0
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Electroactive biofilm communities in microbial fuel cells for the synergistic treatment of wastewater and bioelectricity generation

&
Received 29 Sep 2022, Accepted 09 Jun 2024, Published online: 15 Jul 2024

References

  • Bhat RA, Singh DV, Qadri H, et al. Vulnerability of municipal solid waste: an emerging threat to aquatic ecosystems. Chemosphere. 2022;287:132223. doi: 10.1016/j.chemosphere.2021.132223.
  • Boretti A, Rosa L. Reassessing the projections of the world water development report. NPJ Clean Water. 2019;2:1–6. doi: 10.1038/s41545-019-0039-9.
  • World Water Assessment Programme (Nations Unies). The United nations world water development report 2018 (United nations educational, scientific and cultural organization, New York, United States).
  • Crini G, Lichtfouse E. Advantages and disadvantages of techniques used for wastewater treatment. Environ Chem Lett. 2019;17:145–155. doi: 10.1007/s10311-018-0785-9.
  • Arbabi M, Golshani N. Removal of copper ions Cu (II) from industrial wastewater: a review of removal methods. Int J Epidemiol Res. 2016;3:283–293.
  • Wan D, Li Q, Liu Y, et al. Simultaneous reduction of perchlorate and nitrate in a combined heterotrophic-sulfur-autotrophic system: secondary pollution control, pH balance and microbial community analysis. Water Res. 2019;165:115004. doi: 10.1016/j.watres.2019.115004.
  • Kumari S, Mangwani N, Das S. Low-voltage producing microbial fuel cell constructs using biofilm-forming marine bacteria. Curr Sci. 2015;108:925–932.
  • Logan BE. Exoelectrogenic bacteria that power microbial fuel cells. Nat Rev Microbiol. 2009;7:375–381. doi: 10.1038/nrmicro2113.
  • Kumar R, Singh L, Zularisam AW. Exoelectrogens: recent advances in molecular drivers involved in extracellular electron transfer and strategies used to improve it for microbial fuel cell applications. Renew Sustain Energy Rev. 2016;56:1322–1336. doi: 10.1016/j.rser.2015.12.029.
  • Zhao J, Li F, Cao Y, et al. Microbial extracellular electron transfer and strategies for engineering electroactive microorganisms. Biotechnol Adv. 2021;53:107682. doi: 10.1016/j.biotechadv.2020.107682.
  • Mohan SV, Velvizhi G, Modestra JA, et al. Microbial fuel cell: critical factors regulating bio-catalyzed electrochemical process and recent advancements. Renew Sustain Energy Rev. 2014;40:779–797. doi: 10.1016/j.rser.2014.07.109.
  • Pant D, Van Bogaert G, Diels L, et al. A review of the substrates used in microbial fuel cells (MFCs) for sustainable energy production. Bioresour Technol. 2010;101:1533–1543. doi: 10.1016/j.biortech.2009.10.017.
  • Toczyłowska-Mamińska R. Limits and perspectives of pulp and paper industry wastewater treatment—a review. Renew Sustain Energy Rev. 2017;78:764–772. doi: 10.1016/j.rser.2017.05.021.
  • Zhong D, Liao X, Liu Y, et al. Quick start-up and performance of microbial fuel cell enhanced with a polydiallyldimethylammonium chloride modified carbon felt anode. Biosens Bioelectron. 2018;119:70–78. doi: 10.1016/j.bios.2018.07.069.
  • Nawaz A, Ul Haq I, Qaisar K, et al. Microbial fuel cells: insight into simultaneous wastewater treatment and bioelectricity generation. Process Saf Environ Prot. 2022;161:357–373. doi: 10.1016/j.psep.2022.03.039.
  • Zhang Q, Hu J, Lee DJ. Microbial fuel cells as pollutant treatment units: research updates. Bioresour Technol. 2016;217:121–128. doi: 10.1016/j.biortech.2016.02.006.
  • Logroño W, Pérez M, Urquizo G, et al. Single chamber microbial fuel cell (SCMFC) with a cathodic microalgal biofilm: a preliminary assessment of the generation of bioelectricity and biodegradation of real dye textile wastewater. Chemosphere. 2017;176:378–388. doi: 10.1016/j.chemosphere.2017.02.099.
  • Das S, Mangwani N. Recent developments in microbial fuel cells: a review. J Sci Ind Res. 2010;69:727–731.
  • Kim JR, Cheng S, Oh SE, et al. Power generation using different cation, anion, and ultrafiltration membranes in microbial fuel cells. Environ Sci Technol. 2007;41:1004–1009. doi: 10.1021/es062202m.
  • Goswami R, Mishra VK. A review of design, operational conditions and applications of microbial fuel cells. Biofuels. 2018;9:203–220. doi: 10.1080/17597269.2017.1302682.
  • Jang JK, Pham TH, Chang IS, et al. Construction and operation of a novel mediator-and membrane-less microbial fuel cell. Process Biochem. 2004;39:1007–1012. doi: 10.1016/S0032-9592(03)00203-6.
  • Deng Q, Li X, Zuo J, et al. Power generation using an activated carbon fiber felt cathode in an upflow microbial fuel cell. J Power Sources. 2010;195:1130–1135. doi: 10.1016/j.jpowsour.2009.08.092.
  • Munoz-Cupa C, Hu Y, Xu C, et al. An overview of microbial fuel cell usage in wastewater treatment, resource recovery and energy production. Sci Total Environ. 2021;754:142429. doi: 10.1016/j.scitotenv.2020.142429.
