181
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Insight into recent advances in microalgae biogranulation in wastewater treatment

, , &
Received 01 Aug 2023, Accepted 22 Dec 2023, Published online: 14 Mar 2024

References

  • Wang C, Lan CQ. Effects of shear stress on microalgae – A review. Biotechnol Adv. 2018;36:986–1002. doi: 10.1016/j.biotechadv.2018.03.001.
  • Xiao Y, Shen Y, Ji B. Cultivation of microalgal-bacterial granular sludge from activated sludge via granule inoculation: performance and microbial community. J Cleaner Prod. 2022;380:134875. doi: 10.1016/j.jclepro.2022.134875.
  • Shekh A, Sharma A, Schenk PM, et al. Microalgae cultivation: photobioreactors, CO2 utilization, and value-added products of industrial importance. J Chem Technol Biotech. 2022;97:1064–1085. doi: 10.1002/jctb.6902.
  • Avtar R, Tripathi S, Aggarwal AK, et al. Population-urbanization-energy nexus: a review. Resources. 2019;8:136. doi: 10.3390/resources8030136.
  • Ahmad SFK, Ali UFM, Isa KM, et al. Evaluation of phenol formaldehyde resin synthesized from sugarcane bagasse bio-oil under optimized parameters. J Eng Sci Technol. 2022;17:1523–1531.
  • Miranda AM, Hernandez-Tenorio F, Ocampo D, et al. Trends on CO2 capture with microalgae: a bibliometric analysis. Molecules. 2022;27:4669. doi: 10.3390/molecules27154669.
  • Mondal S, Bera S, Mishra R, et al. Redefining the role of microalgae in industrial wastewater remediation. Energy Nexus. 2022;6:100088. doi: 10.1016/j.nexus.2022.100088.
  • Okoro V, Azimov U, Munoz J, et al. Microalgae cultivation and harvesting: growth performance and use of flocculants - A review. Renewable and sustainable energy reviews. Vol. 115. Amsterdam, Netherlands: Elsevier Inc.; 2019. doi: 10.1016/j.rser.2019.109364.
  • Singh G, Patidar SK. Microalgae harvesting techniques: a review. J Environ Manage. 2018;217:499–508. doi: 10.1016/j.jenvman.2018.04.010.
  • Tan JS, Lee SY, Chew KW, et al. A review on microalgae cultivation and harvesting, and their biomass extraction processing using ionic liquids. Bioengineered. 2020;11:116–129. doi: 10.1080/21655979.2020.1711626.
  • Ahmad SFK, Teong K, Vadivelu VM, Lee. Emerging trends of microalgae bio-granulation research in wastewater treatment: a bibliometric analysis from 2011 to 2023. Biocatal Agric Biotechnol. 2023;50:102684. doi: 10.1016/j.bcab.2023.102684.
  • Khatiwada JR, Guo H, Shrestha S, et al. Cultivation of microalgae in unsterile malting effluent for biomass production and lipid productivity improvement. Fermentation. 2022;8:186. doi: 10.3390/fermentation8040186.
  • Wollmann F, Dietze S, Ackermann J, et al. Microalgae wastewater treatment: biological and technological approaches. Eng Life Sci. 2019;19:860–871. doi: 10.1002/elsc.201900071.
  • Choi OK, Hendren Z, Kim GD, et al. Influence of activated sludge derived-extracellular polymeric substance (ASD-EPS) as bio-flocculation of microalgae for biofuel recovery. Algal Res. 2020;45:101736. doi: 10.1016/j.algal.2019.101736.
  • Molitor HR, Schaeffer AK, Schnoor JL. Sustainably cultivating and harvesting microalgae through sedimentation and forward osmosis using wastes. ACS Omega. 2021;6:17362–17371. doi: 10.1021/acsomega.1c01474.
  • Fazal T, Mushtaq A, Rehman F, et al. Bioremediation of textile wastewater and successive biodiesel production using microalgae. Renew Sustain Energy Rev. 2018;82:3107–3126. doi: 10.1016/j.rser.2017.10.029.
