266
Views
9
CrossRef citations to date
0
Altmetric
Articles

Molecular dynamics studies on both bound and unbound renin protease

, &
Pages 351-363 | Received 12 Sep 2012, Accepted 16 Jan 2013, Published online: 25 Mar 2013

References

  • Ahmad, E., Rabbani, G., Zaidi, N., Khan, M. A., Qadeer, A., Ishtikhar, M., … Khan, R. H. (2012). Revisiting ligand-induced conformational changes in proteins: essence, advancements, implications and future challenges. Journal of Biomolecular Structure & Dynamics. doi:10.1080/07391102.2012.706081.
  • Andreeva, N. S., & Rumsh, L. D. (2001). Analysis of crystal structures of aspartic proteinases: On the role of amino acid residues adjacent to the catalytic site of pepsin-like enzymes. Protein Science, 10, 2439–2450.
  • Barman, A., Schurer, S., & Prabhakar, R. (2011). Computational modeling of substrate specificity and catalysis of the beta-secretase (BACE1) enzyme. Biochemistry, 50, 4337–4349.
  • Bayly, C. I., Cieplak, P., Cornell, W. D., & Kollman, P. A. (1993). A well-behaved electrostatic potential based method using charge restraints for deriving atomic charges – the resp model. Journal of Physical Chemistry, 97, 10269–10280.
  • Bezencon, O., Bur, D., Weller, T., Richard-Bildstein, S., Remen, L., Sifferlen, T., … Fischli, W. (2009). Design and preparation of potent, nonpeptidic, bioavailable renin inhibitors. Journal of Medicinal Chemistry, 52, 3689–3702.
  • Blundell, T., Sibanda, B. L., & Pearl, L. (1983). 3-Dimensional structure, specificity and catalytic mechanism of renin. Nature, 304, 273–275.
  • Bras, N. F., Fernandes, P. A., & Ramos, M. J. (2012). The catalytic mechanism of mouse renin studied with QM/MM calculations. Physical Chemistry Chemical Physics, 14, 12605–12613.
  • Cascella, M., Micheletti, C., Rothlisberger, U., & Carloni, P. (2005). Evolutionarily conserved functional mechanics across pepsin-like and retroviral aspartic proteases. Journal of the American Chemical Society, 127, 3734–3742.
  • Case, D. A., Cheatham, T. E., Darden, T., Gohlke, H., Luo, R., Merz, K. M., … Woods, R. J. (2005). The Amber biomolecular simulation programs. Journal of Computational Chemistry, 26, 1668–1688.
  • Case, D. A., Darden, T. A., Cheatham, T. E., III, Simmerling, C. L., Wang, J., Duke, R. E., … Kollman, P. A. (2008). AMBER 10. San Francisco: University of California.
  • Coates, L., Tuan, H. F., Tomanicek, S., Kovalevsky, A., Mustyakimov, M., Erskine, P. & Cooper, J. (2008). The catalytic mechanism of an aspartic proteinase explored with neutron and X-ray diffraction. Journal of the American Chemical Society, 130, 7235.
  • Cooper, J. B. (2002). Aspartic proteinases in disease: A structural perspective. Current Drug Targets, 3, 155–173.
  • Davies, D. R. (1990). The structure and function of the aspartic proteinases. Annual Review of Biophysics and Biophysical Chemistry, 19, 189–215.
  • DeLeon, K. Y., Patel, A. P., Kuczera, K., Johnson, C. K., & Jas, G. S. (2012). Structure and reorintational dynamics of angiotensin I and II: A microscopic physical insight. Journal of Biomolecular Structure & Dynamics, 29, 671–690.
  • Dhanaraj, V., Dealwis, C. G., Frazao, C., Badasso, M., Sibanda, B. L., Tickle, I. J., … Hoover, D. J. (1992). X-ray analyses of peptide-inhibitor complexes define the structural basis of specificity for human and mouse renins. Nature, 357, 466–472.
  • Duan, Y., Wu, C., Chowdhury, S., Lee, M. C., Xiong, G. M., Zhang, W., … Kollman, P. (2003). A point-charge force field for molecular mechanics simulations of proteins based on condensed-phase quantum mechanical calculations. Journal of Computational Chemistry, 24, 1999–2012.
  • Eder, J., Hommel, U., Cumin, F., Martoglio, B., & Gerhartz, B. (2007). Aspartic proteases in drug discovery. Current Pharmaceutical Design, 13, 271–285.
  • Essmann, U., Perera, L., Berkowitz, M. L., Darden, T., Lee, H., & Pedersen, L. G. (1995). A smooth particle mesh Ewald method. Journal of Chemical Physics, 103, 8577–8593.