  • Gurung A, Oh SE. The improvement of power output from stacked microbial fuel cells (MFCs). Energy Sources Part A. 2012;34:1569–1576. doi: 10.1080/15567036.2012.660561.
  • Zhuang L, Zheng Y, Zhou S, et al. Scalable microbial fuel cell (MFC) stack for continuous real wastewater treatment. Bioresour Technol. 2012;106:82–88. doi: 10.1016/j.biortech.2011.11.019.
  • Mahto KU, Kumari S, Das S. Unraveling the complex regulatory networks in biofilm formation in bacteria and relevance of biofilms in environmental remediation. Critical Crit Rev Biochem Mol Biol. 2021;57:1–28.
  • Li Y, Liu J, Chen X, et al. Tailoring spatial structure of electroactive biofilm for enhanced activity and direct electron transfer on iron phthalocyanine modified anode in microbial fuel cells. Biosens Bioelectron. 2021;191:113410. doi: 10.1016/j.bios.2021.113410.
  • Borole AP, Reguera G, Ringeisen B, et al. Electroactive biofilms: current status and future research needs. Energy Environ Sci. 2011;4:4813–4834. doi: 10.1039/c1ee02511b.
  • Jung S, Regan JM. Comparison of anode bacterial communities and performance in microbial fuel cells with different electron donors. Appl Microbiol Biotechnol. 2007;77:393–402. doi: 10.1007/s00253-007-1162-y.
  • Torres CI, Krajmalnik-Brown R, Parameswaran P, et al. Selecting anode-respiring bacteria based on anode potential: phylogenetic, electrochemical, and microscopic characterization. Environ Sci Technol. 2009;43:9519–9524. doi: 10.1021/es902165y.
  • Ki D, Park J, Lee J, et al. Microbial diversity and population dynamics of activated sludge microbial communities participating in electricity generation in microbial fuel cells. Water Sci Technol. 2008;58:2195–2201. doi: 10.2166/wst.2008.577.
  • Singh A, Rao A, Kaushik A. Achieving high electrogenic output from microbial fuel cell by chloroform-biotin pretreatment of wetland soil inoculum. J Environ Chem Eng. 2023;11:109403. doi: 10.1016/j.jece.2023.109403.
  • Liu Y, Harnisch F, Fricke K, et al. The study of electrochemically active microbial biofilms on different carbon-based anode materials in microbial fuel cells. Biosens Bioelectron. 2010;25:2167–2171. doi: 10.1016/j.bios.2010.01.016.
  • Aiyer KS. Synergistic effects in a microbial fuel cell between co-cultures and a photosynthetic alga Chlorella vulgaris improve performance. Heliyon. 2021;7:e05935. doi: 10.1016/j.heliyon.2021.e05935.
  • Zhi W, Ge Z, He Z, et al. Methods for understanding microbial community structures and functions in microbial fuel cells: a review. Bioresour Technol. 2014;171:461–468. doi: 10.1016/j.biortech.2014.08.096.
  • Cao Y, Mu H, Liu W, et al. Electricigens in the anode of microbial fuel cells: pure cultures versus mixed communities. Microb Cell Fact. 2019;18:39. doi: 10.1186/s12934-019-1087-z.
  • Nevin KP, Richter H, Covalla SF, et al. Power output and columbic efficiencies from biofilms of Geobacter sulfurreducens comparable to mixed community microbial fuel cells. Environ Microbiol. 2008;10:2505–2514. doi: 10.1111/j.1462-2920.2008.01675.x.
  • Zhuang Z, Yang G, Zhuang L. Exopolysaccharides matrix affects the process of extracellular electron transfer in electroactive biofilm. Sci Total Environ. 2022;806:150713. doi: 10.1016/j.scitotenv.2021.150713.
  • Franks AE, Nevin KP, Glaven RH, et al. Microtoming coupled to microarray analysis to evaluate the spatial metabolic status of Geobacter sulfurreducens biofilms. ISME J. 2010;4:509–519. doi: 10.1038/ismej.2009.137.
  • Korth B, Rosa LF, Harnisch F, et al. A framework for modeling electroactive microbial biofilms performing direct electron transfer. Bioelectrochemistry. 2015;106:194–206. doi: 10.1016/j.bioelechem.2015.03.010.
  • Yee MO, Deutzmann J, Spormann A, et al. Cultivating electroactive microbes—from field to bench. Nanotechnology. 2020;31:174003. doi: 10.1088/1361-6528/ab6ab5.
  • Atnafu T, Leta S. New fragmented electro-active biofilm (FAB) reactor to increase anode surface area and performance of microbial fuel cell. Environ Sys Res. 2021;10:31.
  • Snider RM, Strycharz-Glaven SM, Tsoi SD, et al. Long-range electron transport in Geobacter sulfurreducens biofilms is redox gradient-driven. Proc Natl Acad Sci USA. 2012;109:15467–15472. doi: 10.1073/pnas.1209829109.
  • Schrott GD, Ordoñez MV, Robuschi L, et al. Physiological stratification in electricity‐producing biofilms of Geobacter sulfurreducens. ChemSusChem. 2014;7:598–603. doi: 10.1002/cssc.201300605.
  • Reguera G. Microbial nanowires and electroactive biofilms. FEMS Microbiol Ecol. 2018;94:fiy086. doi: 10.1093/femsec/fiy086.
  • Aiyer KS. How does electron transfer occur in microbial fuel cells? World J Microbiol Biotechnol. 2020;36:19. doi: 10.1007/s11274-020-2801-z.
