135
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Pathogenesis related-1 proteins in plant defense: regulation and functional diversity

ORCID Icon, , , , , & show all
Received 22 Jan 2024, Accepted 20 Mar 2024, Published online: 08 May 2024

References

  • González Guzmán M, Cellini F, Fotopoulos V, et al. New approaches to improve crop tolerance to biotic and abiotic stresses. Physiol Plant. 2022;174:e13547. doi: 10.1111/ppl.13547.
  • Javed T, Gao SJ. WRKY transcription factors in plant defense. Trends Genet. 2023;39:787–801. doi: 10.1016/j.tig.2023.07.001.
  • Yuan M, Ngou BPM, Ding P, et al. PTI-ETI crosstalk: an integrative view of plant immunity. Curr Opin Plant Biol. 2021;62:102030. doi: 10.1016/j.pbi.2021.102030.
  • Wani SH, Anand S, Singh B, et al. WRKY transcription factors and plant defense responses: latest discoveries and future prospects. Plant Cell Rep. 2021;40:1071–1085. doi: 10.1007/s00299-021-02691-8.
  • Han Z, Xiong D, Schneiter R, et al. The function of plant PR1 and other members of the CAP protein superfamily in plant-pathogen interactions. Mol Plant Pathol. 2023;24:651–668. doi: 10.1111/mpp.13320.
  • Chang YN, Zhu C, Jiang J, et al. Epigenetic regulation in plant abiotic stress responses. J Integr Plant Biol. 2020;62:563–580. doi: 10.1111/jipb.12901.
  • Song ZT, Liu JX, Han JJ. Chromatin remodeling factors regulate environmental stress responses in plants. J Integr Plant Biol. 2021;63:438–450. doi: 10.1111/jipb.13064.
  • Xie SS, Duan CG. Epigenetic regulation of plant immunity: from chromatin codes to plant disease resistance. aBIOTECH. 2023;4:124–139. doi: 10.1007/s42994-023-00101-z.
  • Chu N, Zhou JR, Rott PC, et al. ScPR1 plays a positive role in the regulation of resistance to diverse stresses in sugarcane (Saccharum spp.) and Arabidopsis thaliana. Ind. Crops Prod. 2022;180:114736. doi: 10.1016/j.indcrop.2022.114736.
  • Dos Santos C, Franco OL. Pathogenesis-related proteins (PRs) with enzyme activity activating plant defense ­responses. Plants. 2023;12:2226. doi: 10.3390/plants12112226.
  • Li JJ, Luo C, Yang XZ, et al. Genome-wide identification of the mango pathogenesis-related 1 (PR1) gene family and functional analysis of MiPR1A genes in transgenic Arabidopsis. Sci. Hortic. 2023;321:112254. doi: 10.1016/j.scienta.2023.112254.
  • Kattupalli D, Srinivasan A, Soniya EV. A genome-wide analysis of pathogenesis-related protein-1 (PR-1) genes from Piper nigrum reveals its critical role during Phytophthora capsici infection. Genes (Basel). 2021;12:1007. doi: 10.3390/genes12071007.
  • Zribi I, Ghorbel M, Haddaji N, et al. Genome-wide identification and expression profiling of pathogenesis-related protein 1 (PR-1) genes in durum wheat (Triticum durum Desf.). Plants. 2023;12:1998. doi: 10.3390/plants12101998.
  • Anuradha C, Chandrasekar A, Backiyarani S, et al. Genome-wide analysis of pathogenesis-related protein 1 (PR-1) gene family from Musa spp. and its role in defense response during stresses. Gene. 2022;821:146334. doi: 10.1016/j.gene.2022.146334.
  • Anisimova OK, Shchennikova AV, Kochieva EZ, et al. Pathogenesis-related genes of PR1, PR2, PR4, and PR5 families are involved in the response to Fusarium infection in garlic (Allium sativum L.). Int J Mol Sci. 2021;22:6688. doi: 10.3390/ijms22136688.
  • Zhang Q, Guo N, Zhang Y, et al. Genome-Wide characterization and expression analysis of pathogenesis-related 1 (PR-1) gene family in tea plant (Camellia sinensis (L.) O. Kuntze) in response to blister-blight disease stress. Int J Mol Sci. 2022;23:1292. doi: 10.3390/ijms23031292.
  • Yin W, Bai Y, Wang S, et al. Genome-wide analysis of pathogenesis-related protein-1 (PR-1) genes from Qingke (Hordeum vulgare L. var. nudum) reveals their roles in stress responses. Heliyon. 2023;9:e14899. doi: 10.1016/j.heliyon.2023.e14899.
