155
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Lignocellulosic materials valorization in second generation biorefineries: an opportunity to produce fungal biopigments

, , , , , , , & show all
Received 07 Nov 2023, Accepted 13 Mar 2024, Published online: 30 May 2024

References

  • Emami Javanmard M, Tang Y, Wang Z, et al. Forecast energy demand, CO2 emissions and energy resource impacts for the transportation sector. Appl Energy. 2023;338:120830. doi: 10.1016/j.apenergy.2023.120830.
  • Mahdavi M, Vera D. Importance of renewable energy sources and agricultural biomass in providing primary energy demand for Morocco. Int J Hydrog Energy. 2023;48:S0360319923026149. doi: 10.1016/j.ijhydene.2023.05.246.
  • Cremonez PA, Teleken JG, Weiser Meier TR, et al. Two-stage anaerobic digestion in agroindustrial waste treatment: a review. J Environ Manage. 2021;281:111854. doi: 10.1016/j.jenvman.2020.111854.
  • Gao Z, Alshehri K, Li Y, et al. Advances in biological techniques for sustainable lignocellulosic waste utilization in biogas production. Renew Sustain Energy Rev. 2022;170:112995. doi: 10.1016/j.rser.2022.112995.
  • Zhao Z, Gozgor G, Lau MCK, et al. The impact of geopolitical risks on renewable energy demand in OECD countries. Energy Econ. 2023;122:106700. doi: 10.1016/j.eneco.2023.106700.
  • Sagar NA, Kumar Y, Singh R, et al. Onion waste based-biorefinery for sustainable generation of value-added products. Bioresour Technol. 2022;362:127870. doi: 10.1016/j.biortech.2022.127870.
  • Kundariya N, Mohanty SS, Varjani S, et al. A review on integrated approaches for municipal solid waste for environmental and economical relevance: monitoring tools, technologies, and strategic innovations. Bioresour Technol. 2021;342:125982. doi: 10.1016/j.biortech.2021.125982.
  • Tripathi M, Diwan D, Shukla AC, et al. Valorization of dragon fruit waste to value-added bioproducts and formulations: a review. Crit Rev Biotechnol. 2023;43:1–19. doi: 10.1080/07388551.2023.2254930.
  • Yamakawa CK, Qin F, Mussatto SI. Advances and opportunities in biomass conversion technologies and biorefineries for the development of a bio-based economy. Biomass Bioenergy. 2018;119:54–60. doi: 10.1016/j.biombioe.2018.09.007.
  • Islam MK, Wang H, Rehman S, et al. Sustainability metrics of pretreatment processes in a waste derived lignocellulosic biomass biorefinery. Bioresour Technol. 2020;298:122558. doi: 10.1016/j.biortech.2019.122558.
  • Panesar R, Kaur S, Panesar PS. Production of microbial pigments utilizing agro-industrial waste: a review. Curr Opin Food Sci. 2015;1:70–76. doi: 10.1016/j.cofs.2014.12.002.
  • Richard Kingsley P, Braud L, Kumar Mediboyina M, et al. Prospects for commercial microalgal biorefineries: integrated pilot demonstrations and process simulations based techno-economic assessment of single and multi-product value chains. Algal Res. 2023;74:103190. doi: 10.1016/j.algal.2023.103190.
  • Nobre BP, Villalobos F, Barragán BE, et al. A biorefinery from Nannochloropsis sp. microalga – Extraction of oils and pigments. Production of biohydrogen from the leftover biomass. Bioresour Technol. 2013;135:128–136. doi: 10.1016/j.biortech.2012.11.084.
  • Slegers PM, Olivieri G, Breitmayer E, et al. Design of value chains for Microalgal Biorefinery at Industrial Scale: process integration and techno-economic analysis. Front Bioeng Biotechnol. 2020;8:550758. doi: 10.3389/fbioe.2020.550758.
  • Mehrez I, Chandrasekhar K, Kim W, et al. Comparison of alkali and ionic liquid pretreatment methods on the biochemical methane potential of date palm waste biomass. Bioresour Technol. 2022;360:127505. doi: 10.1016/j.biortech.2022.127505.
  • Philippini RR, Martiniano SE, Chandel AK, et al. Pretreatment of sugarcane bagasse from cane hybrids: effects on chemical composition and 2G sugars recovery. Waste Biomass Valor. 2019;10:1561–1570. doi: 10.1007/s12649-017-0162-0.
  • Shearer CA, Descals E, Kohlmeyer B, et al. Fungal biodiversity in aquatic habitats. Biodiver Conserv. 2007;16:49–67. doi: 10.1007/s10531-006-9120-z.