  • Liu J, Chakraborty S, Hosseinzadeh P, et al. Metalloproteins containing cytochrome, iron–sulfur, or copper redox centers. Chem Rev. 2014;114:4366–4469. doi: 10.1021/cr400479b.
  • Müller H, Bosch J, Griebler C, et al. Long-distance electron transfer by cable bacteria in aquifer sediments. ISME J. 2016;10:2010–2019. doi: 10.1038/ismej.2015.250.
  • Meysman FJ. Cable bacteria take a new breath using long-distance electricity. Trends Microbiol. 2018;26:411–422. doi: 10.1016/j.tim.2017.10.011.
  • Nimje VR, Chen CY, Chen CC, et al. Stable and high energy generation by a strain of Bacillus subtilis in a microbial fuel cell. J Power Sources. 2009;190:258–263. doi: 10.1016/j.jpowsour.2009.01.019.
  • Guo W, Cui Y, Song H, et al. Layer-by-layer construction of graphene-based microbial fuel cell for improved power generation and methyl orange removal. Bioprocess Biosyst Eng. 2014;37:1749–1758. doi: 10.1007/s00449-014-1148-y.
  • Chen BY, Hong J, Ng IS, et al. Deciphering simultaneous bioelectricity generation and reductive decolorization using mixed-culture microbial fuel cells in salty media. J Taiwan Inst Chem Eng. 2013;44:446–453. doi: 10.1016/j.jtice.2012.12.003.
  • Sreelekshmy BR, Basheer R, Sivaraman S, et al. Sustainable electric power generation from live anaerobic digestion of sugar industry effluents using microbial fuel cells. J Mater Chem A. 2020;8:6041–6056. doi: 10.1039/D0TA00459F.
  • He Z, Liu J, Qiao Y, et al. Architecture engineering of hierarchically porous chitosan/vacuum-stripped graphene scaffold as bioanode for high performance microbial fuel cell. Nano Lett. 2012;12:4738–4741. doi: 10.1021/nl302175j.
  • Deng L, Li F, Zhou S, et al. A study of electron-shuttle mechanism in Klebsiella pneumoniae based-microbial fuel cells. Chin Sci Bull. 2010;55:99–104. doi: 10.1007/s11434-009-0563-y.
  • Feng J, Qian Y, Wang Z, et al. Enhancing the performance of Escherichia coli-inoculated microbial fuel cells by introduction of the phenazine-1-carboxylic acid pathway. J Biotechnol. 2018;275:1–6. doi: 10.1016/j.jbiotec.2018.03.017.
  • Wu X, Qiao Y, Shi Z, et al. Hierarchically porous N-doped carbon nanotubes/reduced graphene oxide composite for promoting flavin-based interfacial electron transfer in microbial fuel cells. ACS Appl Mater Interfaces. 2018;10:11671–11677. doi: 10.1021/acsami.7b19826.
  • Yang Y, Choi C, Xie G, et al. Electron transfer interpretation of the biofilm-coated anode of a microbial fuel cell and the cathode modification effects on its power. Bioelectrochemistry. 2019;127:94–103. doi: 10.1016/j.bioelechem.2019.02.004.
  • Wang G, Wei L, Cao C, et al. Novel resolution-contrast method employed for investigating electron transfer mechanism of the mixed bacteria microbial fuel cell. Int. J. Hydrog. Energy. 2017;42:11614–11621. doi: 10.1016/j.ijhydene.2017.02.029.
  • Qiao Y, Qiao YJ, Zou L, et al. Real-time monitoring of phenazines excretion in Pseudomonas aeruginosa microbial fuel cell anode using cavity microelectrodes. Bioresour Technol. 2015;198:1–6. doi: 10.1016/j.biortech.2015.09.002.
  • Fricke K, Harnisch F, Schröder U. On the use of cyclic voltammetry for the study of anodic electron transfer in microbial fuel cells. Energy Environ Sci. 2008;1:144–147. doi: 10.1039/b802363h.
  • Deroco PB, de Fátima Giarola J, Júnior DW, et al. Paper-based electrochemical sensing devices. In Comprehensive analytical chemistry 2020; Vol. 89, p. 91–137. Amsterdam, Netherlands: Elsevier.
  • Vielstich W. Cyclic voltammetry. In: Handbook of Fuel Cells. New Jersey: Wiley;2010.
  • Dessie Y, Tadesse S, Eswaramoorthy R. Review on manganese oxide based biocatalyst in microbial fuel cell: nanocomposite approach. Mater Sci Energy Technol. 2020;3:136–149. doi: 10.1016/j.mset.2019.11.001.
  • Kashyap D, Dwivedi PK, Pandey JK, et al. Application of electrochemical impedance spectroscopy in bio-fuel cell characterization: a review. Int J Hydrog Energy. 2014;39:20159–20170. doi: 10.1016/j.ijhydene.2014.10.003.
  • Sekar N, Ramasamy RP. Electrochemical impedance spectroscopy for microbial fuel cell characterization. J Microb Biochem Technol S. 2013;6:1–4.
  • Malvankar NS, Yalcin SE, Tuominen MT, et al. Visualization of charge propagation along individual pili proteins using ambient electrostatic force microscopy. Nat Nanotechnol. 2014;9:1012–1017. doi: 10.1038/nnano.2014.236.
  • Jiang X, Hu J, Lieber AM, et al. Nanoparticle facilitated extracellular electron transfer in microbial fuel cells. Nano Lett. 2014;14:6737–6742. doi: 10.1021/nl503668q.
