgenic tobacco. J Exp Bot. 2009;60:3781–3796. doi: 10.1093/jxb/erp214.
  • Zuo KJ, Qin J, Zhao JY, et al. Over-expression GbERF2 transcription factor in tobacco enhances brown spots disease resistance by activating expression of downstream genes. Gene. 2007;391:80–90. doi: 10.1016/j.gene.2006.12.019.
  • Dong N, Liu X, Lu Y, et al. Overexpression of TaPIEP1, a pathogen-induced ERF gene of wheat, confers host-enhanced resistance to fungal pathogen Bipolaris sorokiniana. Funct Integr Genomics. 2010;10:215–226. doi: 10.1007/s10142-009-0157-4.
  • Li T, Tan DM, Liu Z, et al. Apple MdACS6 regulates ethylene biosynthesis during fruit development involving ethylene-responsive factor. Plant Cell Physiol. 2015;56:1909–1917. doi: 10.1093/pcp/pcv111.
  • Li XP, Zhu XY, Mao J, et al. Isolation and characterization of ethylene response factor family genes during development, ethylene regulation and stress treatments in papaya fruit. Plant Physiol Biochem. 2013;70:81–92. doi: 10.1016/j.plaphy.2013.05.020.
  • Mcgrath KC, Dombrecht B, Manners JM, et al. Repressor- and activator-type ethylene response factors functioning in jasmonate signaling and disease resistance identified via a genome-wide screen of Arabidopsis transcription factor gene expression. Plant Physiol. 2005;139:949–959. doi: 10.1104/pp.105.068544.
  • Pré M, Atallah M, Champion A, et al. The AP2/ERF domain transcription factor ORA59 integrates jasmonic acid and ethylene signals in plant defense. Plant Physiol. 2008;147:1347–1357. doi: 10.1104/pp.108.117523.
  • Oñate-Sánchez L, Anderson JP, Young J, et al. AtERF14, a member of the ERF family of transcription factors, plays a nonredundant role in plant defense. Plant Physiol. 2007;143:400–409. doi: 10.1104/pp.106.086637.
  • Xie W, Ding C, Hu H, et al. Molecular events of rice AP2/ERF transcription factors. Int J Mol Sci. 2022;23:12013. doi: 10.3390/ijms231912013.
  • Cao YF, Wu YF, Zheng Z, et al. Overexpression of the rice EREBP-like gene OsBIERF3 enhances disease resistance and salt tolerance in transgenic tobacco. Physiol Mol Plant P. 2005;67:202–211. doi: 10.1016/j.pmpp.2006.01.004.
  • Chen XJ, Guo ZJ. Tobacco OPBP1 enhances salt tolerance and disease resistance of transgenic rice. Int J Mol Sci. 2008;9:2601–2613. doi: 10.3390/ijms9122601.
  • Berrocal-Lobo M, Molina A. Ethylene response factor 1 mediates Arabidopsis resistance to the soilborne fungus Fusarium oxysporum. Mol Plant Microbe Interact. 2004;17:763–770. J doi: 10.1094/MPMI.2004.17.7.763.
  • Berrocal-Lobo M, Molina A, Solano R. Constitutive expression of ethylene-response-factor1 in Arabidopsis confers resistance to several necrotrophic fungi. Plant J. 2002;29:23–32. doi: 10.1046/j.1365-313x.2002.01191.x.
  • Gu YQ, Wildermuth MC, Chakravarthy S, et al. Tomato transcription factors Pti4, Pti5, and Pti6 activate defense responses when expressed in Arabidopsis. Plant Cell. 2002;14:817–831. doi: 10.1105/tpc.000794.
  • Wang H, Huang ZJ, Chen Q, et al. Ectopic overexpression of tomato JERF3 in tobacco activates downstream gene expression and enhances salt tolerance. Plant Mol Biol. 2004;55:183–192. doi: 10.1007/s11103-004-0113-6.