  • Meruvu H, Dos Santos JC. Colors of life: a review on fungal pigments. Crit Rev Biotechnol. 2021;41:1153–1177. doi: 10.1080/07388551.2021.1901647.
  • Dufossé L, Galaup P, Yaron A, et al. Microorganisms and microalgae as sources of pigments for food use: a scientific oddity or an industrial reality? Trends Food Sci Technol. 2005;16:389–406. doi: 10.1016/j.tifs.2005.02.006.
  • De Medeiros TDM, Dufossé L, Bicas JL. Lignocellulosic substrates as starting materials for the production of bioactive biopigments. Food Chem X. 2022;13:100223. doi: 10.1016/j.fochx.2022.100223.
  • Agboyibor C, Kong WB, Chen D, et al. Monascus pigments production, composition, bioactivity and its application: a review. Biocatal Agric Biotechnol. 2018;16:433–447. doi: 10.1016/j.bcab.2018.09.012.
  • Wu HC, Cheng MJ, Wu MD, et al. Three new constituents from the fungus of Monascus purpureus and their anti-inflammatory activity. Phytochem Lett. 2019;31:242–248. doi: 10.1016/j.phytol.2018.12.017.
  • Martins N, Roriz CL, Morales P, et al. Food colorants: challenges, opportunities and current desires of agro-industries to ensure consumer expectations and regulatory practices. Trends Food Sci Technol. 2016;52:1–15. doi: 10.1016/j.tifs.2016.03.009.
  • Nigam PS, Luke JS. Food additives: production of microbial pigments and their antioxidant properties. Curr Opin Food Sci. 2016;7:93–100. doi: 10.1016/j.cofs.2016.02.004.
  • Wilson BG, Bahna SL. Adverse reactions to food additives. Ann Allergy Asthma Immunol. 2005:95:499–507.
  • Randhawa S, Bahna SL. Hypersensitivity reactions to food additives. Curr Opin Allergy Clin Immunol. 2009;9:278–283. doi: 10.1097/ACI.0b013e32832b2632.
  • Sen T, Barrow CJ, Deshmukh SK. Microbial pigments in the food industry—challenges and the way forward. Front Nutr. 2019;6:7. doi: 10.3389/fnut.2019.00007.
  • World Food and Agriculture – Statistical Yearbook. 2022 [Internet]. FAO; 2022 [cited 2023 Jul 14]. Available from: http://www.fao.org/documents/card/en/c/cc2211en.
  • Zheng B, Yu S, Chen Z, et al. A consolidated review of commercial-scale high-value products from lignocellulosic biomass. Front Microbiol. 2022;13:933882. doi: 10.3389/fmicb.2022.933882.
  • Rajesh Banu J, Preethi Kavitha S, et al. Lignocellulosic biomass based biorefinery: a successful platform towards circular bioeconomy. Fuel. 2021;302:121086. doi: 10.1016/j.fuel.2021.121086.
  • Mussatto SI, Dragone GM. Biomass pretreatment, biorefineries, and potential products for a bioeconomy development. In: Biomass fractionation technologies for a lignocellulosic feedstock based biorefinery. Waltham (MA): Elsevier Inc; 2016. p. 1–22.
  • Khan MU, Usman M, Ashraf MA, et al. A review of recent advancements in pretreatment techniques of lignocellulosic materials for biogas production: opportunities and Limitations. Chem Eng J Adv. 2022;10:100263. doi: 10.1016/j.ceja.2022.100263.
  • Liu C-G, Xiao Y, Xia X-X, et al. Cellulosic ethanol production: progress, challenges and strategies for solutions. Biotechnol Adv. 2019;37:491–504. doi: 10.1016/j.biotechadv.2019.03.002.
  • Maitan-Alfenas GP, Visser EM, Guimarães VM. Enzymatic hydrolysis of lignocellulosic biomass: converting food waste in valuable products. Curr Opin Food Sci. 2015;1:44–49. doi: 10.1016/j.cofs.2014.10.001.
  • Kim JS, Lee YY, Kim TH. A review on alkaline pretreatment technology for bioconversion of lignocellulosic biomass. Bioresour Technol. 2016;199:42–48. doi: 10.1016/j.biortech.2015.08.085.
  • Yan X, Wang Z, Zhang K, et al. Bacteria-enhanced dilute acid pretreatment of lignocellulosic biomass. Bioresour Technol. 2017;245:419–425. doi: 10.1016/j.biortech.2017.08.037.
  • Zheng Y, Zhao J, Xu F, et al. Pretreatment of lignocellulosic biomass for enhanced biogas production. Prog Energy Combust Sci. 2014;42:35–53. doi: 10.1016/j.pecs.2014.01.001.