  • Uria N, Ferrera I, Mas J. Electrochemical performance and microbial community profiles in microbial fuel cells in relation to electron transfer mechanisms. BMC Microbiol. 2017;17:208. doi: 10.1186/s12866-017-1115-2.
  • Zhang Y, Jiang J, Zhao Q, et al. Analysis of functional genomes from metagenomes: revealing the accelerated electron transfer in microbial fuel cell with rhamnolipid addition. Bioelectrochemistry. 2018;119:59–67. doi: 10.1016/j.bioelechem.2017.08.010.
  • Krishna KV, Swathi K, Hemalatha M, et al. Bioelectrocatalyst in Microbial Electrochemical Systems and Extracellular Electron Transport. In: Mohan SV, Varjani S, Pandey A, editors. Microbial Electrochemical Technology. Amsterdam, Netherlands: Elsevier; 2019. p. 117–141.
  • Liu L, Tsyganova O, Lee DJ, et al. Anodic biofilm in single-chamber microbial fuel cells cultivated under different temperatures. Int J Hydrog Energy. 2012;37:15792–15800. doi: 10.1016/j.ijhydene.2012.03.084.
  • Zhang S, You J, An N, et al. Gaseous toluene powered microbial fuel cell: performance, microbial community, and electron transfer pathway. Chem Eng J. 2018;351:515–522. doi: 10.1016/j.cej.2018.06.027.
  • Roy S, Schievano A, Pant D. Electro-stimulated microbial factory for value added product synthesis. Bioresour Technol. 2016;213:129–139. doi: 10.1016/j.biortech.2016.03.052.
  • Nevin KP, Kim BC, Glaven RH, et al. Anode biofilm transcriptomics reveals outer surface components essential for high density current production in Geobacter sulfurreducens fuel cells. PLoS One. 2009;4:e5628. doi: 10.1371/journal.pone.0005628.
  • Kim BC, Postier BL, DiDonato RJ, et al. Insights into genes involved in electricity generation in Geobacter sulfurreducens via whole genome microarray analysis of the OmcF-deficient mutant. Bioelectrochemistry. 2008;73:70–75. doi: 10.1016/j.bioelechem.2008.04.023.
  • Schrott GD, Bonanni PS, Robuschi L, et al. Electrochemical insight into the mechanism of electron transport in biofilms of Geobacter sulfurreducens. Electrochim Acta. 2011;56:10791–10795. doi: 10.1016/j.electacta.2011.07.001.
  • Krige A, Ramser K, Sjöblom M, et al. A new approach for evaluating electron transfer dynamics by using in situ resonance Raman microscopy and chronoamperometry in conjunction with a dynamic model. Applied and Environ Microbiol. 2020;86:e01535-20.
  • Malvankar NS, Lovley DR. Microbial nanowires: a new paradigm for biological electron transfer and bioelectronics. Chem Sus Chem. 2012;5:1039–1046. doi: 10.1002/cssc.201100733.
  • Strycharz-Glaven SM, Snider RM, Guiseppi-Elie A, et al. On the electrical conductivity of microbial nanowires and biofilms. Energy Environ Sci. 2011;4:4366–4379. doi: 10.1039/c1ee01753e.
  • Massazza D, Robledo AJ, Simón CN, et al. Energetics, electron uptake mechanisms and limitations of electroautotrophs growing on biocathodes–A review. Bioresour Technol. 2021;342:125893. doi: 10.1016/j.biortech.2021.125893.
  • Kracke F, Vassilev I, Krömer JO. Microbial electron transport and energy conservation–the foundation for optimizing bioelectrochemical systems. Front Microbiol. 2015;6:575. doi: 10.3389/fmicb.2015.00575.
  • Strycharz SM, Glaven RH, Coppi MV, et al. Gene expression and deletion analysis of mechanisms for electron transfer from electrodes to Geobacter sulfurreducens. Bioelectrochemistry. 2011;80:142–150. doi: 10.1016/j.bioelechem.2010.07.005.
  • Palanisamy G, Jung HY, Sadhasivam T, et al. A comprehensive review on microbial fuel cell technologies: processes, utilization, and advanced developments in electrodes and membranes. J Clean Prod. 2019;221:598–621. doi: 10.1016/j.jclepro.2019.02.172.
  • Breuer M, Rosso KM, Blumberger J, et al. Multi-haem cytochromes in Shewanella oneidensis MR-1: structures, functions and opportunities. J R Soc Interface. 2015;12:20141117. doi: 10.1098/rsif.2014.1117.
  • Shi L, Rosso KM, Clarke TA, et al. Molecular underpinnings of Fe (III) oxide reduction by Shewanella oneidensis MR-1. Front Microbiol. 2012;3:50. doi: 10.3389/fmicb.2012.00050.
  • Yang Y, Xu M, Guo J, et al. Bacterial extracellular electron transfer in bioelectrochemical systems. Process Biochem. 2012;47:1707–1714. doi: 10.1016/j.procbio.2012.07.032.
  • Richardson DJ, Butt JN, Fredrickson JK, et al. The ‘porin–cytochrome’model for microbe‐to‐mineral electron transfer. Mol Microbiol. 2012;85:201–212. doi: 10.1111/j.1365-2958.2012.08088.x.
  • Richter K, Schicklberger M, Gescher J. Dissimilatory reduction of extracellular electron acceptors in anaerobic respiration. Appl Environ Microbiol. 2012;78:913–921. doi: 10.1128/AEM.06803-11.
