105
Views
0
CrossRef citations to date
0
Altmetric
Review Article

How do probiotics alleviate constipation? A narrative review of mechanisms

, , , , , , & ORCID Icon show all
Received 24 Aug 2023, Accepted 25 Nov 2023, Published online: 06 May 2024

References

  • Sanchez MIP, Bercik P. Epidemiology and burden of chronic constipation. Can J Gastroenterol. 2011;25(Suppl B):11B–15B. doi: 10.1155/2011/974573.
  • Bassotti G, Antonelli E, Villanacci V, et al. Gastrointestinal motility disorders in inflammatory bowel diseases. World J Gastroenterol. 2014;20:37–44. doi: 10.3748/wjg.v20.i1.37.
  • Drossman DA, Hasler WL. Rome IV-functional GI disorders: disorders of gut-brain interaction. Gastroenterology. 2016;150:1257–1261. doi: 10.1053/j.gastro.2016.03.035.
  • Johanson JF. Review of the treatment options for chronic constipation. MedGenMed. 2007;9:25.
  • Rao SS, Ozturk R, Laine L. Clinical utility of diagnostic tests for constipation in adults: a systematic review. Am J Gastroenterol. 2005;100:1605–1615. doi: 10.1111/j.1572-0241.2005.41845.x.
  • Rao SS, Rattanakovit K, Patcharatrakul T. Diagnosis and management of chronic constipation in adults. Nat Rev Gastroenterol Hepatol. 2016;13:295–305. doi: 10.1038/nrgastro.2016.53.
  • Soh AYS, Kang JY, Siah KTH, et al. Searching for a definition for pharmacologically refractory constipation: a systematic review. J Gastroenterol Hepatol. 2018;33:564–575. doi: 10.1111/jgh.13998.
  • Schuster BG, Kosar L, Kamrul R. Constipation in older adults: stepwise approach to keep things moving. Can Fam Physician. 2015;61:152–158.
  • Prichard DO, Bharucha AE. Recent advances in understanding and managing chronic constipation. F1000Res. 2018;7:1640. doi: 10.12688/f1000research.15900.1.
  • Tian HL, Li N. Study on the application of intestinal microecological concept in the treatment of chronic constipation. J Surg Concep Prac. 2020;25:98–101. doi: 10.16139/j.1007-9610.2020.02.002.
  • Xing JH, Soffer EE. Adverse effects of laxatives. Dis Colon Rectum. 2001;44:1201–1209. doi: 10.1007/BF02234645.
  • Siegers CP, von Hertzberg-Lottin E, Otte M, et al. Anthranoid laxative abuse–a risk for colorectal cancer? Gut. 1993;34:1099–1101. doi: 10.1136/gut.34.8.1099.
  • Ağagündüz D, Cocozza E, Cemali Ö, et al. Understanding the role of the gut microbiome in gastrointestinal cancer: a review. Front Pharmacol. 2023;14:1130562. doi: 10.3389/fphar.2023.1130562.
  • Pozuelo M, Panda S, Santiago A, et al. Reduction of butyrate- and methane-producing microorganisms in patients with Irritable Bowel Syndrome. Sci Rep. 2015;5:12693. doi: 10.1038/srep12693.
  • Zhao X, Qian Y, Li G, et al. Lactobacillus plantarum YS2 (yak yogurt Lactobacillus) exhibited an activity to attenuate activated carbon-induced constipation in male Kunming mice. J Dairy Sci. 2019;102:26–36. doi: 10.3168/jds.2018-15206.
  • Zhu LX, Liu WS, Alkhouri R, et al. Structural changes in the gut microbiome of constipated patients. Physiol Genomics. 2014;46:679–686. doi: 10.1152/physiolgenomics.00082.2014.
  • Aloisio I, Santini C, Biavati B, et al. Characterization of Bifidobacterium spp. strains for the treatment of enteric disorders in newborns. Appl Microbiol Biotechnol. 2012;96:1561–1576. doi: 10.1007/s00253-012-4138-5.
  • Turroni F, Duranti S, Milani C, et al. Bifidobacterium bifidum: a key member of the early human gut microbiota. Microorganisms. 2019;7:544. doi: 10.3390/microorganisms7110544.
  • Wang L, Hu L, Xu Q, et al. Bifidobacteria exert species-specific effects on constipation in BALB/c mice. Food Funct. 2017;8:3587–3600. doi: 10.1039/c6fo01641c.
  • Lee CS, Tan PL, Eor JY, et al. Prophylactic use of probiotic chocolate modulates intestinal physiological functions in constipated rats. J Sci Food Agric. 2019;99:3045–3056. doi: 10.1002/jsfa.9518.