  • Liu R, Lu J, Xing J, et al. Characterization and functional analyses of wheat TaPR1 genes in response to stripe rust fungal infection. Sci Rep. 2023;13:3362. doi: 10.1038/s41598-023-30456-8.
  • Breen S, Williams SJ, Outram M, et al. Emerging insights into the functions of pathogenesis-related protein 1. Trends Plant Sci. 2017;22:871–879. doi: 10.1016/j.tplants.2017.06.013.
  • Wang P, Zhou J, Sun W, et al. Characteristics and function of the pathogenesis-related protein 1 gene family in poplar. Plant Sci. 2023;336:111857. doi: 10.1016/j.plantsci.2023.111857.
  • Saleem M, Fariduddin Q, Castroverde CDM. Salicylic acid: a key regulator of redox signalling and plant immunity. Plant Physiol Biochem. 2021;168:381–397. doi: 10.1016/j.plaphy.2021.10.011.
  • Ngou BPM, Jones JD, Ding P. Plant immune networks. Trends Plant Sci. 2022;27:255–273. doi: 10.1016/j.tplants.2021.08.012.
  • Kaur G, Tak Y, Asthir B. Salicylic acid: a key signal molecule ameliorating plant stresses. Cereal Res Commun. 2022;50:617–626. doi: 10.1007/s42976-021-00236-z.
  • Zhong Q, Hu H, Fan B, et al. Biosynthesis and roles of salicylic acid in balancing stress response and growth in plants. Int J Mol Sci. 2021;22:11672. doi: 10.3390/ijms222111672.
  • Benjamin G, Pandharikar G, Frendo P. Salicylic acid in plant symbioses: beyond plant pathogen interactions. Biol. 2022;11:861. doi: 10.3390/biology11060861.
  • Ma L, Meng Q, Shi F, et al. Genome-wide analysis of maize PR-1 gene family and expression profiles induced by plant hormones and fungal phytopathogens. Am J Transl Res. 2022;14:8315.
  • AlHudaib KA, Alanazi NA, Ghorbel M, et al. Isolation and characterization of a novel pathogenesis-related protein-1 gene (AvPR-1) with induced expression in oat (Avena sativa L.) during abiotic and hormonal stresses. Plants. 2022;11:2284. doi: 10.3390/plants11172284.
  • Ghorbel M, Zribi I, Haddaji N, et al. The wheat pathogenesis related protein (TdPR1. 2) ensures contrasting behaviors to E. coli transformant cells under stress conditions. AiM. 2021;11:453–468. doi: 10.4236/aim.2021.119034.
  • Chen N, Shao Q, Xiong Z. Isolation and characterization of a pathogenesis-related protein 1 (SlPR1) gene with induced expression in tomato (Solanum lycopersicum) during Ralstonia solanacearum infection. Gene. 2023;855:147105. doi: 10.1016/j.gene.2022.147105.
  • Guo WL, Yang HL, Zhao JP, et al. A pathogenesis-related protein 1 of Cucurbita moschata responds to powdery mildew infection. Front Genet. 2023;14:1168138. doi: 10.3389/fgene.2023.1168138.
  • Sorokan A, Burkhanova G, Gordeev A, et al. Exploring the role of salicylic acid in regulating the colonization ability of Bacillus subtilis 26D in potato plants and defense against Phytophthora infestans. IJPB. 2023;14:242–253. doi: 10.3390/ijpb14010020.
  • Almeida-Silva F, Venancio TM. Pathogenesis-related protein 1 (PR-1) genes in soybean: genome-wide identification, structural analysis and expression profiling under multiple biotic and abiotic stresses. Gene. 2022;809:146013. doi: 10.1016/j.gene.2021.146013.
  • Liu T, Chen T, Kan J, et al. The GhMYB36 transcription factor confers resistance to biotic and abiotic stress by enhancing PR1 gene expression in plants. Plant Biotechnol J. 2022;20:722–735. doi: 10.1111/pbi.13751.
  • Saha B, Nayak J, Srivastava R, et al. Unraveling the involvement of WRKY TFs in regulating plant disease defense signaling. Planta. 2024;259:7. doi: 10.1007/s00425-023-04269-y.
  • Goyal P, Devi R, Verma B, et al. WRKY transcription factors: evolution, regulation, and functional diversity in plants. Protoplasma. 2023;260:331–348. doi: 10.1007/s00709-022-01794-7.