  • Arenas-Cárdenas P, López-López A, Moeller-Chávez GE, et al. Current pretreatments of lignocellulosic residues in the production of bioethanol. Waste Biomass Valor. 2017;8:161–181. doi: 10.1007/s12649-016-9559-4.
  • Pandiyan K, Singh A, Singh S, et al. Technological interventions for utilization of crop residues and weedy biomass for second generation bio-ethanol production. Renew Energy. 2019;132:723–741. doi: 10.1016/j.renene.2018.08.049.
  • Haldar D, Purkait MK. Thermochemical pretreatment enhanced bioconversion of elephant grass (Pennisetum purpureum): insight on the production of sugars and lignin. Biomass Conv Bioref. 2022;12:1125–1138. doi: 10.1007/s13399-020-00689-y.
  • Agbor VB, Cicek N, Sparling R, et al. Biomass pretreatment: fundamentals toward application. Biotechnol Adv. 2011;29:675–685. doi: 10.1016/j.biotechadv.2011.05.005.
  • Alvira P, Tomás-Pejó E, Ballesteros M, et al. Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresour Technol. 2010;101:4851–4861. doi: 10.1016/j.biortech.2009.11.093.
  • Prado CA, Antunes FAF, Rocha TM, et al. A review on recent developments in hydrodynamic cavitation and advanced oxidative processes for pretreatment of lignocellulosic materials. Bioresour Technol. 2022;345:126458. doi: 10.1016/j.biortech.2021.126458.
  • Kumar B, Bhardwaj N, Agrawal K, et al. Current perspective on pretreatment technologies using lignocellulosic biomass: an emerging biorefinery concept. Fuel Process Technol. 2020;199:106244. doi: 10.1016/j.fuproc.2019.106244.
  • Tong W, Fang H, Song K, et al. Modified acid pretreatment to alter physicochemical properties of biomass for full cellulose/hemicellulose utilization. Carbohydr Polym. 2023;299:120182. doi: 10.1016/j.carbpol.2022.120182.
  • Vallecilla Yepez L, Bamaca Saquic B, Wilkins MR. Comparison of hydrothermolysis and mild-alkaline pretreatment methods on enhancing succinic acid production from hydrolyzed corn fiber. Enzyme Microb Technol. 2024;172:110346. doi: 10.1016/j.enzmictec.2023.110346.
  • Wang D, Shen F, Yang G, et al. Can hydrothermal pretreatment improve anaerobic digestion for biogas from lignocellulosic biomass? Bioresour Technol. 2018;249:117–124. doi: 10.1016/j.biortech.2017.09.197.
  • Xu X, Wang K, Zhou Y, et al. Comparison of organosolv pretreatment of masson pine with different solvents in promoting delignification and enzymatic hydrolysis efficiency. Fuel. 2023;338:127361. doi: 10.1016/j.fuel.2022.127361.
  • Cardoza D, Contreras MdM, Lara-Serrano M, et al. Sustainable vine shoots-to-ethanol valorisation by a sequential acid/organosolv pretreatment. Process Saf Environ Prot. 2024;183:1059–1070. doi: 10.1016/j.psep.2024.01.063.
  • Zhang Q, Hu J, Lee DJ. Pretreatment of biomass using ionic liquids: research updates. Renew Energy. 2017;111:77–84. doi: 10.1016/j.renene.2017.03.093.
  • Yoo CG, Pu Y, Ragauskas AJ. Ionic liquids: promising green solvents for lignocellulosic biomass utilization. Curr Opin Green Sustain Chem. 2017;5:5–11. doi: 10.1016/j.cogsc.2017.03.003.
  • Mathew AK, Parameshwaran B, Sukumaran RK, et al. An evaluation of dilute acid and ammonia fiber explosion pretreatment for cellulosic ethanol production. Bioresour Technol. 2016;199:13–20. doi: 10.1016/j.biortech.2015.08.121.
  • Abdul PM, Jahim JM, Harun S, et al. Effects of changes in chemical and structural characteristic of ammonia fibre expansion (AFEX) pretreated oil palm empty fruit bunch fibre on enzymatic saccharification and fermentability for biohydrogen. Bioresour Technol. 2016;211:200–208. doi: 10.1016/j.biortech.2016.02.135.
  • Kumar V, Yadav SK, Kumar J, et al. A critical review on current strategies and trends employed for removal of inhibitors and toxic materials generated during biomass pretreatment. Bioresour Technol. 2020;299:122633. doi: 10.1016/j.biortech.2019.122633.
  • Van Der Pol EC, Bakker RR, Baets P, et al. By-products resulting from lignocellulose pretreatment and their inhibitory effect on fermentations for (bio)chemicals and fuels. Appl Microbiol Biotechnol. 2014;98:9579–9593. doi: 10.1007/s00253-014-6158-9.
