252
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Discovery and directed evolution of C–C bond formation enzymes for the biosynthesis of β-hydroxy-α-amino acids and derivatives

ORCID Icon, , , , , & show all
Received 24 Nov 2023, Accepted 16 Feb 2024, Published online: 02 Apr 2024

References

  • Zhang Y, Farrants H, Li X. Adding a functional handle to nature′s building blocks: the asymmetric synthesis of β-hydroxy-α-amino acids. Chem Asian J. 2014;9:1752–1764. doi: 10.1002/asia.201400111.
  • Lu B, Wu X, Li C, et al. Highly diastereo-and enantioselective access to syn-α-amido β-hydroxy esters via ruthenium-catalyzed dynamic kinetic resolution-asymmetric hydrogenation. J Org Chem. 2019;84:3201–3213.
  • Luo YC, Zhang HH, Wang Y, et al. Synthesis of α-amino acids based on chiral tricycloiminolactone derived from natural (+)-Camphor. Acc Chem Res. 2010;43:1317–1330. doi: 10.1021/ar100050p.
  • Najera C, Sansano JM. Catalytic asymmetric synthesis of α-amino acids. Chem Rev. 2007;107:4584–4671. doi: 10.1021/cr050580o.
  • Franz SE, Stewart JD. Threonine aldolases. Adv Appl Microbiol. 2014;88:57–101. doi: 10.1016/B978-0-12-800260-5.00003-6.
  • Fesko K. Threonine aldolases: perspectives in engineering and screening the enzymes with enhanced substrate and stereo specificities. Appl Microbiol Biotechnol. 2016;100:2579–2590. doi: 10.1007/s00253-015-7218-5.
  • Dückers N, Baer K, Simon S, et al. Threonine aldolases-screening, properties and applications in the synthesis of non-proteinogenic β-hydroxy-α-amino acids. Appl Microbiol Biotechnol. 2010;88:409–424. doi: 10.1007/s00253-010-2751-8.
  • Liu JQ, Dairi T, Itoh N, et al. Diversity of microbial threonine aldolases and their application. J Mol Catal B-Enzym. 2000;10:107–115. doi: 10.1016/S1381-1177(00)00118-1.
  • Misono H, Maeda H, Tuda K, et al. Characterization of an inducible phenylserine aldolase from Pseudomonas putida 24-1. Appl Environ Microbiol. 2005;71:4602–4609. doi: 10.1128/AEM.71.8.4602-4609.2005.
  • Fesko K, Reisinger C, Steinreiber J, et al. Four types of threonine aldolases: similarities and differences in kinetics/thermodynamics. J Mol Catal B-Enzym. 2008;52–53:19–26. doi: 10.1016/j.molcatb.2007.10.010.
  • Wang LC, Xu L, Xu XQ, et al. An l-threonine aldolase for asymmetric synthesis of β-hydroxy-α-amino acids. Chem Eng Sci. 2020;226:9.
  • Liu JQ, Dairi T, Kataoka M, et al. l-allo-threonine aldolase from Aeromonas jandaei DK-39: gene cloning, nucleotide sequencing, and identification of the pyridoxal 5'-phosphate-binding lysine residue by site-directed mutagenesis. J Bacteriol. 1997;179:3555–3560. doi: 10.1128/jb.179.11.3555-3560.1997.
  • Fesko K, Strohmeier GA, Breinbauer R. Expanding the threonine aldolase toolbox for the asymmetric synthesis of tertiary α-amino acids. Appl Microbiol Biot. 2015;99:1–11.
  • Barig S, Funke A, Merseburg A, et al. Dry entrapment of enzymes by epoxy or polyester resins hardened on different solid supports. Enzyme Microb Technol. 2014;60:47–55. doi: 10.1016/j.enzmictec.2014.03.013.
  • Zheng W, Yu H, Fang S, et al. Directed evolution of l-threonine aldolase for the diastereoselective synthesis of β-hydroxy-α-amino acids. ACS Catal. 2021;11:3198–3205. doi: 10.1021/acscatal.0c04949.