  • Umar MF, Rafatullah M, Abbas SZ, et al. Advancement in benthic microbial fuel cells toward sustainable bioremediation and renewable energy production. IJERPH. 2021;18:3811. doi: 10.3390/ijerph18073811.
  • Sydow A, Krieg T, Mayer F, et al. Electroactive bacteria—molecular mechanisms and genetic tools. Appl Microbiol Biotechnol. 2014;98:8481–8495. doi: 10.1007/s00253-014-6005-z.
  • Agrahari R, Bayar B, Abubackar HN, et al. Advances in the development of electrodes material for improving reactor kinetics in Microbial Fuel Cells. Chemosphere. 2021;290:133184. doi: 10.1016/j.chemosphere.2021.133184.
  • Fan Y, Sharbrough E, Liu H. Quantification of the internal resistance distribution of microbial fuel cells. Environ Sci Technol. 2008;42:8101–8107. doi: 10.1021/es801229j.
  • Sun D, Cheng S, Wang A, et al. Temporal-spatial changes in viabilities and electrochemical properties of anode biofilms. Environ Sci Technol. 2015;49:5227–5235. doi: 10.1021/acs.est.5b00175.
  • Yaqoob AA, Mohamad Ibrahim MN, Rafatullah M, et al. Recent advances in anodes for microbial fuel cells: an overview. Materials. 2020;13:2078. doi: 10.3390/ma13092078.
  • Dhilllon SK, Kundu PP, Jain R. Catalytic advancements in carbonaceous materials for bio-energy generation in microbial fuel cells: a review. Environ Sci Pollut Res. 2022;30:24815–24841. doi: 10.1007/s11356-021-17529-9.
  • Sayed ET, Alawadhi H, Elsaid K, et al. A carbon-cloth anode electroplated with iron nanostructure for microbial fuel cell operated with real wastewater. Sustainability. 2020;12:6538. doi: 10.3390/su12166538.
  • Nosek D, Jachimowicz P, Cydzik-Kwiatkowska A. Anode modification as an alternative approach to improve electricity generation in microbial fuel cells. Energies. 2020;13:6596. doi: 10.3390/en13246596.
  • Khajeh RT, Aber S, Nofouzi K. Efficient improvement of microbial fuel cell performance by the modification of graphite cathode via electrophoretic deposition of CuO/ZnO. Mater Chem Phys. 2020;240:122208. doi: 10.1016/j.matchemphys.2019.122208.
  • Tsai HY, Wu CC, Lee CY, et al. Microbial fuel cell performance of multiwall carbon nanotubes on carbon cloth as electrodes. J Power Sources. 2009;194:199–205. doi: 10.1016/j.jpowsour.2009.05.018.
  • Goleij E, Taleghani HG, Lashkenari MS. Modified carbon cloth flexible electrode with ternary nanocomposite for high performance sediment microbial fuel cell. Mater Chem Phys. 2021;272:124961. doi: 10.1016/j.matchemphys.2021.124961.
  • Huang L, Li X, Ren Y, et al. In-situ modified carbon cloth with polyaniline/graphene as anode to enhance performance of microbial fuel cell. Int J Hydrog Energy. 2016;41:11369–11379. doi: 10.1016/j.ijhydene.2016.05.048.
  • Chen Y, Chen L, Li P, et al. Enhanced performance of microbial fuel cells by using MnO2/Halloysite nanotubes to modify carbon cloth anodes. Energy. 2016;109:620–628. doi: 10.1016/j.energy.2016.05.041.
  • Zhou M, Chi M, Wang H, et al. Anode modification by electrochemical oxidation: a new practical method to improve the performance of microbial fuel cells. BioChem Eng J. 2012;60:151–155. doi: 10.1016/j.bej.2011.10.014.
  • Zhang Y, Mo G, Li X, et al. A graphene modified anode to improve the performance of microbial fuel cells. J Power Sources. 2011;196:5402–5407. doi: 10.1016/j.jpowsour.2011.02.067.
  • Xiao L, Damien J, Luo J, et al. Crumpled graphene particles for microbial fuel cell electrodes. J Power Sources. 2012;208:187–192. doi: 10.1016/j.jpowsour.2012.02.036.
  • Lv Z, Xie D, Yue X, et al. Ruthenium oxide-coated carbon felt electrode: a highly active anode for microbial fuel cell applications. J Power Sources. 2012;210:26–31. doi: 10.1016/j.jpowsour.2012.02.109.
  • Mehdinia A, Ziaei E, Jabbari A. Multi-walled carbon nanotube/SnO2 nanocomposite: a novel anode material for microbial fuel cells. Electrochim Acta. 2014;130:512–518. doi: 10.1016/j.electacta.2014.03.011.
  • Hou J, Liu Z, Zhang P. A new method for fabrication of graphene/polyaniline nanocomplex modified microbial fuel cell anodes. J Power Sources. 2013;224:139–144. doi: 10.1016/j.jpowsour.2012.09.091.
  • Lv Z, Chen Y, Wei H, et al. One-step electrosynthesis of polypyrrole/graphene oxide composites for microbial fuel cell application. Electrochim Acta. 2013;111:366–373. doi: 10.1016/j.electacta.2013.08.022.
  • Tahir K, Miran W, Jang J, et al. Nickel ferrite/MXene-coated carbon felt anodes for enhanced microbial fuel cell performance. Chemosphere. 2021;268:128784. doi: 10.1016/j.chemosphere.2020.128784.