  • Caldwell GS, In-Na P, Hart R, et al. Immobilising microalgae and cyanobacteria as biocomposites: new opportunities to intensify algae biotechnology and bioprocessing. Energies. 2021;14:2566. doi: 10.3390/en14092566.
  • Kumar N, Banerjee C, Negi S, et al. Microalgae harvesting techniques: updates and recent technological interventions. Crit Rev Biotechnol. 2022;43:342–368. doi: 10.1080/07388551.2022.2031089.
  • Najjar YSH, Abu-Shamleh A. Harvesting of microalgae by centrifugation for biodiesel production: a review. Algal research. Vol. 51. Amsterdam, Netherlands: Elsevier Inc.; 2020. doi: 10.1016/j.algal.2020.102046.
  • Peleka EN, Gallios GP, Matis KA. A perspective on flotation: a review. J Chem Tech Biotech. 2018;93:615–623. doi: 10.1002/jctb.5486.
  • Roy M, Mohanty K. A comprehensive review on microalgal harvesting strategies: current status and future prospects. Algal research. Vol. 44. Amsterdam, Netherlands: Elsevier Inc.; 2019. doi: 10.1016/j.algal.2019.101683.
  • Yang L, Zhang H, Cheng S, et al. Enhanced microalgal harvesting using microalgae-derived extracellular polymeric substance as flocculation aid. ACS Sustain Chem Eng. 2020;8:4069–4075. doi: 10.1021/acssuschemeng.9b06156.
  • Zhu L, Li Z, Hiltunen E. Microalgae Chlorella vulgaris biomass harvesting by natural flocculant: effects on biomass sedimentation, spent medium recycling and lipid extraction. Biotechnol Biofuels. 2018;11:183. doi: 10.1186/s13068-018-1183-z.
  • Fasaei F, Bitter JH, Slegers PM, et al. Techno-economic evaluation of microalgae harvesting and dewatering systems. Algal Res. 2018;31:347–362. doi: 10.1016/j.algal.2017.11.038.
  • Dutta A, Davies C, Ikumi DS. Performance of upflow anaerobic sludge blanket (UASB) reactor and other anaerobic reactor configurations for wastewater treatment: a comparative review and critical updates. J Water Suppl Res Technol. 2018;67:858–884. doi: 10.2166/aqua.2018.090.
  • Thwaites BJ, Short MD, Stuetz RM, et al. Comparing the performance of aerobic granular sludge versus conventional activated sludge for microbial log removal and effluent quality: implications for water reuse. Water Res. 2018;145:442–452. doi: 10.1016/j.watres.2018.08.038.
  • Wilén BM, Liébana R, Persson F, et al. The mechanisms of granulation of activated sludge in wastewater treatment, its optimization, and impact on effluent quality. Applied microbiology and biotechnology. Vol. 102. Berlin, Germany: Springer Verlag; 2018. p. 5005–5020. doi: 10.1007/s00253-018-8990-9.
  • Zhang B, Wu L, Shi W, et al. A novel strategy for rapid development of a self-sustaining symbiotic algal-bacterial granular sludge: applying algal-mycelial pellets as nuclei. Water Res. 2022;214:118210. doi: 10.1016/j.watres.2022.118210.
  • Aditya L, Mahlia TMI, Nguyen LN, et al. Microalgae-bacteria consortium for wastewater treatment and biomass production. Science of the total environment. Vol. 838. Amsterdam, Netherlands: Elsevier Inc.; 2022. doi: 10.1016/j.scitotenv.2022.155871.
  • Zhang Y, Dong X, Liu S, et al. Rapid establishment and stable performance of a new algal-bacterial granule system from conventional bacterial aerobic granular sludge and preliminary analysis of mechanisms involved. J Water Process Eng. 2020;34:101073. doi: 10.1016/j.jwpe.2019.101073.
  • Rajitha K, Sarvajith M, Venugopalan VP, et al. Development and performance of halophilic microalgae-colonized aerobic granular sludge for treating seawater-based wastewater. Bioresour Technol Rep. 2020;11:100432. doi: 10.1016/j.biteb.2020.100432.
  • Zhao Z, Yang X, Cai W, et al. Response of algal-bacterial granular system to low carbon wastewater: focus on granular stability, nutrients removal and accumulation. Bioresour Technol. 2018;268:221–229. doi: 10.1016/j.biortech.2018.07.114.