  • Zheng W, Chen K, Wang Z, et al. Construction of a highly diastereoselective aldol reaction system with l-threonine aldolase by computer-assisted rational molecular modification and medium engineering. Org Lett. 2020;22:5763–5767. doi: 10.1021/acs.orglett.0c01792.
  • Giger L, Toscano MD, Bouzon M, et al. A novel genetic selection system for PLP-dependent threonine aldolases. Tetrahedron. 2012;68:7549–7557. doi: 10.1016/j.tet.2012.05.097.
  • Zheng W, Pu Z, Xiao L, et al. Mutability-landscape-guided engineering of l-threonine aldolase revealing the prelog rule in mediating diastereoselectivity of C–C bond formation. Angew Chem Int Ed Engl. 2022;62:e202213855. doi: 10.1002/anie.202213855.
  • Liu JQ, Dairi T, Itoh N, et al. Gene cloning, biochemical characterization and physiological role of a thermostable low-specificity l-threonine aldolase from Escherichia coli. Eur J Biochem. 1998;255:220–226. doi: 10.1046/j.1432-1327.1998.2550220.x.
  • Zheng WL, Pu ZJ, Xiao LX, et al. Substrate access path-guided engineering of l-threonine aldolase for improving diastereoselectivity. Chem Commun. 2022;58:8258–8261. doi: 10.1039/d2cc02644a.
  • He Y, Li S, Wang J, et al. Discovery and engineering of the l-threonine aldolase from Neptunomonas marine for the efficient synthesis of β-hydroxy-α-amino acids via C-C formation. ACS Catal. 2023;13:7210–7220. doi: 10.1021/acscatal.3c00672.]
  • Liu JQ, Ito S, Dairi T, et al. Gene cloning, nucleotide sequencing, and purification and characterization of the low-specificity l-threonine aldolase from Pseudomonas sp. strain NCIMB 10558. Appl Environ Microbiol. 1998;64:549–554. doi: 10.1128/AEM.64.2.549-554.1998.
  • Liu JQ, Nagata S, Dairi T, et al. The GLY1 gene of Saccharomyces cerevisiae encodes a low-specific l-threonine aldolase that catalyzes cleavage of l-allo-threonine and l-threonine to glycine. Eur J Biochem. 1997;245:289–293. doi: 10.1111/j.1432-1033.1997.00289.x.
  • Baik SH, Yoshioka H. Enhanced synthesis of l-threo-3,4-dihydroxyphenylserine by high-density whole-cell biocatalyst of recombinant l-threonine aldolase from Streptomyces avelmitilis. Biotechnol Lett. 2009;31:443–448. doi: 10.1007/s10529-008-9885-0.
  • Balk S, Yoshioka H, Yukawa H, et al. Synthesis of l-threo-3,4-dihydroxyphenylserine (l-threo-DOPS) with thermostabilized low-specific l-threonine aldolase from Streptomyces coelicolor A3 (2). J Microbiol Biotechn. 2007;17:721–727.
  • Kielkopf CL, Burley SK. X-ray structures of threonine aldolase complexes: structural basis of substrate recognition. Biochemistry. 2002;41:11711–11720. doi: 10.1021/bi020393+.
  • Ligibel M, Moore C, Bruccoleri R, et al. Identification and application of threonine aldolase for synthesis of valuable α-amino, β-hydroxy-building blocks. Biochim Biophys Acta Proteins Proteom. 2020;1868:140323. doi: 10.1016/j.bbapap.2019.140323.
  • Zhao W, Yang B, Zha R, et al. A recombinant l-threonine aldolase with high diastereoselectivity in the synthesis of l-threo-dihydroxyphenylserine. Biochem Eng J. 2021;166:107852. doi: 10.1016/j.bej.2020.107852.
  • Li L, Zhang R, Xu Y, et al. Comprehensive screening strategy coupled with structure-guided engineering of l-threonine aldolase from Pseudomonas putida for enhanced catalytic efficiency towards l-threo-4-methylsulfonylphenylserine. Front Bioeng Biotech. 2023;11. doi: 10.3389/fbioe.2023.1117890.
  • Liu Y, Li F, Zhang X, et al. A fast and sensitive coupled enzyme assay for the measurement of l-threonine and application to high-throughput screening of threonine-overproducing strains. Enzyme Microb Technol. 2014;67:1–7. doi: 10.1016/j.enzmictec.2014.08.008.