  • Yang S, Zhou L, Miao L, et al. The expression and binding properties of the rice WRKY68 protein in the Xa21-mediated resistance response to Xanthomonas oryzae pv. oryzae. J. Integ. Agri. 2016;15:2451–2460. doi: 10.1016/S2095-3119(15)61265-5.
  • Gao YF, Liu JK, Yang FM, et al. The WRKY transcription factor WRKY8 promotes resistance to pathogen infection and mediates drought and salt stress tolerance in Solanum lycopersicum. Physiol Plant. 2020;168:98–117. doi: 10.1111/ppl.12978.
  • Bi M, Li X, Yan X, et al. Chrysanthemum WRKY15-1 promotes resistance to Puccinia horiana Henn. via the salicylic acid signaling pathway. Hortic Res. 2021;8:6. doi: 10.1038/s41438-020-00436-4.
  • Du Y, Amin N, Ahmad N, et al. Identification of the function of the pathogenesis-related protein GmPR1L in the resistance of soybean to Cercospora sojina Hara. Genes. 2023;14:920. doi: 10.3390/genes14040920.
  • Hussain RM, Sheikh AH, Haider I, et al. Arabidopsis WRKY50 and TGA transcription factors synergistically activate expression of PR1. Front Plant Sci. 2018;9:930. doi: 10.3389/fpls.2018.00930.
  • Chen J, Mohan R, Zhang Y, et al. NPR1 promotes its own and target gene expression in plant defense by recruiting CDK8. Plant Physiol. 2019;181:289–304. doi: 10.1104/pp.19.00124.
  • Li C, Lei C, Huang Y, et al. PpWRKY22 physically interacts with PpHOS1/PpTGA1 and positively regulates several SA-responsive PR genes to modulate disease resistance in BABA-primed peach fruit. Sci. Hortic. 2021;290:110479. doi: 10.1016/j.scienta.2021.110479.
  • Yang Y, Li HG, Liu M, et al. PeTGA1 enhances disease resistance against Colletotrichum gloeosporioides through ­directly regulating PeSARD1 in poplar. Int J Biol Macromol. 2022;214:672–684. doi: 10.1016/j.ijbiomac.2022.06.099.
  • Shimizu K, Suzuki H, Uemura T, et al. Immune gene activation by NPR and TGA transcriptional regulators in the model monocot Brachypodium distachyon. Plant J. 2022;110:470–481. doi: 10.1111/tpj.15681.
  • Han H, Zou J, Zhou J, et al. The small GTPase NtRHO1 negatively regulates tobacco defense response to tobacco mosaic virus by interacting with NtWRKY50. J Exp Bot. 2022;73:366–381. doi: 10.1093/jxb/erab408.
  • Chien PS, Nam HG, Chen YR. A salt-regulated peptide derived from the CAP superfamily protein negatively regulates salt-stress tolerance in Arabidopsis. J Exp Bot. 2015;66:5301–5313. doi: 10.1093/jxb/erv263.
  • Wang F, Shen S, Zhao C, et al. TaPR1 interacts with TaTLP1 via the αIV helix to be involved in wheat defense to Puccinia triticina through the CAPE1 motif. Front Plant Sci. 2022;13:874654. doi: 10.3389/fpls.2022.874654.
  • Chen YL, Lin FW, Cheng KT, et al. XCP1 cleaves pathogenesis-related protein 1 into CAPE9 for systemic immunity in Arabidopsis. Nat Commun. 2023;14:4697. doi: 10.1038/s41467-023-40406-7.
  • Lin YH, Xu MY, Hsu CC, et al. Ustilago maydis PR-1-like protein has evolved two distinct domains for dual virulence activities. Nat Commun. 2023;14:5755. doi: 10.1038/s41467-023-41459-4.
  • Sung YC, Outram MA, Breen S, et al. PR1-mediated defence via C-terminal peptide release is targeted by a fungal pathogen effector. New Phytol. 2021;229:3467–3480. doi: 10.1111/nph.17128.
  • Luo X, Tian T, Feng L, et al. Pathogenesis-related protein 1 suppresses oomycete pathogen by targeting against AMPK kinase complex. J Adv Res. 2023;43:13–26. doi: 10.1016/j.jare.2022.02.002.
  • Qiu X, Kong L, Chen H, et al. The Phytophthora sojae nuclear effector PsAvh110 targets a host transcriptional complex to modulate plant immunity. Plant Cell. 2023;35:574–597. doi: 10.1093/plcell/koac300.
  • Lu S, Faris JD, Sherwood R, et al. A dimeric PR-1-type pathogenesis-related protein interacts with ToxA and potentially mediates ToxA-induced necrosis in sensitive wheat. Mol Plant Pathol. 2014;15:650–663. doi: 10.1111/mpp.12122.