  • Wang Q, Li H, Shen Q, et al. Biogranulation process facilitates cost-efficient resources recovery from microalgae-based wastewater treatment systems and the creation of a circular bioeconomy. Sci Total Environ. 2022;828:154471. doi: 10.1016/j.scitotenv.2022.154471.
  • Wang Q, Shen Q, Wang J, et al. Insight into the rapid biogranulation for suspended single-cell microalgae harvesting in wastewater treatment systems: focus on the role of extracellular polymeric substances. Chem Eng J. 2022;430:132631. doi: 10.1016/j.cej.2021.132631.
  • Babiak W, Krzemińska I. Extracellular polymeric substances (EPS) as microalgal bioproducts: a review of factors affecting EPS synthesis and application in flocculation processes. Energies. 2021;14:4007. doi: 10.3390/en14134007.
  • Tan X, Xie GJ, Nie WB, et al. High value-added biomaterials recovery from granular sludge-based wastewater treatment process. Resources, conservation and recycling. Vol. 169. Amsterdam, Netherlands: Elsevier Inc.; 2021. doi: 10.1016/j.resconrec.2021.105481.
  • Wang J, Lei Z, Wei Y, et al. Behavior of algal-bacterial granular sludge in a novel closed photo-sequencing batch reactor under no external O2 supply. Bioresour Technol. 2020;318:124190. doi: 10.1016/j.biortech.2020.124190.
  • Wang Q, Shen Q, Wang J, et al. Fast cultivation and harvesting of oil-producing microalgae Ankistrodesmus falcatus var. acicularis fed with anaerobic digestion liquor via biogranulation in addition to nutrients removal. Sci Total Environ. 2020;741:140183. doi: 10.1016/j.scitotenv.2020.140183.
  • Fallahi A, Rezvani F, Asgharnejad H, et al. Interactions of microalgae-bacteria consortia for nutrient removal from wastewater: a review. Chemosphere. Vol. 272. Amsterdam, Netherlands: Elsevier Inc.; 2021. doi: 10.1016/j.chemosphere.2021.129878.
  • Gobi K, Vadivelu VM. Dynamics of polyhydroxyalkanoate accumulation in aerobic granules during the growth-disintegration cycle. Bioresour Technol. 2015;196:731–735. doi: 10.1016/j.biortech.2015.07.083.
  • Zahra SA, Purba LDA, Abdullah N, et al. Characteristics of algal-bacterial aerobic granular sludge treating real wastewater: effects of algal inoculation and alginate-like exopolymers recovery. Chemosphere. 2023;329:138595. doi: 10.1016/j.chemosphere.2023.138595.
  • Devlin TR, di Biase A, Kowalski M, et al. Granulation of activated sludge under low hydrodynamic shear and different wastewater characteristics. Bioresour Technol. 2017;224:229–235. doi: 10.1016/j.biortech.2016.11.005.
  • Huang W, Li B, Zhang C, et al. Effect of algae growth on aerobic granulation and nutrients removal from synthetic wastewater by using sequencing batch reactors. Bioresour Technol. 2015;179:187–192. doi: 10.1016/j.biortech.2014.12.024.
  • Costa OYA, Raaijmakers JM, Kuramae EE. Microbial extracellular polymeric substances: ecological function and impact on soil aggregation. Front Microbiol. 2018;9:1636. doi: 10.3389/fmicb.2018.01636.
  • Izadi P, Izadi P, Eldyasti A. Holistic insights into extracellular polymeric substance (EPS) in anammosx bacterial matrix and the potential sustainable biopolymer recovery: a review. Chemosphere. Vol. 274. Amsterdam, Netherlands: Elsevier Inc.; 2021. doi: 10.1016/j.chemosphere.2021.129703.
  • Karygianni L, Ren Z, Koo H, et al. Biofilm matrixome: extracellular components in structured microbial communities. Trends in microbiology. Vol. 28, Amsterdam, Netherlands: Elsevier Inc.; 2020. p. 668–681. doi: 10.1016/j.tim.2020.03.016.