  • Dragone G, Kerssemakers AAJ, Driessen JLSP, et al. Innovation and strategic orientations for the development of advanced biorefineries. Bioresour Technol. 2020;302:122847. doi: 10.1016/j.biortech.2020.122847.
  • Siddiki SYA, Mofijur M, Kumar PS, et al. Microalgae biomass as a sustainable source for biofuel, biochemical and biobased value-added products: an integrated biorefinery concept. Fuel. 2022;307:121782. doi: 10.1016/j.fuel.2021.121782.
  • Saral JS, Ajmal RS, Ranganathan P. Bioeconomy of hydrocarbon biorefinery processes. In: Hydrocarbon biorefinery. Amsterdam: Elsevier; 2022. p. 355–385.
  • United Nations. Department of Economic and Social Affairs. Sustainable development, “The 17 Goals,” United Nations [Online]. [cited 2023 Jun 19]. Available from https://sdgs.un.org/goals.
  • Tripathi M, Sharma M, Bala S, et al. Conversion technologies for valorization of hemp lignocellulosic biomass for potential biorefinery applications. Sep Purif Technol. 2023;320:124018. doi: 10.1016/j.seppur.2023.124018.
  • Leong HY, Chang C-K, Khoo KS, et al. Waste biorefinery towards a sustainable circular bioeconomy: a solution to global issues. Biotechnol Biofuels. 2021;14:87. doi: 10.1186/s13068-021-01939-5.
  • Vandenberghe LPS, Valladares-Diestra KK, Bittencourt GA, et al. Beyond sugar and ethanol: the future of sugarcane biorefineries in Brazil. Renew Sustain Energy Rev. 2022;167:112721. doi: 10.1016/j.rser.2022.112721.
  • Mujtaba M, Fernandes Fraceto L, Fazeli M, et al. Lignocellulosic biomass from agricultural waste to the circular economy: a review with focus on biofuels, biocomposites and bioplastics. J Clean Prod. 2023;402:136815. doi: 10.1016/j.jclepro.2023.136815.
  • Vasconcelos MH, Mendes FM, Ramos L, et al. Techno-economic assessment of bioenergy and biofuel production in integrated sugarcane biorefinery: identification of technological bottlenecks and economic feasibility of dilute acid pretreatment. Energy. 2020;199:117422. doi: 10.1016/j.energy.2020.117422.
  • Chandel AK, Garlapati VK, Singh AK, et al. The path forward for lignocellulose biorefineries: bottlenecks, solutions, and perspective on commercialization. Bioresour Technol. 2018;264:370–381. doi: 10.1016/j.biortech.2018.06.004.
  • Dias MOS, Junqueira TL, Cavalett O, et al. Integrated versus stand-alone second generation ethanol production from sugarcane bagasse and trash. Bioresour Technol. 2012;103:152–161. doi: 10.1016/j.biortech.2011.09.120.
  • Moonsamy TA, Mandegari M, Farzad S, et al. A new insight into integrated first and second-generation bioethanol production from sugarcane. Ind Crops Prod. 2022;188:115675. doi: 10.1016/j.indcrop.2022.115675.
  • Xu C, Alam MA, Wang Z, et al. Co-fermentation of succinic acid and ethanol from sugarcane bagasse based on full hexose and pentose utilization and carbon dioxide reduction. Bioresour Technol. 2021;339:125578. doi: 10.1016/j.biortech.2021.125578.
  • Klein BC, Silva JFL, Junqueira TL, et al. Process development and techno‐economic analysis of bio‐based succinic acid derived from pentoses integrated to a sugarcane biorefinery. Biofuels Bioprod Bioref. 2017;11:1051–1064. doi: 10.1002/bbb.1813.
  • Bonan CIDG, Tramontina R, dos Santos MW, et al. Biorefinery platform for Spathaspora passalidarum NRRL Y-27907 in the production of ethanol, xylitol, and single cell protein from sugarcane bagasse. Bioenerg Res. 2022;15:1169–1181. doi: 10.1007/s12155-021-10255-7.
  • Lee JW, Yook S, Koh H, et al. Engineering xylose metabolism in yeasts to produce biofuels and chemicals. Curr Opin Biotechnol. 2021;67:15–25. doi: 10.1016/j.copbio.2020.10.012.
  • Kwak S, Jo JH, Yun EJ, et al. Production of biofuels and chemicals from xylose using native and engineered yeast strains. Biotechnol Adv. 2019;37:271–283. doi: 10.1016/j.biotechadv.2018.12.003.
  • Gomes MG, Paranhos AGdO, Camargos AB, et al. Pretreatment of sugarcane bagasse with dilute citric acid and enzymatic hydrolysis: use of black liquor and solid fraction for biogas production. Renew Energy. 2022;191:428–438. doi: 10.1016/j.renene.2022.04.057.