  • Yang L, Wang A, Wen Q, et al. Modified cobalt-manganese oxide-coated carbon felt anodes: an available method to improve the performance of microbial fuel cells. Bioprocess Biosyst Eng. 2021;44:2615–2625. doi: 10.1007/s00449-021-02631-6.
  • Zhou J, Zhang H, Zuo T, et al. Enhanced copper-containing wastewater treatment with MnO2/CNTs modified anode microbial fuel cell. Process Saf Environ Prot. 2022;159:157–167. doi: 10.1016/j.psep.2021.12.060.
  • Huang SJ, Ubando AT, Wang CY, et al. Modification of carbon based cathode electrode in a batch-type microbial fuel cells. Biomass Bioenergy. 2021;145:105972. doi: 10.1016/j.biombioe.2021.105972.
  • Zhuang L, Zhou S, Li Y, et al. Enhanced performance of air-cathode two-chamber microbial fuel cells with high-pH anode and low-pH cathode. Bioresour Technol. 2010;101:3514–3519. doi: 10.1016/j.biortech.2009.12.105.
  • Puig S, Serra M, Coma M, et al. Effect of pH on nutrient dynamics and electricity production using microbial fuel cells. Bioresour Technol. 2010;101:9594–9599. doi: 10.1016/j.biortech.2010.07.082.
  • Clauwaert P, Desloover J, Shea C, et al. Enhanced nitrogen removal in bio-electrochemical systems by pH control. Biotechnol Lett. 2009;31:1537–1543. doi: 10.1007/s10529-009-0048-8.
  • Cheng S, Logan BE. Ammonia treatment of carbon cloth anodes to enhance power generation of microbial fuel cells. Electrochem Commun. 2007;9:492–496. doi: 10.1016/j.elecom.2006.10.023.
  • Fan Y, Hu H, Liu H. Sustainable power generation in microbial fuel cells using bicarbonate buffer and proton transfer mechanisms. Environ Sci Technol. 2007;41:8154–8158. doi: 10.1021/es071739c.
  • Madani S, Gheshlaghi R, Mahdavi MA, et al. Optimization of the performance of a double-chamber microbial fuel cell through factorial design of experiments and response surface methodology. Fuel. 2015;150:434–440. doi: 10.1016/j.fuel.2015.02.039.
  • Nouri P, Najafpour Darzi G. Impacts of process parameters optimization on the performance of the annular single chamber microbial fuel cell in wastewater treatment. Eng Life Sci. 2017;17:545–551. doi: 10.1002/elsc.201600173.
  • Larrosa-Guerrero A, Scott K, Head IM, et al. Effect of temperature on the performance of microbial fuel cells. Fuel. 2010;89:3985–3994. doi: 10.1016/j.fuel.2010.06.025.
  • Vazquez-Larios AL, Solorza-Feria O, Vazquez-Huerta G, et al. Internal resistance and performance of microbial fuel cells: influence of cell configuration and temperature. J New Mater Electrochem Syst. 2011;14:99–105.
  • Guerrero AL, Scott K, Head IM, et al. Effect of temperature on the performance of microbial fuel cells. Chem Eng Trans. 2010;21:463–468.
  • del Campo AG, Lobato J, Cañizares P, et al. Short-term effects of temperature and COD in a microbial fuel cell. Appl Energy. 2013;101:213–217. doi: 10.1016/j.apenergy.2012.02.064.
  • Patil SA, Harnisch F, Kapadnis B, et al. Electroactive mixed culture biofilms in microbial bioelectrochemical systems: the role of temperature for biofilm formation and performance. Biosens Bioelectron. 2010;26:803–808. doi: 10.1016/j.bios.2010.06.019.
  • Michie IS, Kim JR, Dinsdale RM, et al. Operational temperature regulates anodic biofilm growth and the development of electrogenic activity. Appl Microbiol Biotechnol. 2011;92:419–430. doi: 10.1007/s00253-011-3531-9.
  • Gautam R, Nayak JK, Daverey A, et al. Emerging sustainable opportunities for waste to bioenergy: an overview. In: Waste-to-Energy Approach Zero Waste. Amsterdam, Netherlands: Elsevier; 2022. p. 1–55.
  • Oliveira VB, Simões M, Melo LF, et al. Overview on the developments of microbial fuel cells. BioChem Eng J. 2013;73:53–64. doi: 10.1016/j.bej.2013.01.012.
  • Juang DF, Yang PC, Chou HY, et al. Effects of microbial species, organic loading and substrate degradation rate on the power generation capability of microbial fuel cells. Biotechnol Lett. 2011;33:2147–2160. doi: 10.1007/s10529-011-0690-9.
  • Tamilarasan K, Banu JR, Jayashree C, et al. Effect of organic loading rate on electricity generating potential of upflow anaerobic microbial fuel cell treating surgical cotton industry wastewater. J Environ Chem Eng. 2017;5:1021–1026. doi: 10.1016/j.jece.2017.01.025.
  • Martin E, Savadogo O, Guiot SR, et al. The influence of operational conditions on the performance of a microbial fuel cell seeded with mesophilic anaerobic sludge. BioChem Eng J. 2010;51:132–139. doi: 10.1016/j.bej.2010.06.006.
  • Nam JY, Kim HW, Lim KH, et al. Effects of organic loading rates on the continuous electricity generation from fermented wastewater using a single-chamber microbial fuel cell. Bioresour Technol. 2010; 101 Suppl 1: s33–s7. doi: 10.1016/j.biortech.2009.03.062.