  • Lu Y, Zhang J, Zhou X, et al. The edible Lactobacillus paracasei X11 with Konjac glucomannan promotes intestinal motility in zebrafish. Neurogastroenterol Motil. 2021;33:e14196. doi: 10.1111/nmo.14196.
  • Chen CL, Chao SH, Pan TM. Lactobacillus paracasei subsp. paracasei NTU 101 lyophilized powder improves loperamide-induced constipation in rats. Heliyon. 2020;6:e03804. doi: 10.1016/j.heliyon.2020.e03804.
  • Wang R, Sun J, Li G, et al. Effect of Bifidobacterium animalis subsp. lactis MN-Gup on constipation and the composition of gut microbiota. Benef Microbes. 2021;12:31–42. doi: 10.3920/BM2020.0023.
  • Makizaki Y, Uemoto T, Yokota H, et al. Improvement of loperamide-induced slow transit constipation by Bifidobacterium bifidum G9-1 is mediated by the correction of butyrate production and neurotransmitter profile due to improvement in dysbiosis. PLoS One. 2022;17:e0267927. doi: 10.1371/journal.pone.0267927.
  • He Y, Zhu L, Chen J, et al. Efficacy of probiotic compounds in relieving constipation and their colonization in gut microbiota. Molecules. 2022;27:666. doi: 10.3390/molecules27030666.
  • Chen S, Ou Y, Zhao L, et al. Differential effects of Lactobacillus casei strain Shirota on patients with constipation regarding stool consistency in China. J Neurogastroenterol Motil. 2019;25:148–158. doi: 10.5056/jnm17085.
  • Riezzo G, Chimienti G, Orlando A, et al. Effects of long-term administration of Lactobacillus reuteri DSM-17938 on circulating levels of 5-HT and BDNF in adults with functional constipation. Benef Microbes. 2019;10:137–147. doi: 10.3920/BM2018.0050.
  • Madempudi RS, Neelamraju J, Ahire JJ, et al. Bacillus coagulans Unique IS2 in constipation: a double-blind, placebo-controlled study. Probiotics Antimicrob Proteins. 2020;12:335–342. doi: 10.1007/s12602-019-09542-9.
  • Tan AH, Lim SY, Chong KK, et al. Probiotics for constipation in Parkinson disease: a randomized placebo-controlled study. Neurology. 2020;96:e772–e782. doi: 10.1212/WNL.0000000000010998.
  • Wang G, Yang S, Sun S, et al. Lactobacillus rhamnosus strains relieve loperamide-induced constipation via different pathways independent of short-chain fatty acids. Front Cell Infect Microbiol. 2020;10:423. doi: 10.3389/fcimb.2020.00423.
  • Araújo ADM, Botelho PB, Ribeiro DJS, et al. A multiple-strain probiotic product provides a better enzymatic antioxidant response in individuals with constipation in a double-blind randomized controlled trial. Nutrition. 2021;89:111225. doi: 10.1016/j.nut.2021.111225.
  • Kang S, Park MY, Brooks I, et al. Spore-forming Bacillus coagulans SNZ 1969 improved intestinal motility and constipation perception mediated by microbial alterations in healthy adults with mild intermittent constipation: a randomized controlled trial. Food Res Int. 2021;146:110428. doi: 10.1016/j.foodres.2021.110428.
  • Wang L, Wang L, Tian P, et al. A randomised, double-blind, placebo-controlled trial of Bifidobacterium bifidum CCFM16 for manipulation of the gut microbiota and relief from chronic constipation. Food Funct. 2022;13:1628–1640. doi: 10.1039/d1fo03896f.
  • Ito D, Yamamoto Y, Maekita T, et al. Do synbiotics really enhance beneficial synbiotics effect on defecation symptoms in healthy adults?: Randomized, double-blind, placebo-controlled trial. Medicine (Baltimore). 2022;101:e28858. doi: 10.1097/MD.0000000000028858.
  • Cao H, Liu X, An Y, et al. Dysbiosis contributes to chronic constipation development via regulation of serotonin transporter in the intestine. Sci Rep. 2017;7:10322. doi: 10.1038/s41598-017-10835-8.
  • Chu JR, Kang SY, Kim SE, et al. Prebiotic UG1601 mitigates constipation-related events in association with gut microbiota: a randomized placebo-controlled intervention study. World J Gastroenterol. 2019;25:6129–6144. doi: 10.3748/wjg.v25.i40.6129.
  • Ohkusa T, Koido S, Nishikawa Y, et al. Gut microbiota and chronic constipation: a review and update. Front Med. 2019;6:19. doi: 10.3389/fmed.2019.00019.
  • Zhao Y, Yu YB. Intestinal microbiota and chronic constipation. Springerplus. 2016;5:1130. doi: 10.1186/s40064-016-2821-1.