  • di Martino P. Extracellular polymeric substances, a key element in understanding biofilm phenotype. AIMS Microbiol. 2018;4:274–288. doi: 10.3934/microbiol.2018.2.274.
  • Huang L, Jin Y, Zhou D, et al. A review of the role of extracellular polymeric substances (EPS) in wastewater treatment systems. Int J Environ Res Public Health. 2022;19:12191. doi: 10.3390/ijerph191912191.
  • Oliveira AS, Alves M, Leitão F, et al. Bioremediation of coastal aquaculture effluents spiked with florfenicol using microalgae-based granular sludge – a promising solution for recirculating aquaculture systems. Water Res. 2023;233:119733. doi: 10.1016/j.watres.2023.119733.
  • Hakim MA, Sevillano K, Ewerts H, et al. Development of microalgal-bacterial aerobic granules for ammonium removal from wastewater in a photo sequencing batch reactor. Mater Today Proc. 2023;77:209–216. doi: 10.1016/j.matpr.2022.11.263.
  • Geng M, Ma F, Guo H, et al. Enhanced aerobic sludge granulation in a Sequencing Batch Reactor (SBR) by applying mycelial pellets. J Cleaner Prod. 2020;274:123037. doi: 10.1016/j.jclepro.2020.123037.
  • Kim NK, Mao N, Lin R, et al. Flame retardant property of flax fabrics coated by extracellular polymeric substances recovered from both activated sludge and aerobic granular sludge. Water Res. 2020;170:115344. doi: 10.1016/j.watres.2019.115344.
  • Kent TR, Bott CB, Wang ZW. State of the art of aerobic granulation in continuous flow bioreactors. Biotechnol Adv. 2018;36:1139–1166. doi: 10.1016/j.biotechadv.2018.03.015.
  • Sun Y, Angelotti B, Brooks M, et al. Feast/famine ratio determined continuous flow aerobic granulation. Sci Total Environ. 2021;750:141467. doi: 10.1016/j.scitotenv.2020.141467.
  • Gobi K, Vadivelu VM. Aerobic dynamic feeding as a strategy for in situ accumulation of polyhydroxyalkanoate in aerobic granules. Bioresour Technol. 2014;161:441–445. doi: 10.1016/j.biortech.2014.03.104.
  • Vjayan T, Vadivelu VM. Effect of famine-phase reduced aeration on polyhydroxyalkanoate accumulation in aerobic granules. Bioresour Technol. 2017;245:970–976. doi: 10.1016/j.biortech.2017.09.038.
  • Li Z, Meng Q, Wan C, et al. Aggregation performance and adhesion behavior of microbes in response to feast/famine condition: rapid granulation of aerobic granular sludge. Environ Res. 2022;208:112780. doi: 10.1016/j.envres.2022.112780.
  • Zhang B, Guo Y, Lens PNL, et al. Effect of light intensity on the characteristics of algal-bacterial granular sludge and the role of N-acyl-homoserine lactone in the granulation. Sci Total Environ. 2019;659:372–383. doi: 10.1016/j.scitotenv.2018.12.250.
  • Zhang Y, Dong X, Nuramkhaan M, et al. Rapid granulation of aerobic granular sludge: A mini review on operation strategies and comparative analysis. Bioresour Technol Rep. 2019;7:100206. doi: 10.1016/j.biteb.2019.100206.
  • Kong Y, Liu YQ, Tay JH, et al. Aerobic granulation in sequencing batch reactors with different reactor height/diameter ratios. Enzyme Microb Technol. 2009;45:379–383. doi: 10.1016/j.enzmictec.2009.06.014.
  • Liu YQ, Kong Y, Tay JH, et al. Enhancement of start-up of pilot-scale granular SBR fed with real wastewater. Sep Purif Technol. 2011;82:190–196. doi: 10.1016/j.seppur.2011.09.014.
  • Trebuch LM, Oyserman BO, Janssen M, et al. Impact of hydraulic retention time on community assembly and function of photogranules for wastewater treatment. Water Res. 2020;173:115506. doi: 10.1016/j.watres.2020.115506.