  • Reisinger C, Van Assema F, Schurmann M, et al. A versatile colony assay based on NADH fluorescence. J Mol Catal B-Enzym. 2006;39:149–155. doi: 10.1016/j.molcatb.2006.01.014.
  • Bulut D, Gröger H, Hummel W. Development of a growth-dependent selection system for identification of l-threonine aldolases. Appl Microbiol Biot. 2015;99:1–9.
  • Lee SJ, Kang HY, Lee Y. High-throughput screening methods for selecting l-threonine aldolases with improved activity. J Mol Catal B-Enzym. 2003;26:265–272. doi: 10.1016/j.molcatb.2003.07.005.
  • Chen Q, Chen X, Feng J, et al. Improving and inverting Cβ-stereoselectivity of threonine aldolase via substrate-binding-guided mutagenesis and a stepwise visual screening. ACS Catal. 2019;9:4462–4469. doi: 10.1021/acscatal.9b00859.
  • Paiardini A, Contestabile R, D'Aguanno S, et al. Threonine aldolase and alanine racemase: novel examples of convergent evolution in the superfamily of vitamin B6-dependent enzymes. Biochim Biophys Acta. 2003;1647:214–219. doi: 10.1016/s1570-9639(03)00050-5.
  • Qin HM, Imai FL, Miyakawa T, et al. l-allo-Threonine aldolase with an H128Y/S292R mutation from Aeromonas jandaei DK-39 reveals the structural basis of changes in substrate stereoselectivity. Acta Crystallogr. 2014;70:1695–1703.
  • di Salvo ML, Remesh SG, Vivoli M, et al. On the catalytic mechanism and stereospecificity of Escherichia colil-threonine aldolase. Febs J. 2014;281:129–145. doi: 10.1111/febs.12581.
  • Rocha JF, Sousa SF, Cerqueira N. Computational studies devoted to the catalytic mechanism of threonine aldolase, a critical enzyme in the pharmaceutical industry to synthesize β-hydroxy-α-amino acids. ACS Catal. 2022;12:4990–4999. doi: 10.1021/acscatal.1c05567.
  • Liu J, Ito S, Dairi T, et al. Low-specificity l-threonine aldolase of Pseudomonas sp. NCIMB 10558: purification, characterization and its application to β-hydroxy-α-amino acid synthesis. Appl Microbiol Biot. 1998;49:702–708. doi: 10.1007/s002530051235.
  • Vassilev VP, Uchiyama T, Kajimoto T, et al. l-threonine aldolase in organic synthesis: preparation of novel β-hydroxy-α-amino acids. Tetrahedron Lett. 1995;36:4081–4084. doi: 10.1016/0040-4039(95)00720-W.
  • Kimura T, Vassilev VP, Shen G-J, et al. Enzymatic synthesis of β-hydroxy-α-amino acids based on recombinant d-and l-threonine aldolases. J Am Chem Soc. 1997;119:11734–11742. doi: 10.1021/ja9720422.
  • Steinreiber J, Fesko K, Reisinger C, et al. Threonine aldolases-an emerging tool for organic synthesis. Tetrahedron. 2007;63:918–926. doi: 10.1016/j.tet.2006.11.035.
  • Steinreiber J, Fesko K, Mayer C, et al. Synthesis of γ-halogenated and long-chain β-hydroxy-α-amino acids and 2-amino-1,3-diols using threonine aldolases. Tetrahedron. 2007;63:8088–8093. doi: 10.1016/j.tet.2007.06.013.
  • Beaudoin SF, Hanna MP, Ghiviriga I, et al. Progress in using threonine aldolases for preparative synthesis. Enzyme Microb Technol. 2018;119:1–9. doi: 10.1016/j.enzmictec.2018.07.004.
  • Fesko K, Uhl M, Steinreiber J, et al. Biocatalytic access to α,β-dialkyl-α-amino acids by a mechanism-based approach. Angew Chem Int Ed Engl. 2010;49:121–124. doi: 10.1002/anie.200904395.