  • Guyonnet D, Chassany O, Ducrotte P, et al. Effect of a fermented milk containing Bifidobacterium animalis DN-173 010 on the health-related quality of life and symptoms in irritable bowel syndrome in adults in primary care: a multicentre, randomized, double-blind, controlled trial. Aliment Pharmacol Ther. 2007;26:475–486. doi: 10.1111/j.1365-2036.2007.03362.x.
  • Khalif IL, Quigley EMM, Konovitch EA, et al. Alterations in the colonic microbiome and intestinal permeability and evidence of immune activation in chronic constipation. Dig Liver Dis. 2005;37:838–849. doi: 10.1016/j.dld.2005.06.008.
  • Choi CH, Chang SK. Alteration of gut microbiota and efficacy of probiotics in functional constipation. J Neurogastroenterol Motil. 2015;21:4–7. doi: 10.5056/jnm14142.
  • Gomes DOVS, Morais MB. Gut Microbiota and the use of probiotics in constipation in children and adolescents: systematic review. Rev Paul Pediatr. 2020;38:e2018123. doi: 10.1590/1984-0462/2020/38/2018123.
  • Ridlon JM, Wolf PG, Gaskins HRG. Taurocholic acid metabolism by gut microbes and colon cancer. Gut Microbes. 2016;7:201–215. doi: 10.1080/19490976.2016.1150414.
  • Bharucha AE, Lacy BE. Mechanisms, evaluation, and management of chronic constipation. Gastroenterology. 2020;158:1232–1249.e3. doi: 10.1053/j.gastro.2019.12.034.
  • Rahayu ES, Mariyatun M, Putri Manurung NE, et al. Effect of probiotic Lactobacillus plantarum Dad-13 powder consumption on the gut microbiota and intestinal health of overweight adults. World J Gastroenterol. 2021;27:107–128. doi: 10.3748/wjg.v27.i1.107.
  • Lee KM, Paik CN, Chung WC, et al. Breath methane positivity is more common and higher in patients with objectively proven delayed transit constipation. Eur J Gastroenterol Hepatol. 2013;25:726–732. doi: 10.1097/MEG.0b013e32835eb916.
  • Vega AB, Perelló A, Martos L, et al. Breath methane in functional constipation: response to treatment with Ispaghula husk. Neurogastroenterol Motil. 2015;27:945–953. doi: 10.1111/nmo.12568.
  • Dimidi E, Christodoulides S, Scott SM, et al. Mechanisms of action of probiotics and the gastroin-testinal microbiota on gut motility and constipation. Adv Nutr. 2017;8:484–494. doi: 10.3945/an.116.014407.
  • Meng X, Zhang G, Cao H, et al. Gut dysbacteriosis and intestinal disease: mechanism and treatment. J Appl Microbiol. 2022;129:787–805. doi: 10.1111/jam.14661.
  • Huang L, Zhu Q, Qu X, et al. Microbial treatment in chronic constipation. Sci China Life Sci. 2018;61:744–752. doi: 10.1007/s11427-017-9220-7.
  • Ojetti V, Petruzziello C, Migneco A, et al. Effect of Lactobacillus reuteri (DSM 17938) on methane production in patients affected by functional constipation: a retrospective study. Eur Rev Med Pharmacol Sci. 2017;21:1702–1708. doi: 10.1016/S0016-5085(17)33419-4.
  • Fu R, Li Z, Zhou R, et al. The mechanism of intestinal microbiome dysregulation mediated by intestinal bacterial biofilm to induce constipation. Bioengineered. 2021;12:6484–6498. doi: 10.1080/21655979.2021.1973356.
  • Wortelboer K, Nieuwdorp M, Herrema H. Fecal microbiota transplantation beyond Clostridioides difficile infections. EBioMedicine. 2019;44:716–729. doi: 10.1016/j.ebiom.2019.05.066.
  • Yang ZD, Ye SM, Xu ZM, et al. Dietary synbiotic ameliorates constipation through the modulation of gut microbiota and its metabolic function. Food Res Int. 2021;147:110569. doi: 10.1016/j.foodres.2021.110569.
  • Botelho PB, Ferreira MVR, Araújo AdM, et al. Effect of multispecies probiotic on gut microbiota composition in individuals with intestinal constipation: a double-blind, placebo-controlled randomized trial. Nutrition. 2020;78:110890. doi: 10.1016/j.nut.2020.110890.
  • Dover SE, Aroutcheva AA, Faro S, et al. Natural antimicrobials and their role in vaginal health.: a short review. Int J Probiotics Prebiotics. 2008;3:219–230.