  • Shibukawa VP, Ramos L, Cruz-Santos MM, et al. Impact of product diversification on the economic sustainability of second-generation ethanol biorefineries: a critical review. Energies. 2023;16:6384. doi: 10.3390/en16176384.
  • Yaashikaa PR, Senthil Kumar P, Varjani S. Valorization of agro-industrial wastes for biorefinery process and circular bioeconomy: a critical review. Bioresour Technol. 2022;343:126126. doi: 10.1016/j.biortech.2021.126126.
  • Vu HP, Nguyen LN, Vu MT, et al. A comprehensive review on the framework to valorise lignocellulosic biomass as biorefinery feedstocks. Sci Total Environ. 2020;743:140630. doi: 10.1016/j.scitotenv.2020.140630.
  • Aboudi K, Fernández-Güelfo LA, Álvarez-Gallego CJ, et al. Biogas, biohydrogen, and polyhydroxyalkanoates production from organic waste in the circular economy context. In: Sustainable biofuels. Amsterdam: Elsevier; 2021. p. 305–343.
  • Broda M, Yelle DJ, Serwańska K. Bioethanol production from lignocellulosic biomass—challenges and solutions. Molecules. 2022;27:8717. doi: 10.3390/molecules27248717.
  • Devi A, Bajar S, Kour H, et al. Lignocellulosic biomass valorization for bioethanol production: a circular bioeconomy approach. Bioenergy Res. 2022;15:1820–1841. doi: 10.1007/s12155-022-10401-9.
  • Kim JY, Ahn YJ, Lee JA, et al. Recent advances in the production of platform chemicals using metabolically engineered microorganisms. Curr Opin Green Sustain Chem. 2023;40:100777. doi: 10.1016/j.cogsc.2023.100777.
  • Yan L, Yang N, Pang H, et al. Production of levulinic acid from bagasse and paddy straw by liquefaction in the presence of hydrochloride acid. CLEAN Soil Air Water. 2008;36:158–163. doi: 10.1002/clen.200700100.
  • Rover MR, Aui A, Wright MM, et al. Production and purification of crystallized levoglucosan from pyrolysis of lignocellulosic biomass. Green Chem. 2019;21:5980–5989. doi: 10.1039/C9GC02461A.
  • Shen D, Jin W, Hu J, et al. An overview on fast pyrolysis of the main constituents in lignocellulosic biomass to valued-added chemicals: structures, pathways and interactions. Renew Sustain Energy Rev. 2015;51:761–774. doi: 10.1016/j.rser.2015.06.054.
  • Jiang M, Ma J, Wu M, et al. Progress of succinic acid production from renewable resources: metabolic and fermentative strategies. Bioresour Technol. 2017;245:1710–1717. doi: 10.1016/j.biortech.2017.05.209.
  • Stagge S, Cavka A, Jönsson LJ. Identification of benzoquinones in pretreated lignocellulosic feedstocks and inhibitory effects on yeast. AMB Express. 2015;5:62. doi: 10.1186/s13568-015-0149-9.
  • Thakur VK, Thakur MK. Recent advances in green hydrogels from lignin: a review. Int J Biol Macromol. 2015;72:834–847. doi: 10.1016/j.ijbiomac.2014.09.044.
  • Liu C, Wu S, Zhang H, et al. Catalytic oxidation of lignin to valuable biomass-based platform chemicals: a review. Fuel Process Technol. 2019;191:181–201. doi: 10.1016/j.fuproc.2019.04.007.
  • Tian T, Li Q, He R, et al. Effects of biochemical composition on hydrogen production by biomass gasification. Int J Hydrog Energy. 2017;42:19723–19732. doi: 10.1016/j.ijhydene.2017.06.174.
  • Chaves FDS, Brumano LP, Franco Marcelino PR, et al. Biosurfactant production by Antarctic-derived yeasts in sugarcane straw hemicellulosic hydrolysate. Biomass Conv Bioref. 2023;13:5295–5305. doi: 10.1007/s13399-021-01578-8.
  • Marcelino PRF, Peres GFD, Terán-Hilares R, et al. Biosurfactants production by yeasts using sugarcane bagasse hemicellulosic hydrolysate as new sustainable alternative for lignocellulosic biorefineries. Ind Crops Prod. 2019;129:212–223. doi: 10.1016/j.indcrop.2018.12.001.
  • Cruz-Santos MM, Antunes FAF, Arruda GL, et al. Production and applications of pullulan from lignocellulosic biomass: challenges and perspectives. Bioresour Technol. 2023;385:129460. doi: 10.1016/j.biortech.2023.129460.