  • Liu Z, Chen X, Chen Q, et al. Engineering of l-threonine aldolase for the preparation of 4-(methylsulfonyl)phenylserine, an important intermediate for the synthesis of florfenicol and thiamphenicol. Enzyme Microb Technol. 2020;137:109551. doi: 10.1016/j.enzmictec.2020.109551.
  • Wang LC, Xu L, Su BM, et al. I Improving the Cβ Stereoselectivity of l-threonine aldolase for the synthesis of l-threo-4-methylsulfonylphenylserine by modulating the substrate-binding pocket to control the orientation of the substrate entrance. Chemistry. 2021;27:9654–9660. doi: 10.1002/chem.202100752.
  • Wang LC, Xu L, Su BM, et al. An effective chemo-enzymatic method with an evolved l-threonine aldolase for preparing l-threo-4-methylsulfonylphenylserine ethyl ester of high optical purity. Mol Catal. 2022;525:112355. doi: 10.1016/j.mcat.2022.112355.
  • Gwon HJ, Baik SH. Diastereoselective synthesis of l-threo-3,4-dihydroxyphenylserine by low-specific l-threonine aldolase mutants. Biotechnol Lett. 2010;32:143–149. doi: 10.1007/s10529-009-0125-z.
  • Gwon HJ, Yoshioka H, Song NE, et al. Optimal production of l-threo-2,3-dihydroxyphenylserine (l-threo-DOPS) on a large scale by diastereoselectivity-enhanced variant of l-threonine aldolase expressed in Escherichia coli. Prep Biochem Biotechnol. 2012;42:143–154. doi: 10.1080/10826068.2011.583975.
  • Zha R, Lei B, Ma J, et al. Improving the Cβ stereoselectivity of l-threonine aldolase for the preparation of l-threo-3,4-dihydroxyphenylserine, a powerful anti-Parkinson’s disease drug. Biocheml Eng J. 2023;191:108766. doi: 10.1016/j.bej.2022.108766.
  • Gong L, Xiu Y, Dong J, et al. Sustainable one-pot chemo-enzymatic synthesis of chiral furan amino acid from biomass via magnetic solid acid and threonine aldolase. Bioresour Technol. 2021;337:125344. doi: 10.1016/j.biortech.2021.125344.
  • Nishiyama T, Kajimoto T, Mohile SS, et al. The first enantioselective synthesis of imino-deoxydigitoxose and protected imino-digitoxose by using l-threonine aldolase-catalyzed aldol condensation. Tetrahedron Asymmetry. 2009;20:230–234. doi: 10.1016/j.tetasy.2008.12.029.
  • Fujii M, Miura T, Kajimoto T, et al. Facile synthesis of 3,4-dihydroxyprolines as an application of the l-threonine aldolase-catalyzed aldol reaction. Synlett. 2000;2000:1046–1048.
  • Vassilev VP, Uchiyama T, Kajimoto T, et al. An efficient chemo-enzymatic synthesis of α-amino-β-hydroxy-γ-butyrolactone. Tetrahedron Lett. 1995;36:5063–5064. doi: 10.1016/00404-0399(50)09242-.
  • Miura T, Kajimoto T. Application of l-threonine aldolase-catalyzed reaction to the preparation of protected 3R,5R-dihydroxy-l-homoproline as a mimetic of idulonic acid. Chirality. 2001;13:577–580. doi: 10.1002/chir.1180.
  • Tanaka T, Tsuda C, Miura T, et al. Design and synthesis of peptide mimetics of GDP-fucose: targeting inhibitors of fucosyltransferases. Synlett. 2004;2004:0243–0246.
  • Liu JQ, Odani M, Yasuoka T, et al. Gene cloning and overproduction of low-specificity d-threonine aldolase from Alcaligenes xylosoxidans and its application for production of a key intermediate for Parkinsonism drug. Appl Microbiol Biotechnol. 2000;54:44–51. doi: 10.1007/s002539900301.
  • Liu J, Odani M, Dairi T, et al. A new route to l-threo-3-[4-(methylthio)phenylserine], a key intermediate for the synthesis of antibiotics: recombinant low-specificity d-threonine aldolase-catalyzed stereospecific resolution. Appl Microbiol Biotechnol. 1999;51:586–591. doi: 10.1007/s002530051436.