  • Okkers DJ, Dicks LM, Silvester M, et al. Characterization of pentocin TV35b, a bacteriocin-like peptide isolated from Lactobacillus pentosus with a fungistatic effect on Candida albicans. J Appl Microbiol. 1999;87:726–734. doi: 10.1046/j.1365-2672.1999.00918.x.
  • Strus M, Brzychczy-Włoch M, Gosiewski T, et al. The in vitro effect of hydrogen peroxide on vaginal microbial communities. FEMS Immunol Med Microbiol. 2006;48:56–63. doi: 10.1111/j.1574-695X.2006.00120.x.
  • Chen CM, Wu CC, Huang CL, et al. Lactobacillus plantarum PS128 promotes intestinal motility, mucin production, and serotonin signaling in mice. Probiotics Antimicrob Proteins. 2022;14:535–545. doi: 10.1007/s12602-021-09814-3.
  • Li C, Ding Q, Nie SP, et al. Carrot juice fermented with Lactobacillus plantarum NCU116 ameliorates type 2 diabetes in rats. J Agric Food Chem. 2014;62:11884–11891. doi: 10.1021/jf503681r.
  • Zhuang M, Shang WT, Ma QC, et al. Abundance of probiotics and butyrate-production microbiome manages constipation via short-chain fatty acids production and hormones secretion. Mol Nutr Food Res. 2019;63:e1801187. doi: 10.1002/mnfr.201801187.
  • Wang J, Bai X, Peng C, et al. Fermented milk containing Lactobacillus casei Zhang and Bifidobacterium animalis ssp. lactis V9 alleviated constipation symptoms through regulation of intestinal microbiota, inflammation, and metabolic pathways. J Dairy Sci. 2020;103:11025–11038. doi: 10.3168/jds.2020-18639.
  • Li S, He Y, Zhang H, et al. Formulation of traditional Chinese medicine and its application on intestinal microbiome of constipated rats. Microb Cell Fact. 2020;19:212. doi: 10.1186/s12934-020-01473-3.
  • Lu Y, Yu Z, Zhang Z, et al. Bifidobacterium animalis F1-7 in combination with konjac glucomannan improves constipation in mice via humoral transport. Food Funct. 2021;12:791–801. doi: 10.1039/d0fo02227f.
  • Makizaki Y, Maeda A, Oikawa Y, et al. Alleviation of low-fiber diet-induced constipation by probiotic Bifidobacterium bifidum G9-1 is based on correction of gut microbiota dysbiosis. Biosci Microbiota Food Health. 2019;38:49–53. doi: 10.12938/bmfh.18-020.
  • Zhou B, Yuan Y, Zhang S, et al. Intestinal microbiome and disease mutually shape the regional immune system in the intestinal tract. Front Immunol. 2020;11:575. doi: 10.3389/fimmu.2020.00575.
  • Szajewska H, Setty M, Mrukowicz J, et al. Probiotics in gastrointestinal diseases in children: hard and not-so-hard evidence of efficacy. J Pediatr Gastroenterol Nutr. 2006;42:454–475. doi: 10.1097/01.mpg.0000221913.88511.72.
  • Lu Y, Zhang J, Zhang Z, et al. Konjac glucomannan with probiotics acts as a combination laxative to relieve constipation in mice by increasing short-chain fatty acid metabolism and 5-hydroxytryptamine hormone release. Nutrition. 2021;84:111112. doi: 10.1016/j.nut.2020.111112.
  • Parada Venegas D, De la Fuente MK, Landskron G, et al. Short chain fatty acids (SCFAs)-mediated gut epithelial and immune regulation and its relevance for inflammatory bowel diseases. Front Immunol. 2019;10:277. doi: 10.3389/fimmu.2019.00277.
  • Sanders ME, Merenstein DJ, Reid G, et al. Probiotics and prebiotics in intestinal health and disease: from biology to the clinic. Nat Rev Gastroenterol Hepatol. 2019;16:605–616. doi: 10.1038/s41575-019-0173-3.
  • Gupta RA, Motiwala MN, Dumore NG, et al. Effect of piperine on inhibition of FFA induced TLR4 mediated inflammation and amelioration of acetic acid induced ulcerative colitis in mice. J Ethnopharmacol. 2015;164:239–246. doi: 10.1016/j.jep.2015.01.039.
  • Reigstad CS, Salmonson CE, Rainey JF, 3rd, et al. Gut microbes promote colonic serotonin production through an effect of short-chain fatty acids on enterochromaffin cells. Faseb J. 2015;29:1395–1403. doi: 10.1096/fj.14-259598.
  • Laforenza U. Water channel proteins in the gastrointestinal tract. Mol Aspects Med. 2012;33:642–650. doi: 10.1016/j.mam.2012.03.001.