  • Lu H, Yadav V, Bilal M, et al. Bioprospecting microbial hosts to valorize lignocellulose biomass – environmental perspectives and value-added bioproducts. Chemosphere. 2022;288:132574. doi: 10.1016/j.chemosphere.2021.132574.
  • Nabi BG, Mukhtar K, Ahmed W, et al. Natural pigments: anthocyanins, carotenoids, chlorophylls, and betalains as colorants in food products. Food Biosci. 2023;52:102403. doi: 10.1016/j.fbio.2023.102403.
  • Shen N, Ren J, Liu Y, et al. Natural edible pigments: a comprehensive review of resource, chemical classification, biosynthesis pathway, separated methods and application. Food Chem. 2023;403:134422. doi: 10.1016/j.foodchem.2022.134422.
  • Market for organic pigments to reach $6.7 billion by 2026. Focus Powder Coat. 2021;2021:7.
  • Suparmi, Desanti OI, Cahyono B. The correlation between knowledge and attitude on food colorant uses of PKK mothers in Penggaron Lor Village. Procedia Food Sci. 2015;3:156–161. doi: 10.1016/j.profoo.2015.01.017.
  • Zhao D, Li C. Multi-omics profiling reveals potential mechanisms of culture temperature modulating biosynthesis of carotenoids, lipids, and exopolysaccharides in oleaginous red yeast Rhodotorula glutinis ZHK. LWT. 2022;171:114103. doi: 10.1016/j.lwt.2022.114103.
  • Venil CK, Zakaria ZA, Ahmad WA. Bacterial pigments and their applications. Process Biochem. 2013;48:1065–1079. doi: 10.1016/j.procbio.2013.06.006.
  • Hu J, Nagarajan D, Zhang Q, et al. Heterotrophic cultivation of microalgae for pigment production: a review. Biotechnol Adv. 2018;36:54–67. doi: 10.1016/j.biotechadv.2017.09.009.
  • Kantifedaki A, Kachrimanidou V, Mallouchos A, et al. Orange processing waste valorisation for the production of bio-based pigments using the fungal strains Monascus purpureus and Penicillium purpurogenum. J Clean Prod. 2018;185:882–890. doi: 10.1016/j.jclepro.2018.03.032.
  • Rapoport A, Guzhova I, Bernetti L, et al. Carotenoids and some other pigments from fungi and yeasts. Metabolites. 2021;11:92. doi: 10.3390/metabo11020092.
  • Aberoumand A. A review article on edible pigments properties and sources as natural biocolorants in foodstuff and food industry. World J Dairy Food Sci. 2011;6(1):71–78.
  • You J, Pan X, Yang C, et al. Microbial production of riboflavin: biotechnological advances and perspectives. Metab Eng. 2021;68:46–58. doi: 10.1016/j.ymben.2021.08.009.
  • Rudrappa M, Kumar RS, Basavarajappa DS, et al. Penicillium citrinum NP4 mediated production, extraction, physicochemical characterization of the melanin, and its anticancer, apoptotic, photoprotection properties. Int J Biol Macromol. 2023;245:125547. doi: 10.1016/j.ijbiomac.2023.125547.
  • Narsing Rao MP, Xiao M, Li WJ. Fungal and bacterial pigments: secondary metabolites with wide applications. Front Microbiol. 2017;8:1113. doi: 10.3389/fmicb.2017.01113.
  • Santos MCD, Bicas JL. Natural blue pigments and bikaverin. Microbiol Res. 2021;244:126653. doi: 10.1016/j.micres.2020.126653.
  • Kaline Dos Santos Duarte C, Da Silva MNP, Sampaio EBT, et al. Yeasts as a source of pigments of biotechnological interest. In: Advances in yeast biotechnology for biofuels and sustainability. Amsterdam: Elsevier; 2023. p. 297–330.
  • Mapari SAS, Thrane U, Meyer AS. Fungal polyketide azaphilone pigments as future natural food colorants? Trends Biotechnol. 2010;28:300–307. doi: 10.1016/j.tibtech.2010.03.004.
  • Dufossé L, Fouillaud M, Caro Y, et al. Filamentous fungi are large-scale producers of pigments and colorants for the food industry. Curr Opin Biotechnol. 2014;26:56–61. doi: 10.1016/j.copbio.2013.09.007.
  • Allahkarami S, Sepahi AA, Hosseini H, et al. Isolation and identification of carotenoid-producing Rhodotorula sp. from Pinaceae forest ecosystems and optimization of in vitro carotenoid production. Biotechnol Rep. 2021;32:e00687. doi: 10.1016/j.btre.2021.e00687.