  • Park SH, Seo H, Seok J, et al. Cβ-selective aldol addition of d-threonine aldolase by spatial constraint of aldehyde binding. ACS Catal. 2021;11:6892–6899. doi: 10.1021/acscatal.1c01348.
  • Hirato Y, Tokuhisa M, Tanigawa M, et al. Cloning and characterization of d-threonine aldolase from the green alga Chlamydomonas reinhardtii. Phytochemistry. 2017;135:18–23. doi: 10.1016/j.phytochem.2016.12.012.
  • Uhl MK, Oberdorfer G, Steinkellner G, et al. The crystal structure of d-threonine aldolase from Alcaligenes xylosoxidans provides insight into a metal ion assisted PLP-dependent mechanism. PLOS One. 2015;10:e0124056. doi: 10.1371/journal.pone.0124056.
  • Hirato Y, Goto M, Mizobuchi T, et al. Structure of pyridoxal 5'-phosphate-bound d-threonine aldolase from Chlamydomonas reinhardtii. Acta Crystallogr F Struct Biol Commun. 2023;79:31–37. doi: 10.1107/S2053230X23000304.
  • Chen Q, Chen X, Cui Y, et al. A new d-threonine aldolase as a promising biocatalyst for highly stereoselective preparation of chiral aromatic β-hydroxy-α-amino acids. Catal Sci Technol. 2017;7:5964–5973. doi: 10.1039/C7CY01774J.
  • Goldberg SL, Goswami A, Guo Z, et al. Preparation of β-hydroxy-α-amino acid using recombinant d-threonine aldolase. Org Process Res Dev. 2015;19:1308–1316. doi: 10.1021/acs.oprd.5b00191.
  • Liu F, Shi Z, Zhu J, et al. Highly selective kinetic resolution of d/l-syn-p-sulfone phenylserine catalyzed by d-threonine aldolase in two-phase ionic solvent. Green ChE. 2023;4:212–216. doi: 10.1016/j.gce.2022.10.002.
  • Gong L, Xu GC, Cao XD, et al. High-throughput screening method for directed evolution and characterization of aldol activity of d-threonine aldolase. Appl Biochem Biotech. 2020;52:1–13.
  • Ushimaru R, Liu H. Biosynthetic origin of the atypical stereochemistry in the thioheptose core of Albomycin nucleoside antibiotics. J Am Chem Soc. 2019;141:2211–2214. doi: 10.1021/jacs.8b12565.
  • Scott TA, Heine D, Qin Z, et al. An l-threonine transaldolase is required for l-threo-β-hydroxy-α-amino acid assembly during obafluorin biosynthesis. Nat Commun. 2017;8:15935. doi: 10.1038/ncomms15935.
  • Jones MA, Butler ND, Anderson SR, et al. Discovery of l-threonine transaldolases for enhanced biosynthesis of β-hydroxylated amino acids. Commun Biol. 2023;6:929. doi: 10.1038/s42003-023-05293-0.
  • Kumar P, Meza A, Ellis JM, et al. l-threonine transaldolase activity is enabled by a persistent catalytic intermediate. ACS Chem Biol. 2021;16:86–95. doi: 10.1021/acschembio.0c00753.
  • Xu L, Wang LC, Xu XQ, et al. Characteristics of l-threonine transaldolase for asymmetric synthesis of β-hydroxy-α-amino acids. Catal Sci Technol. 2019;9:5943–5952. doi: 10.1039/C9CY01608B.
  • Xu L, Wang L-C, Su B-M, et al. Multi-enzyme cascade for improving β-hydroxy-α-amino acids production by engineering l-threonine transaldolase and combining acetaldehyde elimination system. Bioresour Technol. 2020;310:123439. doi: 10.1016/j.biortech.2020.123439.
  • Murphy CD, O'Hagan D, Schaffrath C. Identification of a PLP-dependent threonine transaldolase: a novel enzyme involved in 4-fluorothreonine biosynthesis in Streptomyces cattleya. Angew Chem Int Ed. 2001;40:4479–4481. doi: 10.1002/1521-3773(20011203)40:23<4479::AID-ANIE4479>3.0.CO;2-1.