  • Ikarashi N, Kon R, Sugiyama K. Aquaporins in the colon as a new therapeutic target in diarrhea and constipation. Int J Mol Sci. 2016;17:1172. doi: 10.3390/ijms17071172.
  • Kon R, Ikarashi N, Hayakawa A, et al. Morphine-induced constipation develops with increased aquaporin-3 expression in the colon via increased serotonin secretion. Toxicol Sci. 2015;145:337–347. doi: 10.1093/toxsci/kfv055.
  • Yamamoto T, Kuramoto H, Kadowaki M. Downregulation in aquaporin 4 and aquaporin 8 expression of the colon associated with the induction of allergic diarrhea in a mouse model of food allergy. Life Sci. 2007;81:115–120. doi: 10.1016/j.lfs.2007.04.036.
  • Wang XL, Li T, Jiang M. Expression of aquaporin 9 in colonic mucosa of patients with constipation-type irritable bowel syndrome. J Gastroenterol Hepatol. 2015;24:1095–1097. doi: 10.3969/j.issn.1006-5709.2015.09.016.
  • Kim JE, Go J, Sung JE, et al. Uridine stimulate laxative effect in the loperamide-induced constipation of SD rats through regulation of the mAChRs signaling pathway and mucin secretion. BMC Gastroenterol. 2017;17:21. doi: 10.1186/s12876-017-0576-y.
  • Yi R, Peng P, Zhang J, et al. Lactobacillus plantarum CQPC02-fermented soybean milk improves loperamide-induced constipation in mice. J Med Food. 2019;22:1208–1221. doi: 10.1089/jmf.2019.4467.
  • El-Salhy M, Norrgard O. Colonic neuroendocrine peptide levels in patients with chronic idiopathic slow transit constipation. Ups J Med Sci. 1998;103:223–230. doi: 10.3109/03009739809178951.
  • Sjölund K, Fasth S, Ekman R, et al. Neuropeptides in idiopathic chronic constipation (slow transit constipation). Neurogastroenterol Motil. 1997;9:143–150. doi: 10.1046/j.1365-2982.1997.d01-46.x.
  • Li GJ, Qian Y, Sun P, et al. Preventive effect of polysaccharide of Larimichthys Crocea swimming bladder on activated carbon-induced constipation in mice. J Korean Soc Appl Biol Chem. 2014;57:167–172. doi: 10.1007/s13765-014-4024-1.
  • Soudah HC, Hasler WL, Owyang C. Effect of octreotide on intestinal motility and bacterial overgrowth in scleroderma. N Engl J Med. 1991;325:1461–1467. doi: 10.1056/NEJM199111213252102.
  • Chen J-Q, Li D-W, Chen Y-Y, et al. Elucidating dosage-effect relationship of different efficacy of rhubarb in constipation model rats by factor analysis. J Ethnopharmacol. 2019;238:111868. doi: 10.1016/j.jep.2019.111868.
  • Iijima K, Koike T, Abe Y, et al. Cutoff serum pepsinogen values for predicting gastric acid secretion status. Tohoku J Exp Med. 2014;232:293–300. doi: 10.1620/tjem.232.293.
  • Setchell KD, Brown NM, Zimmer-Nechemias L, et al. Evidence for lack of absorption of soy isoflavone glycosides in humans, supporting the crucial role of intestinal metabolism for bioavailability. Am J Clin Nutr. 2019;76:447–453. doi: 10.1051/rnd:2002034.
  • Xin X, Zheng KW, Niu YY, et al. Effect of Flammulina velutipes (golden needle mushroom, eno-kitake) polysaccharides on constipation. Open Chemistry. 2018;16:155–162. doi: 10.1515/chem-2018-0017.
  • Iwanaga Y, Miyashita N, Saito T, et al. Gastroprokinetic effect of a new benzamide derivative itopride and its action mechanisms in conscious dogs. Jpn J Pharmacol. 1996;71:129–137. doi: 10.1254/jjp.71.129.
  • Moriya R, Fujikawa T, Ito J, et al. Pancreatic polypeptide enhances colonic muscle contraction and fecal output through neuropeptide YY4 receptor in mice. Eur J Pharmacol. 2010;627:258–264. doi: 10.1016/j.ejphar.2009.09.057.
  • King SK, Sutcliffe JR, Ong S-Y, et al. Substance P and vasoactive intestinal peptide are reduced in right transverse colon in pediatric slow-transit constipation. Neurogastroenterol Motil. 2010;22:883–892, e234. doi: 10.1111/j.1365-2982.2010.01524.x.
  • Yik YI, Farmer PJ, King SK, et al. Gender differences in reduced substance P (SP) in children with slow-transit constipation. Pediatr Surg Int. 2011;27:699–704. doi: 10.1007/s00383-011-2852-1.