  • Di Lorenzo M, Scott K, Curtis TP, et al. Effect of increasing anode surface area on the performance of a single chamber microbial fuel cell. Chem Eng J. 2010;156:40–48. doi: 10.1016/j.cej.2009.09.031.
  • Liu H, Cheng S, Logan BE. Production of electricity from acetate or butyrate using a single-chamber microbial fuel cell. Environ Sci Technol. 2005;39:658–662. doi: 10.1021/es048927c.
  • Sharma Y, Li B. The variation of power generation with organic substrates in single-chamber microbial fuel cells (SCMFCs). Bioresour Technol. 2010;101:1844–1850. doi: 10.1016/j.biortech.2009.10.040.
  • Velvizhi G, Mohan SV. Electrogenic activity and electron losses under increasing organic load of recalcitrant pharmaceutical wastewater. Int J Hydrog Energy. 2012;37:5969–5978. doi: 10.1016/j.ijhydene.2011.12.112.
  • Min D, Cheng L, Zhang F, et al. Enhancing extracellular electron transfer of Shewanella oneidensis MR-1 through coupling improved flavin synthesis and metal-reducing conduit for pollutant degradation. Environ Sci Technol. 2017;51:5082–5089. doi: 10.1021/acs.est.6b04640.
  • Cheng ZH, Xiong JR, Min D, et al. Promoting bidirectional extracellular electron transfer of Shewanella oneidensis MR‐1 for hexavalent chromium reduction via elevating intracellular cAMP level. Biotechnol Bioeng. 2020;117:1294–1303. doi: 10.1002/bit.27305.
  • Ding Y, Peng N, Du Y, et al. Disruption of putrescine biosynthesis in Shewanella oneidensis enhances biofilm cohesiveness and performance in Cr (VI) immobilization. Appl Environ Microbiol. 2014;80:1498–1506. doi: 10.1128/AEM.03461-13.
  • Liu T, Yu YY, Deng XP, et al. Enhanced Shewanella biofilm promotes bioelectricity generation. Biotechnol Bioeng. 2015;112:2051–2059. doi: 10.1002/bit.25624.
  • Brutinel ED, Gralnick JA. Shuttling happens: soluble flavin mediators of extracellular electron transfer in Shewanella. Appl Microbiol Biotechnol. 2012;93:41–48. doi: 10.1007/s00253-011-3653-0.
  • Yong XY, Shi DY, Chen YL, et al. Enhancement of bioelectricity generation by manipulation of the electron shuttles synthesis pathway in microbial fuel cells. Bioresour Technol. 2014;152:220–224. doi: 10.1016/j.biortech.2013.10.086.
  • Li Y, Wu Y, Puranik S, et al. Metals as electron acceptors in single-chamber microbial fuel cells. J Power Sources. 2014;269:430–439. doi: 10.1016/j.jpowsour.2014.06.117.
  • Colantonio N, Kim Y. Cadmium (II) removal mechanisms in microbial electrolysis cells. J Hazard Mater. 2016;311:134–141. doi: 10.1016/j.jhazmat.2016.02.062.
  • Huang L, Chai X, Chen G, et al. Effect of set potential on hexavalent chromium reduction and electricity generation from biocathode microbial fuel cells. Environ Sci Technol. 2011;45:5025–5031. doi: 10.1021/es103875d.
  • Li W, Zhang S, Chen G, et al. Simultaneous electricity generation and pollutant removal in microbial fuel cell with denitrifying biocathode over nitrite. Appl Energy. 2014;126:136–141. doi: 10.1016/j.apenergy.2014.04.015.
  • Li M, Zhou S, Xu Y, et al. Simultaneous Cr (VI) reduction and bioelectricity generation in a dual chamber microbial fuel cell. Chem Eng J. 2018;334:1621–1629. doi: 10.1016/j.cej.2017.11.144.
  • Hassan M, Wei H, Qiu H, et al. Power generation and pollutants removal from landfill leachate in microbial fuel cell: variation and influence of anodic microbiomes. Bioresour Technol. 2018;247:434–442. doi: 10.1016/j.biortech.2017.09.124.
  • Zhang Y, Wang X, Li X, et al. Horizontal arrangement of anodes of microbial fuel cells enhances remediation of petroleum hydrocarbon-contaminated soil. Environ Sci Pollut Res Int. 2015;22:2335–2341. doi: 10.1007/s11356-014-3539-7.
  • Yu B, Tian J, Feng L. Remediation of PAH polluted soils using a soil microbial fuel cell: influence of electrode interval and role of microbial community. J Hazard Mater. 2017;336:110–118. doi: 10.1016/j.jhazmat.2017.04.066.
  • Wang J, Song X, Li Q, et al. Bioenergy generation and degradation pathway of phenanthrene and anthracene in a constructed wetland-microbial fuel cell with an anode amended with nZVI. Water Res. 2019;150:340–348. doi: 10.1016/j.watres.2018.11.075.
  • Rashid T, Sher F, Hazafa A, et al. Design and feasibility study of novel paraboloid graphite based microbial fuel cell for bioelectrogenesis and pharmaceutical wastewater treatment. J Environ Chem Eng. 2021;9:104502. doi: 10.1016/j.jece.2020.104502.
  • Fernando E, Keshavarz T, Kyazze G. Enhanced bio-decolourization of acid orange 7 by Shewanella oneidensis through co-metabolism in a microbial fuel cell. Int Biodeterior Biodegradation. 2012;72:1–9. doi: 10.1016/j.ibiod.2012.04.010.