  • Deng H, Cross SM, McGlinchey RP, et al. In vitro reconstituted biotransformation of 4-fluorothreonine from fluoride ion: application of the fluorinase. Chem Biol. 2008;15:1268–1276. doi: 10.1016/j.chembiol.2008.10.012.
  • Zhao C, Li P, Deng Z, et al. Insights into fluorometabolite biosynthesis in Streptomyces cattleya DSM46488 through genome sequence and knockout mutants. Bioorg Chem. 2012;44:1–7. doi: 10.1016/j.bioorg.2012.06.002.
  • Wu L, Tong MH, Raab A, et al. An unusual metal-bound 4-fluorothreonine transaldolase from Streptomyces sp. MA37 catalyses promiscuous transaldol reactions. Appl Microbiol Biotechnol. 2020;104:3885–3896. doi: 10.1007/s00253-020-10497-z.
  • Barnard-Britson S, Chi X, Nonaka K, et al. Amalgamation of nucleosides and amino acids in antibiotic biosynthesis: discovery of an l-threonine: uridine-5′-aldehyde transaldolase. J Am Chem Soc. 2012;134:18514–18517. doi: 10.1021/ja308185q.
  • Cai W, Goswami A, Yang Z, et al. The biosynthesis of capuramycin-type antibiotics: identification of the A-102395 biosynthetic gene cluster, mechanism of self-resistance, and formation of uridine-5′-carboxamide. J Biol Chem. 2015;290:13710–13724. doi: 10.1074/jbc.M115.646414.
  • Schaffer JE, Reck MR, Prasad NK, et al. β-Lactone formation during product release from a nonribosomal peptide synthetase. Nat Chem Biol. 2017;13:737–744. doi: 10.1038/nchembio.2374.
  • Kreitler DF, Gemmell EM, Schaffer JE, et al. The structural basis of N-acyl-α-amino-β-lactone formation catalyzed by a nonribosomal peptide synthetase. Nat Commun. 2019;10:3432. doi: 10.1038/s41467-019-11383-7.
  • Xi Z, Li L, Zhang X, et al. Expanding the l-threonine transaldolase toolbox for the diastereomeric synthesis of β‑hydroxy-α-amino acids. Mol Catal. 2023;543:113139. doi: 10.1016/j.mcat.2023.113139.
  • Doyon TJ, Kumar P, Thein S, et al. Scalable and selective β-hydroxy-α-amino acid synthesis catalyzed by promiscuous l-threonine transaldolase ObiH. Chembiochem. 2022;23:e202100577. doi: 10.1002/cbic.202100577.
  • Xu L, Wang LC, Su BM, et al. Efficient biosynthesis of (2S,3R)-4-methylsulfonylphenylserine by artificial self-assembly of enzyme complex combined with an intensified acetaldehyde elimination system. Bioorg Chem. 2021;110:104766. doi: 10.1016/j.bioorg.2021.104766.
  • Xiu Y, Xu G, Ni Y. Multi-enzyme cascade for sustainable synthesis of l-threo-phenylserine by modulating aldehydes inhibition and kinetic/thermodynamic controls. Syst Microbiol and Biomanuf. 2022;2:705–715. doi: 10.1007/s43393-022-00102-x.
  • Meza A, Campbell ME, Zmich A, et al. Efficient chemoenzymatic synthesis of α-aryl aldehydes as intermediates in C-C bond forming biocatalytic cascades. ACS Catal. 2022;12:10700–10710. doi: 10.1021/acscatal.2c02369.
  • Ogawa H, Gomi T, Fujioka M. Serine hydroxymethyltransferase and threonine aldolase: are they identical. Int J Biochem Cell Biol. 2000;32:289–301. doi: 10.1016/s1357-2725(99)00113-2.
  • Vidal L, Calveras J, Clapés P, et al. Recombinant production of serine hydroxymethyl transferase from Streptococcus thermophilus and its preliminary evaluation as a biocatalyst. Appl Microbiol Biotechnol. 2005;68:489–497. doi: 10.1007/s00253-005-1934-1.