  • Faussone-Pellegrini MS. Relationships between neurokinin receptor-expressing interstitial cells of Cajal and tachykininergic nerves in the gut. J Cell Mol Med. 2006;10:20–32. doi: 10.1111/j.1582-4934.2006.tb00288.x.
  • Milner P, Crowe R, Kamm MA, et al. Vasoactive intestinal polypeptide levels in sigmoid colon in idiopathic constipation and diverticular disease. Gastroenterology. 1990;99:666–675. doi: 10.1016/0016-5085(90)90953-x.
  • Cong L, Duan LW, Su WP, et al. Efficacy of high specific volume polysaccharide - a new type of dietary fiber-on molecular mechanism of intestinal water metabolism in rats with constipation. Med Sci Monit. 2019;25:5028–5035. doi: 10.12659/MSM.916526.
  • Colturi TJ, Unger RH, Feldman M. Role of circulating somatostatin in regulation of gastric acid secretion, gastrin release, and islet cell function. Studies in healthy subjects and duodenal ulcer patients. J Clin Invest. 1984;74:417–423. doi: 10.1172/JCI111437.
  • Saffouri B, Weir G, Bitar K, et al. Stimulation of gastrin secretion from the perfused rat stomach by somatostatin antiserum. Life Sci. 1979;25:1749–1753. doi: 10.1016/0024-3205(79)90478-8.
  • Mu J, Zhao X, Zalan Z, et al. Lactobacillus plantarum KFY02 enhances the relieving effect of gardenoside on montmorillonite induced constipation in mice. RSC Adv. 2020;10:10368–10381. doi: 10.1039/c9ra10446a.
  • Gershon MD, Tack J. The serotonin signaling system: from basic understanding to drug development for functional GI disorders. Gastroenterology. 2007;132:397–414. doi: 10.1053/j.gastro.2006.11.002.
  • Shekhar C, Monaghan PJ, Morris J, et al. Rome III functional constipation and irritable bowel syndrome with constipation are similar disorders within a spectrum of sensitization, regulated by serotonin. Gastroenterology. 2013;145:749–757. doi: 10.1053/j.gastro.2013.07.014.
  • Spohn SN, Mawe GM. Non-conventional features of peripheral serotonin signalling the gut and beyond. Nat Rev Gastroenterol Hepatol. 2017;14:412–420. doi: 10.1038/nrgastro.2017.51.
  • Bowersox SS, Clark R, Ellis DJ, et al. Molecular pharmacology of naronapride, a selective 5HT4 receptor agonist for the treatment of constipation: comparison with other prokinetic 5HT4 receptor agonists. Gastroenterology. 2011;140: s-612. doi: 10.1016/S0016-5085(11)62531-6.
  • Simrén M, Barbara G, Flint HJ, et al. Intestinal microbiota in functional bowel disorders: a Rome foundation report. Gut. 2013;62:159–176. doi: 10.1136/gutjnl-2012-302167.
  • El-Salhy M, Gilja OH. Abnormalities in ileal stem, neurogenin 3, and enteroendocrine cells in patients with irritable bowel syndrome. BMC Gastroenterol. 2017;17:90. doi: 10.1186/s12876-017-0643-4.
  • Hoyles L, Snelling T, Umlai UK, et al. Microbiome-host systems interactions: protective effects of propionate upon the blood-brain barrier. Microbiome. 2018;6:55. doi: 10.1186/s40168-018-0439-y.
  • Roager HM, Hansen LBS, Bahl MI, et al. Colonic transit time is related to bacterial metabolism and mucosal turnover in the gut. Nat Microbiol. 2016;1:16093. doi: 10.1038/nmicrobiol.2016.93.
  • Iurescia S, Seripa D, Rinaldi M. Role of the 5-HTTLPR and SNP promoter polymorphisms on serotonin transporter gene expression: a closer look at genetic architecture and in vitro functional studies of common and uncommon allelic variants. Mol Neurobiol. 2016;53:5510–5526. doi: 10.1007/s12035-015-9409-6.
  • Costedio MM, Coates MD, Brooks EM, et al. Mucosal serotonin signaling is altered in chronic constipation but not in opiate-induced constipation. Am J Gastroenterol. 2010;105:1173–1180. doi: 10.1038/ajg.2009.683.
  • Keating GM. Prucalopride: a review of its use in the management of chronic constipation. Drugs. 2013;73:1935–1950. doi: 10.1007/s40265-013-0140-1.
  • Mohammadi M, Tahmasebi Abdar H, Mollaei HR, et al. Serotonin transporter gene (SLC6A4) polymorphism and mucosal serotonin levels in southeastern Iranian patients with irritable bowel syndrome. Middle East J Dig Dis. 2017;9:26–32. doi: 10.15171/mejdd.2016.48.