  • Breen S, Williams SJ, Winterberg B, et al. Wheat PR-1 proteins are targeted by necrotrophic pathogen effector proteins. Plant J. 2016;88:13–25. doi: 10.1111/tpj.13228.
  • Bi W, Zhao S, Zhao J, et al. Rust effector PNPi interacting with wheat TaPR1a attenuates plant defense response. Phytopathol Res. 2020;2:1–14. doi: 10.1186/s42483-020-00075-6.
  • Foroozani M, Vandal MP, Smith AP. H3K4 trimethylation dynamics impact diverse developmental and environmental responses in plants. Planta. 2021;253:4. doi: 10.1007/s00425-020-03520-0.
  • Meller B, Kuźnicki D, Arasimowicz-Jelonek M, et al. BABA-primed histone modifications in potato for intergenerational resistance to Phytophthora infestans. Front Plant Sci. 2018;9:1228. doi: 10.3389/fpls.2018.01228.
  • Dutta A, Choudhary P, Caruana J, et al. JMJ 27, an Arabidopsis H3K9 histone demethylase, modulates defense against Pseudomonas syringae and flowering time. Plant J. 2017;91:1015–1028. doi: 10.1111/tpj.13623.
  • Ren Y, Li Y, Jiang Y, et al. Phosphorylation of WHIRLY1 by CIPK14 shifts its localization and dual functions in Arabidopsis. Mol Plant. 2017;10:749–763. doi: 10.1016/j.molp.2017.03.011.
  • Miao Y, Jiang J, Ren Y, et al. The single-stranded DNA binding protein WHIRLY1 represses WRKY53 expression and delays leaf senescence in a developmental stage-dependent manner in Arabidopsis thaliana. Plant Physiol. 2013;163:746–756. doi: 10.1104/pp.113.223412.
  • Huang D, Lan W, Li D, et al. WHIRLY1 occupancy affects histone lysine modification and WRKY53 transcription in Arabidopsis developmental manner. Front Plant Sci. 2018;9:1503. doi: 10.3389/fpls.2018.01503.
  • López A, Ramírez V, García-Andrade J, et al. The RNA silencing enzyme RNA polymerase V Is required for plant immunity. PLoS Genet. 2011;7:e1002434. doi: 10.1371/journal.pgen.1002434.
  • Seo JS, Diloknawarit P, Park BS, et al. ELF18-induced long noncoding RNA 1 evicts fibrillarin from mediator subunit to enhance pathogenesis-related gene 1 (PR1) expression. New Phytol. 2019;221:2067–2079. doi: 10.1111/nph.15530.
  • Seo JS, Sun HX, Park BS, et al. ELF18-induced long-noncoding RNA associates with mediator to enhance expression of innate immune response genes in Arabidopsis. Plant Cell. 2017;29:1024–1038. doi: 10.1105/tpc.16.00886.
  • Hou X, Cui J, Liu W, et al. LncRNA39026 enhances tomato resistance to Phytophthora infestans by decoying miR168a and inducing PR gene expression. Phytopathol. 2020;110:873–880. doi: 10.1094/PHYTO-12-19-0445-R.
  • Li S, Nayar S, Jia H, et al. The Arabidopsis hypoxia inducible AtR8 long non-coding RNA also contributes to plant defense and root elongation coordinating with WRKY genes under low levels of salicylic acid. Noncoding RNA. 2020;6:8. doi: 10.3390/ncrna6010008.
  • Liu C, Dong X, Xu Y, et al. Transcriptome and DNA methylome reveal insights into Phytoplasma infection responses in mulberry (Morus multicaulis Perr.). Front. Plant Sci. 2021;12:69770.
  • Lodhi N, Singh M, Srivastava R, et al. Epigenetic malleability at core promoter initiates tobacco PR-1a expression post salicylic acid treatment. Mol Biol Rep. 2023;50:417–431. doi: 10.1007/s11033-022-08074-w.
  • Choi SM, Song HR, Han SK, et al. HDA19 is required for the repression of salicylic acid biosynthesis and salicylic acid-mediated defense responses in Arabidopsis. Plant J. 2012;71:135–146. doi: 10.1111/j.1365-313X.2012.04977.x.
  • Zhi P, Kong L, Liu J, et al. Histone deacetylase TaHDT701 functions in TaHDA6-TaHOS15 complex to regulate wheat defense responses to Blumeria graminis f.sp. tritici. IJMS. 2020;21:2640. doi: 10.3390/ijms21072640.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.