  • Gutierrez ML, Garrabou X, Agosta E, et al. Serine hydroxymethyl transferase from Streptococcus thermophilus and l-threonine aldolase from Escherichia coli as stereocomplementary biocatalysts for the synthesis of β-hydroxy-α,ω-diamino acid derivatives. Chemistry. 2008;14:4647–4656. doi: 10.1002/chem.200800031.
  • Hernandez K, Zelen I, Petrillo G, et al. Engineered l-serine hydroxymethyltransferase from Streptococcus thermophilus for the synthesis of α,α-dialkyl-α-amino acids. Angew Chem Int Ed Engl. 2015;54:3013–3017. doi: 10.1002/anie.201411484.
  • Ma’ruf, IF, Restiawaty, E, Syihab, SF, et al. Characterization of thermostable serine hydroxymethyltransferase for β-hydroxy amino acids synthesis. Amino Acids. 2023;55(1):75–88. doi: 10.1007/s00726-022-03205-w.
  • Angelaccio S, di Salvo ML, Parroni A, et al. Structural stability of cold-adapted serine hydroxymethyltransferase, a tool for β-hydroxy-α-amino acid biosynthesis. J Mol Catal B-Enzym. 2014;110:171–177. doi: 10.1016/j.molcatb.2014.10.007.
  • Sopitthummakhun K, Maenpuen S, Yuthavong Y, et al. Serine hydroxymethyltransferase from Plasmodium vivax is different in substrate specificity from its homologues. FEBS J. 2009;276:4023–4036. doi: 10.1111/j.1742-4658.2009.07111.x.
  • Zhao GH, Li H, Liu W, et al. Preparation of optically active β-hydroxy-α-amino acid by immobilized Escherichia coli cells with serine hydroxymethyl transferase activity. Amino Acids. 2011;40:215–220. doi: 10.1007/s00726-010-0637-9.
  • Nozaki H, Kuroda S, Watanabe K, et al. Purification and gene cloning of α-methylserine aldolase from Ralstonia sp. strain AJ110405 and application of the enzyme in the synthesis of α-methyl-l-serine. Appl Environ Microbiol. 2008;74:7596–7599. doi: 10.1128/AEM.00677-08.
  • Nozaki H, Kuroda S, Watanabe K, et al. Gene cloning, purification, and characterization of α-methylserine aldolase from Bosea sp. AJ110407 and its applicability for the enzymatic synthesis of α-methyl-l-serine and α-ethyl-l-serine. J Mol Catal B-Enzym. 2009;59:237–242. doi: 10.1016/j.molcatb.2008.06.007.
  • Nozaki H, Kuroda S, Watanabe K, et al. Gene cloning of α-methylserine aldolase from Variovorax paradoxus and purification and characterization of the recombinant enzyme. Biosci Biotechnol Biochem. 2008;72:2580–2588. doi: 10.1271/bbb.80274.
  • Nozaki H, Kuroda S, Watanabe K, et al. Screening of microorganisms producing α-methylserine hydro­xymethyltransferase, purification of the enzyme, gene cloning, and application to the enzymatic synthesis of α-methyl-l-serine. J Mol Catal B-Enzym. 2009;56:221–226. doi: 10.1016/j.molcatb.2008.05.002.
  • Seebeck FP, Hilvert D. Conversion of a PLP-dependent racemase into an aldolase by a single active site mutation. J Am Chem Soc. 2003;125:10158–10159. doi: 10.1021/ja036707d.
  • Seebeck FP, Guainazzi A, Amoreira C, et al. Stereoselectivity and expanded substrate scope of an engineered PLP-dependent aldolase. Angew Chem Int Ed. 2006;118:6978–6980. doi: 10.1002/ange.200602529.
  • Toscano MD, Müller MM, Hilvert D. Enhancing activity and controlling stereoselectivity in a designed PLP-dependent aldolase. Angew Chem Int Ed Engl. 2007;46:4468–4470. doi: 10.1002/anie.200700710.
  • Fesko K, Giger L, Hilvert D. Synthesis of β-hydroxy-α-amino acids with a reengineered alanine racemase. Bioorg Med Chem Lett. 2008;18:5987–5990. doi: 10.1016/j.bmcl.2008.08.031.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.