  • Manocha M, Khan WI. Serotonin and GI disorders: an update on clinical and experimental studies. Clin Transl Gastroenterol. 2012;3:e13. doi: 10.1038/ctg.2012.8.
  • Guarino M, Cheng L, Cicala M, et al. Progesterone receptors and serotonin levels in colon epithelial cells from females with slow transit constipation. Neurogastroenterol Motil. 2011;23:575–E210. doi: 10.1111/j.1365-2982.2011.01705.x.
  • Shi HL, Liu CH, Ding LL, et al. Alterations in serotonin, transient receptor potential channels and protease-activated receptors in rats with irritable bowel syndrome attenuated by Shugan decoction. World J Gastroenterol. 2015;21:4852–4863. doi: 10.3748/wjg.v21.i16.4852.
  • Cao YN, Feng LJ, Wang BM, et al. Lactobacillus acidophilus and Bifidobacterium longum supernatants upregulate the serotonin transporter expression in intestinal epithelial cells. Saudi J Gastroenterol. 2018;24:59–66. doi: 10.4103/sjg.SJG_333_17.
  • Wang P, Du C, Chen FX, et al. BDNF contributes to IBS-like colonic hypersensitivity via activating the enteroglia-nerve unit. Sci Rep. 2016;6:20320. doi: 10.1038/srep20320.
  • D'Antongiovanni V, Pellegrini C, Fornai M, et al. Intestinal epithelial barrier and neuromuscular compartment in health and disease. World J Gastroenterol. 2020;26:1564–1579. doi: 10.3748/wjg.v26.i14.1564.
  • Collins SM. The immunomodulation of enteric neuromuscular function: implications for motility and inflammatory disorders. Gastroenterology. 1996;111:1683–1699. doi: 10.1016/s0016-5085(96)70034-3.
  • Mokhtare M, Alimoradzadeh R, Agah S, et al. The association between modulating inflammatory cytokines and constipation of geriatrics in Iran. Middle East J Dig Dis. 2017;9:228–234. doi: 10.15171/mejdd.2017.78.
  • Mokhtar NM, Jaafar NM, Alfian E, et al. Clinical assessment and cytokines level in constipation-predominant irritable bowel syndrome participants treated with Lactobacillus-containing cultured milk drink. Acta Gastroenterol Belg. 2021;84:585–591. doi: 10.51821/84.4.009.
  • Martin F-PJ, Dumas M-E, Wang Y, et al. A top-down systems biology view of microbiome-mammalian metabolic interactions in a mouse model. Mol Syst Biol. 2007;3:112. doi: 10.1038/msb4100153.
  • Israelyan N, Del Colle A, Li Z, et al. Effects of serotonin and slow-release 5-hydroxytryptophan on gastrointestinal motility in a mouse model of depression. Gastroenterology. 2019;157:507–521.e4. doi: 10.1053/j.gastro.2019.04.022.
  • Bhattarai Y, Williams BB, Battaglioli EJ, et al. Gut microbiota-produced tryptamine activates an epithelial G-protein-coupled receptor to increase colonic secretion. Cell Host Microbe. 2018;23:775–785.e5. doi: 10.1016/j.chom.2018.05.004.
  • Karlström L, Cassuto J, Jodal M, et al. Involvement of the enteric nervous system in the intestinal secretion induced by sodium deoxycholate and sodium ricinoleate. Scand J Gastroenterol. 1986;21:331–340. doi: 10.3109/00365528609003083.
  • Degirolamo C, Rainaldi S, Bovenga F, et al. Microbiota modification with probiotics induces hepatic bile acid synthesis via downregulation of the Fxr-Fgf15 axis in mice. Cell Rep. 2014;7:12–18. doi: 10.1016/j.celrep.2014.02.032.
  • Singh U, Devaraj S, Jialal I. Vitamin E, oxidative stress, and inflammation. Annu Rev Nutr. 2005;25:151–174. doi: 10.1146/annurev.nutr.24.012003.132446.
  • Yao WL, Zhang L, Hua YL, et al. The investigation of anti-inflammatory activity of volatile oil of Angelica sinensis by plasma metabolomics approach. Int Immunopharmacol. 2015;29:269–277. doi: 10.1016/j.intimp.2015.11.006.
  • Weaver LT, Rosenthal SR, Gladstone W, et al. Carnitine deficiency: a possible cause of gastrointestinal dysmotility. Acta Paediatr. 1992;81:79–81. doi: 10.1111/j.1651-2227.1992.tb12085.x.
  • Murata S, Inoue K, Aomatsu T, et al. Supplementation with carnitine reduces the severity of constipation: a retrospective study of patients with severe motor and intellectual disabilities. J Clin Biochem Nutr. 2017;60:121–124. doi: 10.3164/jcbn.16-52.