  • Yang N, Zhan G, Li D, et al. Complete nitrogen removal and electricity production in Thauera-dominated air-cathode single chambered microbial fuel cell. Chem Eng J. 2019;356:506–515. doi: 10.1016/j.cej.2018.08.161.
  • Tucci M, Cruz Viggi C, Esteve Núñez A, et al. Empowering electroactive microorganisms for soil remediation: challenges in the bioelectrochemical removal of petroleum hydrocarbons. Chem Eng J. 2021;419:130008. doi: 10.1016/j.cej.2021.130008.
  • Wang H, Heil D, Ren ZJ, et al. Removal and fate of trace organic compounds in microbial fuel cells. Chemosphere. 2015;125:94–101. doi: 10.1016/j.chemosphere.2014.11.048.
  • Wang Z, Zhang B, Borthwick AG, et al. Utilization of single-chamber microbial fuel cells as renewable power sources for electrochemical degradation of nitrogen-containing organic compounds. Chem Eng J. 2015;280:99–105. doi: 10.1016/j.cej.2015.06.012.
  • Naik S, Jujjavarappu SE. Simultaneous bioelectricity generation from cost-effective MFC and water treatment using various wastewater samples. Environ Sci Pollut Res Int. 2020;27:27383–27393. doi: 10.1007/s11356-019-06221-8.
  • Tanikkul P, Pisutpaisal N. Membrane-less MFC based biosensor for monitoring wastewater quality. Int J Hydrog Energy. 2018;43:483–489. doi: 10.1016/j.ijhydene.2017.10.065.
  • Khan A, Salama ES, Chen Z, et al. A novel biosensor for zinc detection based on microbial fuel cell system. Biosens Bioelectron. 2020;147:111763. doi: 10.1016/j.bios.2019.111763.
  • Xu Z, Liu Y, Williams I, et al. Disposable self-support paper-based multi-anode microbial fuel cell (PMMFC) integrated with power management system (PMS) as the real time "shock" biosensor for wastewater. Biosens Bioelectron. 2016;85:232–239. doi: 10.1016/j.bios.2016.05.018.
  • Yu D, Zhang H, Bai L, et al. Visual detection of the toxicity of wastewater containing heavy metal ions using a microbial fuel cell biosensor with a Prussian blue cathode. Sens Actuators B Chem. 2020;302:127177. doi: 10.1016/j.snb.2019.127177.
  • Zhou T, Li R, Zhang S, et al. A copper‐specific microbial fuel cell biosensor based on riboflavin biosynthesis of engineered Escherichia coli. Biotechnol Bioeng. 2021;118:210–222. doi: 10.1002/bit.27563.
  • King ST, Sylvander M, Kheperu M, et al. Detecting recalcitrant organic chemicals in water with microbial fuel cells and artificial neural networks. Sci Total Environ. 2014;497-498:527–533. doi: 10.1016/j.scitotenv.2014.07.108.
  • Spurr MW, Eileen HY, Scott K, et al. A microbial fuel cell sensor for unambiguous measurement of organic loading and definitive identification of toxic influents. Environ Sci: water Res Technol. 2020;6:612–621. doi: 10.1039/C9EW00849G.
  • Xiao N, Wang B, Huang JJ. Hydrodynamic optimization for design and operating parameters of an innovative continuous-flow miniaturized MFC biosensor. Chem Eng Sci. 2021;235:116505. doi: 10.1016/j.ces.2021.116505.
  • Askari A, Vahabzadeh F, Mardanpour MM. Quantitative determination of linear alkylbenzene sulfonate (LAS) concentration and simultaneous power generation in a microbial fuel cell-based biosensor. J Clean Prod. 2021;294:126349. doi: 10.1016/j.jclepro.2021.126349.
  • Tardy GM, Lóránt B, Gyalai-Korpos M, et al. Microbial fuel cell biosensor for the determination of biochemical oxygen demand of wastewater samples containing readily and slowly biodegradable organics. Biotechnol Lett. 2021;43:445–454. doi: 10.1007/s10529-020-03050-5.
  • Liu F, Sun L, Wan J, et al. Organic matter and ammonia removal by a novel integrated process of constructed wetland and microbial fuel cells. RSC Adv. 2019;9:5384–5393. doi: 10.1039/c8ra10625h.
  • Zhang B, Zhang J, Yang Q, et al. Investigation and optimization of the novel UASB–MFC integrated system for sulfate removal and bioelectricity generation using the response surface methodology (RSM). Bioresour Technol. 2012;124:1–7. doi: 10.1016/j.biortech.2012.08.045.
  • Chen F, Zeng S, Luo Z, et al. A novel MBBR–MFC integrated system for high-strength pulp/paper wastewater treatment and bioelectricity generation. Sep Sci Technol. 2020;55:2490–2499. doi: 10.1080/01496395.2019.1641519.
  • Wang J, Bi F, Ngo HH, et al. Evaluation of energy-distribution of a hybrid microbial fuel cell–membrane bioreactor (MFC–MBR) for cost-effective wastewater treatment. Bioresour Technol. 2016;200:420–425. doi: 10.1016/j.biortech.2015.10.042.
  • Wang YP, Zhang HL, Li WW, et al. Improving electricity generation and substrate removal of a MFC–SBR system through optimization of COD loading distribution. Biochem Eng J. 2014;85:15–20. doi: 10.1016/j.bej.2014.01.008.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.