  • Ji B, Zhang M, Gu J, et al. A self-sustaining synergetic microalgal-bacterial granular sludge process towards energy-efficient and environmentally sustainable municipal wastewater treatment. Water Res. 2020;179:115884. doi: 10.1016/j.watres.2020.115884.
  • Mathew MM, Khatana K, Vats V, et al. Biological approaches integrating algae and bacteria for the degradation of wastewater contaminants—A review. Front Microbiol. 2021;12:801051. doi: 10.3389/fmicb.2021.801051.
  • Oruganti RK, Katam K, Show PL, et al. A comprehensive review on the use of algal-bacterial systems for wastewater treatment with emphasis on nutrient and micropollutant removal. Bioengineered. 2022;13:10412–10453. doi: 10.1080/21655979.2022.2056823.
  • Zhang C, Li S, Ho SH. Converting nitrogen and phosphorus wastewater into bioenergy using microalgae-bacteria consortia: a critical review. Bioresour Technol. 2021;342:126056. doi: 10.1016/j.biortech.2021.126056.
  • Zhang M, Ji B, Liu Y. Microalgal-bacterial granular sludge process: a game changer of future municipal wastewater treatment. Science of the total environment. Vol. 752. Amsterdam, Netherlands: Elsevier Inc.; 2021. doi: 10.1016/j.scitotenv.2020.141957.
  • Zhang Z, Guo L, Liao Q, et al. Bacterial-algal coupling system for high strength mariculture wastewater treatment: effect of temperature on nutrient recovery and microalgae cultivation. Bioresour Technol. 2021;338:125574. doi: 10.1016/j.biortech.2021.125574.
  • Geremia E, Ripa M, Catone CM, et al. A review about microalgae wastewater treatment for bioremediation and biomass production—a new challenge for Europe. Environments. 2021;8:136. doi: 10.3390/environments8120136.
  • Iorhemen OT, Liu Y. Effect of feeding strategy and organic loading rate on the formation and stability of aerobic granular sludge. J Water Proc Eng. 2021;39:101709. doi: 10.1016/j.jwpe.2020.101709.
  • Mohsenpour SF, Hennige S, Willoughby N, et al. Integrating micro-algae into wastewater treatment: a review. Science of the total environment. Vol. 752. Amsterdam, Netherlands: Elsevier Inc.; 2021. doi: 10.1016/j.scitotenv.2020.142168.
  • Goh PS, Ahmad NA, Lim JW, et al. Microalgae-enabled wastewater remediation and nutrient recovery through membrane photobioreactors: recent achievements and future perspective. Membranes (Basel). 2022;12:1094. doi: 10.3390/membranes12111094.
  • Al-Jabri H, Das P, Khan S, et al. Treatment of wastewaters by microalgae and the potential applications of the produced biomass—a review. Water (Switzerland). 2020;13:27. doi: 10.3390/w13010027.
  • Sátiro J, Cunha A, Gomes AP, et al. Optimization of microalgae–bacteria consortium in the treatment of paper pulp wastewater. Appl Sci. 2022;12:5799. doi: 10.3390/app12125799.
  • Lee YJ, Lei Z. Microalgal-bacterial aggregates for wastewater treatment: a mini-review. Bioresource technology reports. Vol. 8. Amsterdam, Netherlands: Elsevier Inc.; 2019. doi: 10.1016/j.biteb.2019.100199.
  • Quijano G, Arcila JS, Buitrón G. Microalgal-bacterial aggregates: applications and perspectives for wastewater treatment. Biotechnology advances. Vol. 35. Amsterdam, Netherlands: Elsevier Inc.; 2017. p. 772–781. doi: 10.1016/j.biotechadv.2017.07.003.
  • Rahimi S, Modin O, Mijakovic I. Technologies for biological removal and recovery of nitrogen from wastewater. Biotechnology advances. Vol. 43. Amsterdam, Netherlands: Elsevier Inc.; 2020. doi: 10.1016/j.biotechadv.2020.107570.
  • Ji B, Zhu L, Wang S, et al. Temperature-effect on the performance of non-aerated microalgal-bacterial granular sludge process in municipal wastewater treatment. J Environ Manage. 2021;282:111955. doi: 10.1016/j.jenvman.2021.111955.