  • Hansebout CR, Su C, Reddy K, et al. Enteric glia mediate neuronal outgrowth through release of neurotrophic factors. Neural Regen Res. 2012;7:2165–2175. doi: 10.3969/j.issn.1673-5374.2012.028.001.
  • Grider JR, Piland BE, Gulick MA, et al. Brain-derived neurotrophic factor augments peristalsis by augmenting 5-HT and calcitonin gene-related peptide release. Gastroenterology. 2006;130:771–780. doi: 10.1053/j.gastro.2005.12.026.
  • Chen FX, Yu YB, Wang P, et al. Brain-derived neurotrophic factor accelerates gut motility in slow-transit constipation. Acta Physiol. 2014;212:226–238. doi: 10.1111/apha.12374.
  • Riezzo G, Orlando A, D'Attoma B, et al. Randomised double blind placebo controlled trial on Lactobacillus reuteri DSM 17938: improvement in symptoms and bowel habit in functional constipation. Benef Microbes. 2018;9:51–60. doi: 10.3920/BM2017.0049.
  • Jabri MA, Wannes D, Hajji N, et al. Role of laxative and antioxidant properties of Malva sylvestris leaves in constipation treatment. Biomed Pharmacother. 2017;89:29–35. doi: 10.1016/j.biopha.2017.02.020.
  • Rtibi K, Grami D, Selmi S, et al. Vinblastine, an anticancer drug, causes constipation and oxidative stress as well as others disruptions in intestinal tract in rat. Toxicol Rep. 2017;4:221–225. doi: 10.1016/j.toxrep.2017.04.006.
  • Rtibi K, Selmi S, Grami D, et al. Contribution of oxidative stress in acute intestinal mucositis induced by 5 fluorouracil (5-FU) and its pro-drug capecitabine in rats. Toxicol Mech Methods. 2018;28:262–267. doi: 10.1080/15376516.2017.1402976.
  • Zhou JF, Lou JG, Zhou SL, et al. Potential oxidative stress in children with chronic constipation. World J Gastroenterol. 2005;11:368–371. doi: 10.3748/wjg.v11.i3.368.
  • Xu N, Fan W, Zhou X, et al. Probiotics decrease depressive behaviors induced by constipation via activating the AKT signaling pathway. Metab Brain Dis. 2018;33:1625–1633. doi: 10.1007/s11011-018-0269-4.
  • Zhang J, Zhou XR, Chen BS, et al. Preventive effect of Lactobacillus Plantarum CQPC10 on activated carbon induced constipation in institute of cancer research (ICR) mice. Applied Sciences. 2018;8:1498. doi: 10.3390/app8091498.
  • Mukai R, Handa O, Naito Y, et al. High-fat diet causes constipation in mice via decreasing colonic mucus. Dig Dis Sci. 2020;65:2246–2253. doi: 10.1007/s10620-019-05954-3.
  • Roudsari NM, Lashgari NA, Momtaz S, et al. Natural polyphenols for the prevention of irritable bowel syndrome: molecular mechanisms and targets; a comprehensive review. Daru. 2019;27:755–780. doi: 10.1007/s40199-019-00284-1.
  • Zhou YL, Tan F, Li C, et al. White Peony (fermented Camellia sinensis) polyphenols help prevent alcoholic liver injury via antioxidation. Antioxidants. 2019;8:524. doi: 10.3390/antiox8110524.
  • Boyle RJ, Robins-Browne RM, Tang MLK. Probiotic use in clinical practice: what are the risks? Am J Clin Nutr. 2006;83:1256–1264. doi: 10.1093/ajcn/83.6.1256.
  • Ng QX, Peters C, Ho CYX, et al. A meta-analysis of the use of probiotics to alleviate depressive symptoms. J Affect Disord. 2018;228:13–19. doi: 10.1016/j.jad.2017.11.063.
  • Wilson ID, Nicholson JK. Gut microbiome interactions with drug metabolism, efficacy, and toxicity. Transl Res. 2017;179:204–222. doi: 10.1016/j.trsl.2016.08.002.
  • Scalera A, Di Minno MN, Tarantino G. What does irritable bowel syndrome share with non-alcoholic fatty liver disease? World J Gastroenterol. 2013;19:5402–5420. doi: 10.3748/wjg.v19.i33.5402.
  • Tarantino G, Citro V, Capone D. Nonalcoholic fatty liver disease: a challenge from mechanisms to therapy. J Clin Med. 2019;9:15. doi: 10.3390/jcm9010015.
  • Limbana T, Khan F, Eskander N. Gut microbiome and depression: how microbes affect the way we think. Cureus. 2020;12:e9966. doi: 10.7759/cureus.9966.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.