  • Mishra S, Phukan UJ, Tripathi V, et al. PsAP2 an AP2/ERF family transcription factor from Papaver somniferum enhances abiotic and biotic stress tolerance in transgenic tobacco. Plant Mol Biol. 2015;89:173–186. doi: 10.1007/s11103-015-0361-7.
  • Xu ZS, Xia LQ, Chen M, et al. Isolation and molecular characterization of the Triticum aestivum L. ethylene-responsive factor 1 (TaERF1) that increases multiple stress tolerance. Plant Mol Biol. 2007;65:719–732. doi: 10.1007/s11103-007-9237-9.
  • Gu C, Guo ZH, Hao PP, et al. Multiple regulatory roles of AP2/ERF transcription factor in angiosperm. Bot Stud. 2017;58:6. doi: 10.1186/s40529-016-0159-1.
  • Cao LL, Zhao SS, Yan W, et al. Natural compound spororium A protects tomato plants against Botrytis cinerea by priming the jasmonic acid pathways. Abstr Pap Am Chem S. 2018;256:278.
  • Hu ZJ, Shao SJ, Zheng CF, et al. Induction of systemic resistance in tomato against Botrytis cinerea by N-decanoyl-homoserine lactone via jasmonic acid signaling. Planta. 2018;247:1217–1227. doi: 10.1007/s00425-018-2860-7.
  • Nie PP, Li X, Wang SN, et al. Induced systemic resistance against Botrytis cinerea by Bacillus cereus AR156 through a JA/ET- and NPR1-dependent signaling pathway and activates PAMP-triggered immunity in Arabidopsis. Front Plant Sci. 2017;8:238. doi: 10.3389/fpls.2017.00238.
  • Feys BJ, Parker JE. Interplay of signaling pathways in plant disease resistance. Trends Genet. 2000;16:449–455. doi: 10.1016/s0168-9525(00)02107-7.
  • Zhang Z, Yao W, Dong N, et al. A novel ERF transcription activator in wheat and its induction kinetics after pathogen and hormone treatments. J Exp Bot. 2007;58:2993–3003. doi: 10.1093/jxb/erm151.
  • Alazem M, Lin NS. Roles of plant hormones in the regulation of host-virus interactions. Mol Plant Pathol. 2015;16:529–540. doi: 10.1111/mpp.12204.
  • Fischer U, Dröge-Laser W. Overexpression of NtERF5, a new member of the tobacco ethylene response transcription factor family enhances resistance to Tobacco mosaic virus. Mol Plant Microbe Interact. 2004;17:1162–1171. doi: 10.1094/MPMI.2004.17.10.1162.
  • Thara VK, Tang X, Gu YQ, et al. Pseudomonas syringae pv tomato induces the expression of tomato EREBP-like genes Pti4 and Pti5 independent of ethylene, salicylate and jasmonate. Plant J. 1999;20:475–483. doi: 10.1046/j.1365-313x.1999.00619.x.
  • He P, Warren RF, Zhao TH, et al. Overexpression of Pti5 in tomato potentiates pathogen-induced defense gene expression and enhances disease resistance to Pseudomonas syringae pv. tomato. Mol Plant Microbe Interact. 2001;14:1453–1457. doi: 10.1094/MPMI.2001.14.12.1453.
  • Wu CJ, Avila CA, Goggin FL. The ethylene response factor Pti5 contributes to potato aphid resistance in tomato independent of ethylene signalling. J Exp Bot. 2015;66:559–570. doi: 10.1093/jxb/eru472.
  • Tang Q, Zheng XD, Guo J, et al. Tomato SlPti5 plays a regulative role in the plant immune response against Botrytis cinerea through modulation of ROS system and hormone pathways. J Integr Agric. 2022;21:697–709. doi: 10.1016/S2095-3119(21)63630-4.
  • Wang Y, Feng G, Zhang Z, et al. Overexpression of Pti4, Pti5, and Pti6 in tomato promote plant defense and fruit ripening. Plant Sci. 2021;302:110702. doi: 10.1016/j.plantsci.2020.110702.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.