  • Nguyen TTD, Bui XT, Nguyen TT, et al. Co-culture of microalgae-activated sludge in sequencing batch photobioreactor systems: effects of natural and artificial lighting on wastewater treatment. Bioresour Technol. 2022;343:126091. doi: 10.1016/j.biortech.2021.126091.
  • Purba LDA, Abdullah N, Yuzir A, et al. Rapid development of microalgae-bacteria granular sludge using low-strength domestic wastewater. J Water Environ Technol. 2021;19:96–107. doi: 10.2965/jwet.20-132.
  • Fan S, Ji B, Abu Hasan H, et al. Microalgal–bacterial granular sludge process for non-aerated aquaculture wastewater treatment. Bioprocess Biosyst Eng. 2021;44:1733–1739. doi: 10.1007/s00449-021-02556-0.
  • Ji B, Wang S, Silva MRU, et al. Microalgal-bacterial granular sludge for municipal wastewater treatment under simulated natural diel cycles: performances-metabolic pathways-microbial community nexus. Algal Res. 2021;54:102198. doi: 10.1016/j.algal.2021.102198.
  • Wang S, Ji B, Cui B, et al. Cadmium-effect on performance and symbiotic relationship of microalgal-bacterial granules. J Cleaner Prod. 2021;282:125383. doi: 10.1016/j.jclepro.2020.125383.
  • Wang S, Zhu L, Ji B, et al. Microalgal-bacterial granular sludge process in non-aerated municipal wastewater treatment under natural day-night conditions: performance and microbial community. Water (Switzerland). 2021;13:1479. doi: 10.3390/w13111479.
  • You X, Zhang Z, Guo L, et al. Integrating acidogenic fermentation and microalgae cultivation of bacterial-algal coupling system for mariculture wastewater treatment. Bioresour Technol. 2021;320:124335. doi: 10.1016/j.biortech.2020.124335.
  • Dong X, Zhao Z, Yang X, et al. Response and recovery of mature algal-bacterial aerobic granular sludge to sudden salinity disturbance in influent wastewater: granule characteristics and nutrients removal/accumulation. Bioresour Technol. 2021;321:124492. doi: 10.1016/j.biortech.2020.124492.
  • Huang W, Liu D, Huang W, et al. Achieving partial nitrification and high lipid production in an algal-bacterial granule system when treating low COD/NH4–N wastewater. Chemosphere. 2020;248:126106. doi: 10.1016/j.chemosphere.2020.126106.
  • Guo D, Zhang X, Shi Y, et al. Microalgal-bacterial granular sludge process outperformed aerobic granular sludge process in municipal wastewater treatment with less carbon dioxide emissions. Environ Sci Pollut Res Int. 2021;28:13616–13623. doi: 10.1007/s11356-020-11565-7.
  • Cai W, Zhao Z, Li D, et al. Algae granulation for nutrients uptake and algae harvesting during wastewater treatment. Chemosphere. 2019;214:55–59. doi: 10.1016/j.chemosphere.2018.09.107.
  • Meng F, Liu D, Huang W, et al. Effect of salinity on granulation, performance and lipid accumulation of algal-bacterial granular sludge. Bioresour Technol Rep. 2019;7:100228. doi: 10.1016/j.biteb.2019.100228.
  • Nuramkhaan M, Zhang Y, Dong X, et al. Isolation of microalgal strain from algal-bacterial aerobic granular sludge and examination on its contribution to granulation process during wastewater treatment in respect of nutrients removal, auto-aggregation capability and EPS excretion. Bioresour Technol Rep. 2019;8:100330. doi: 10.1016/j.biteb.2019.100330.
  • He Q, Chen L, Zhang S, et al. Natural sunlight induced rapid formation of water-born algal-bacterial granules in an aerobic bacterial granular photo-sequencing batch reactor. J Hazard Mater. 2018;359:222–230. doi: 10.1016/j.jhazmat.2018.07.051.
  • Liu L, Zeng Z, Bee M, et al. Characteristics and performance of aerobic algae-bacteria granular consortia in a photo-sequencing batch reactor. J Hazard Mater. 2018;349:135–142. doi: 10.1016/j.jhazmat.2018.01.059.