  • Ghattavi K, Homaei A, Kamrani E, et al. Melanin pigment derived from marine organisms and its industrial applications. Dyes Pigments. 2022;201:110214. doi: 10.1016/j.dyepig.2022.110214.
  • Cordero RJB, Casadevall A. Functions of fungal melanin beyond virulence. Fungal Biol Rev. 2017;31:99–112. doi: 10.1016/j.fbr.2016.12.003.
  • Elsayis A, Hassan SWM, Ghanem KM, et al. Optimization of melanin pigment production from the halotolerant black yeast Hortaea werneckii AS1 isolated from solar salter in Alexandria. BMC Microbiol. 2022;22:92. doi: 10.1186/s12866-022-02505-1.
  • Kim D, Ku S. Beneficial effects of Monascus sp. KCCM 10093 pigments and derivatives: a mini review. Molecules. 2018;23:98. doi: 10.3390/molecules23010098.
  • Yuliana A, Singgih M, Julianti E, et al. Derivates of azaphilone Monascus pigments. Biocatal Agric Biotechnol. 2017;9:183–194. doi: 10.1016/j.bcab.2016.12.014.
  • Kalra R, Conlan XA, Goel M. Fungi as a potential source of pigments: harnessing filamentous fungi. Front Chem. 2020;8:369. doi: 10.3389/fchem.2020.00369.
  • Hohmann HP, Stahmann KP. Biotechnology of riboflavin production. In: Comprehensive Natural Products III [Internet]. Amsterdam: Elsevier; 2010. p. 21–39.
  • Wang J, Huang Z, Jiang Q, et al. Fungal solid-state fermentation of crops and their by-products to obtain protein resources: the next frontier of food industry. Trends Food Sci Technol. 2023;138:S0924224423001929. doi: 10.1016/j.tifs.2023.06.020.
  • Chilakamarry CR, Mimi Sakinah AM, Zularisam AW, et al. Advances in solid-state fermentation for bioconversion of agricultural wastes to value-added products: opportunities and challenges. Bioresour Technol. 2022;343:126065. doi: 10.1016/j.biortech.2021.126065.
  • Keivani H, Jahadi M. Solid-state fermentation for the production of Monascus pigments from soybean meals. Biocatal Agric Biotechnol. 2022;46:102531. doi: 10.1016/j.bcab.2022.102531.
  • Louhasakul Y, Wado H, Lateh R, et al. Solid-state fermentation of Saba banana peel for pigment production by Monascus purpureus. Braz J Microbiol. 2023;54:93–102. doi: 10.1007/s42770-022-00866-3.
  • Wang R, Gmoser R, Taherzadeh MJ, et al. Solid-state fermentation of stale bread by an edible fungus in a semi-continuous plug-flow bioreactor. Biochem Eng J. 2021;169:107959. doi: 10.1016/j.bej.2021.107959.
  • Kumar Shetty AV, Dave N, Murugesan G, et al. Production and extraction of red pigment by solid-state fermentation of broken rice using Monascus sanguineus NFCCI 2453. Biocatal Agric Biotechnol. 2021;33:101964. doi: 10.1016/j.bcab.2021.101964.
  • Dulf FV, Vodnar DC, Dulf EH. Solid-state fermentation with Zygomycetes fungi as a tool for biofortification of apple pomace with γ-linolenic acid, carotenoid pigments and phenolic antioxidants. Food Res Int. 2023;173:113448. doi: 10.1016/j.foodres.2023.113448.
  • Chen X, Yan J, Chen J, et al. Potato pomace: an efficient resource for Monascus pigments production through solid-state fermentation. J Biosci Bioeng. 2021;132:167–173. doi: 10.1016/j.jbiosc.2021.03.007.
  • Zahan KA, Ismail NS, Leong CR, et al. Monascorubin production by Penicillium minioluteum ED24 in a solid-state fermentation using sesame seed cake as substrate. Mater Today Proc. 2020;31:127–135. doi: 10.1016/j.matpr.2020.01.347.
  • Embaby AM, Hussein MN, Hussein A. Monascus orange and red pigments production by Monascus purpureus ATCC16436 through co-solid state fermentation of corn cob and glycerol: an eco-friendly environmental low cost approach. Papp T, editor. PLoS One. 2018;13:e0207755. doi: 10.1371/journal.pone.0207755.
  • Lopes FC, Ligabue-Braun R. Agro-industrial residues: eco-friendly and inexpensive substrates for microbial pigments production. Front Sustain Food Syst. 2021;5:589414. doi: 10.3389/fsufs.2021.589414.
  • Morales-Oyervides L, Ruiz-Sánchez JP, Oliveira JC, et al. Medium design from corncob hydrolyzate for pigment production by Talaromyces atroroseus GH2: kinetics modeling and pigments characterization. Biochem Eng J. 2020;161:107698. doi: 10.1016/j.bej.2020.107698.
  • Zhang S, Zhao W, Nkechi O, et al. Utilization of low‐cost agricultural by‐product rice husk for Monascus pigments production via submerged batch‐fermentation. J Sci Food Agric. 2022;102:2454–2463. doi: 10.1002/jsfa.11585.
  • Sharma R, Ghoshal G. Optimization of carotenoids production by Rhodotorula mucilaginosa (MTCC-1403) using agro-industrial waste in bioreactor: a statistical approach. Biotechnol Rep. 2020;25:e00407. doi: 10.1016/j.btre.2019.e00407.
  • Bonfiglio F, Cagno M, Yamakawa CK, et al. Production of xylitol and carotenoids from switchgrass and Eucalyptus globulus hydrolysates obtained by intensified steam explosion pretreatment. Ind Crops Prod. 2021;170:113800. doi: 10.1016/j.indcrop.2021.113800.
  • Liu Z, Feist AM, Dragone G, et al. Lipid and carotenoid production from wheat straw hydrolysates by different oleaginous yeasts. J Clean Prod. 2020;249:119308. doi: 10.1016/j.jclepro.2019.119308.
  • Wehrs M, Gladden JM, Liu Y, et al. Sustainable bioproduction of the blue pigment indigoidine: expanding the range of heterologous products in R. toruloides to include non-ribosomal peptides. Green Chem. 2019;21:3394–3406. doi: 10.1039/C9GC00920E.
  • Silbir S, Goksungur Y. Natural red pigment production by Monascus purpureus in submerged fermentation systems using a food industry waste: Brewer’s spent grain. Foods. 2019;8:161. doi: 10.3390/foods8050161.
  • Terán Hilares R, de Souza RA, Marcelino PF, et al. Sugarcane bagasse hydrolysate as a potential feedstock for red pigment production by Monascus ruber. Food Chem. 2018;245:786–791. doi: 10.1016/j.foodchem.2017.11.111.
  • Nizami AS, Rehan M, Waqas M, et al. Waste biorefineries: enabling circular economies in developing countries. Bioresour Technol. 2017;241:1101–1117. doi: 10.1016/j.biortech.2017.05.097.
  • Silveira MHL, Chandel AK, Vanelli BA, et al. Production of hemicellulosic sugars from sugarcane bagasse via steam explosion employing industrially feasible conditions: pilot scale study. Bioresour Technol Rep. 2018;3:138–146. doi: 10.1016/j.biteb.2018.07.011.
  • Farawahida AH, Palmer J, Flint S. Monascus spp. and citrinin: identification, selection of Monascus spp. isolates, occurrence, detection and reduction of citrinin during the fermentation of red fermented rice. Int J Food Microbiol. 2022;379:109829. doi: 10.1016/j.ijfoodmicro.2022.109829.
  • Shi J, Qin X, Zhao Y, et al. Strategies to enhance the production efficiency of Monascus pigments and control citrinin contamination. Process Biochem. 2022;117:19–29. doi: 10.1016/j.procbio.2022.03.003.
  • Kang B, Zhang X, Wu Z, et al. Production of citrinin-free Monascus pigments by submerged culture at low pH. Enzyme Microb Technol. 2014;55:50–57. doi: 10.1016/j.enzmictec.2013.12.007.
  • Moghadam HD, Tabatabaee Yazdi F, Shahidi F, et al. Co-culture of Monascus purpureus with Saccharomyces cerevisiae: A strategy for pigments increment and citrinin reduction. Biocatal Agric Biotechnol. 2022;45:102501. doi: 10.1016/j.bcab.2022.102501.
  • Liu W, An C, Shu X, et al. A dual-plasmid CRISPR/Cas system for mycotoxin elimination in polykaryotic industrial fungi. ACS Synth Biol. 2020;9:2087–2095. doi: 10.1021/acssynbio.0c00178.
  • Jin FJ, Hu S, Wang BT, et al. Advances in genetic engineering technology and its application in the industrial fungus Aspergillus oryzae. Front Microbiol. 2021;12:644404. doi: 10.3389/fmicb.2021.644404.
  • Buecherl L, Myers CJ. Engineering genetic circuits: advancements in genetic design automation tools and standards for synthetic biology. Curr Opin Microbiol. 2022;68:102155. doi: 10.1016/j.mib.2022.102155.
  • Long C, Zeng X, Xie J, et al. High-level production of Monascus pigments in Monascus ruber CICC41233 through ATP-citrate lyase overexpression. Biochem Eng J. 2019;146:160–169. doi: 10.1016/j.bej.2019.03.007.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.