  • Zhang B, Lens PNL, Shi W, et al. Enhancement of aerobic granulation and nutrient removal by an algal–bacterial consortium in a lab-scale photobioreactor. Chem Eng J. 2018;334:2373–2382. doi: 10.1016/j.cej.2017.11.151.
  • Ye J, Liang J, Wang L, et al. Operation optimization of a photo-sequencing batch reactor for wastewater treatment: study on influencing factors and impact on symbiotic microbial ecology. Bioresour Technol. 2018;252:7–13. doi: 10.1016/j.biortech.2017.12.086.
  • González-Camejo J, Barat R, Pachés M, et al. Wastewater nutrient removal in a mixed microalga–bacteria culture: effect of light and temperature on the microalgae–bacteria competition. Environ Technol. 2018;39:503–515. doi: 10.1080/09593330.2017.1305001.
  • Leong WH, Lim JW, Lam MK, et al. Co-cultivation of activated sludge and microalgae for the simultaneous enhancements of nitrogen-rich wastewater bioremediation and lipid production. J Taiwan Inst Chem Eng. 2018;87:216–224. doi: 10.1016/j.jtice.2018.03.038.
  • Tiron O, Bumbac C, Manea E, et al. Overcoming microalgae harvesting barrier by activated algae granules. Sci Rep. 2017;7:4646. doi: 10.1038/s41598-017-05027-3.
  • Arcila JS, Buitrón G. Influence of solar irradiance levels on the formation of microalgae-bacteria aggregates for municipal wastewater treatment. Algal Res. 2017;27:190–197. doi: 10.1016/j.algal.2017.09.011.
  • Liu L, Fan H, Liu Y, et al. Development of algae-bacteria granular consortia in photo-sequencing batch reactor. Bioresour Technol. 2017;232:64–71. doi: 10.1016/j.biortech.2017.02.025.
  • Ahmad JSM, Cai W, Zhao Z, et al. Stability of algal-bacterial granules in continuous-flow reactors to treat varying strength domestic wastewater. Bioresour Technol. 2017;244:225–233. doi: 10.1016/j.biortech.2017.07.134.
  • Zhang C, Chen X, Han M, et al. Revealing the role of microalgae-bacteria niche for boosting wastewater treatment and energy reclamation in response to temperature. Environ Sci Ecotechnol. 2023;14:100230. doi: 10.1016/j.ese.2022.100230.
  • Remmas N, Manfe N, Zerva I, et al. A critical review on the microbial ecology of landfill leachate treatment systems. Sustainability. 2023;15:949. doi: 10.3390/su15020949.
  • Meng F, Xi L, Liu D, et al. Effects of light intensity on oxygen distribution, lipid production and biological community of algal-bacterial granules in photo-sequencing batch reactors. Bioresour Technol. 2019;272:473–481. doi: 10.1016/j.biortech.2018.10.059.
  • Ji B, Liu C. CO2 improves the microalgal-bacterial granular sludge towards carbon-negative wastewater treatment. Water Res. 2022;208:117865. doi: 10.1016/j.watres.2021.117865.
  • Sun P, Liu C, Li A, et al. Using carbon dioxide-added microalgal-bacterial granular sludge for carbon-neutral municipal wastewater treatment under outdoor conditions: performance, granule characteristics and environmental sustainability. Sci Total Environ. 2022;848:157657. doi: 10.1016/j.scitotenv.2022.157657.
  • Wang D, Li A. Effect of zero-valent iron and granular activated carbon on nutrient removal and community assembly of photogranules treating low-strength wastewater. Sci Total Environ. 2022;806:151311. doi: 10.1016/j.scitotenv.2021.151311.
  • Liu L, Gao DW, Zhang M, et al. Comparison of Ca2+ and Mg2+ enhancing aerobic granulation in SBR. J Hazard Mater. 2010;181:382–387. doi: 10.1016/j.jhazmat.2010.05.021.
  • Josephine A, Kumar TS, Surendran B, et al. Evaluating the effect of various environmental factors on the growth of the marine microalgae, Chlorella vulgaris. Front Mar Sci. 2022;9:954622. doi: 10.3389/fmars.2022.954622.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.