  • Fernandez, A., Tawfik, D. S., Berkhout, B., Sanders, R. W., Kloczkowski, A., Sen, T. Z., & Jernigan, R. L. (2005). Protein promiscuity: Drug resistance and native functions – HIV-1 case. Journal of Biomolecular Structure & Dynamics, 22, 615–624.
  • Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., … Fox, D. J. (2009). Gaussian 09. Wallingford, CT: Gaussian, Inc.
  • Gorfe, A. A., & Caflisch, A. (2005). Functional plasticity in the substrate binding site of beta-secretase. Structure, 13, 1487–1498.
  • Hong, L., & Tang, J. (2004). Flap position of free memapsin 2 (beta-secretase), a model for flap opening in aspartic protease catalysis. Biochemistry, 43, 4689–4695.
  • Hornak, V., Okur, A., Rizzo, R. C., & Simmerling, C. (2006a). HIV-1 protease flaps spontaneously close to the correct structure in simulations following manual placement of an inhibitor into the open state. Journal of the American Chemical Society, 128, 2812–2813.
  • Hornak, V., Okur, A., Rizzo, R. C., & Simmerling, C. (2006b). HIV-1 protease flaps spontaneously open and reclose in molecular dynamics simulations. Proceedings of the National Academy of Sciences of the United States of America, 103, 915–920.
  • Izaguirre, J. A., Catarello, D. P., Wozniak, J. M., & Skeel, R. D. (2001). Langevin stabilization of molecular dynamics. Journal of Chemical Physics, 114, 2090–2098.
  • Jensen, C., Herold, P., & Brunner, H. R. (2008). Aliskiren: The first renin inhibitor for clinical treatment. Nature Reviews Drug Discovery, 7, 399–410.
  • Lapatto, R., Blundell, T., Hemmings, A., Overington, J., Wilderspin, A., Wood, S., … Hobart, P. M. (1989). X-ray-analysis of hiv-1 proteinase at 2.7 a resolution confirms structural homology among retroviral enzymes. Nature, 342, 299–302.
  • Northrop, D. B. (2001). Follow the protons: A low-barrier hydrogen bond unifies the mechanisms of the aspartic proteases. Accounts of Chemical Research, 34, 790–797.
  • Paschalidou, K., Neumann, U., Gerhartz, B., & Tzougraki, C. (2004). Highly sensitive intramolecularly quenched fluorogenic substrates for renin based on the combination of L-2-amino-3-(7-methoxy-4-coumaryl)propionic acid with 2,4-dinitrophenyl groups at various positions. Biochemical Journal, 382, 1031–1038.
  • Patel, S., Vuillard, L., Cleasby, A., Murray, C. W., & Yon, J. (2004). Apo and inhibitor complex structures of BACE (beta-secretase). Journal of Molecular Biology, 343, 407–416.
  • Pietrucci, F., Marinelli, F., Carloni, P., & Laio, A. (2009). Substrate binding mechanism of HIV-1 protease from explicit-solvent atomistic simulations. Journal of the American Chemical Society, 131, 11811–11818.
  • Politi, A., Durdagi, S., Moutevelis-Minakakis, P., Kokotos, G., Papadopoulos, M. G., & Mavromoustakos, T. (2009). Application of 3D QSAR CoMFA/CoMSIA and in silico docking studies on novel renin inhibitors against cardiovascular diseases. European Journal of Medicinal Chemistry, 44, 3703–3711.
  • Politi, A., Leonis, G., Tzoupis, H., Ntountaniotis, D., Papadopoulos, M. G., Grdadolnik, S. G., & Mavromoustakos, T. (2011). Conformational properties and energetic analysis of aliskiren in solution and receptor site. Molecular Informatics, 30, 973–985.
  • Rahuel, J., Rasetti, V., Maibaum, J., Rueger, H., Goschke, R., Cohen, N. C., … Grutter, M. G. (2000). Structure-based drug design: The discovery of novel nonpeptide orally active inhibitors of human renin. Chemistry & Biology, 7, 493–504.
  • Remen, L., Bezencon, O., Richard-Bildstein, S., Prade, D. B. L., Corminboeuf, O., Boss, C., … Fischli, W. (2009). New classes of potent and bioavailable human renin inhibitors. Bioorganic & Medicinal Chemistry Letters, 19, 6762–6765.
  • Ryckaert, J. P., Ciccotti, G., & Berendsen, H. J. C. (1977). Numerical-integration of Cartesian equations of motion of a system with constraints – molecular-dynamics of N-alkanes. Journal of Computational Physics, 23, 327–341.
  • Sadiq, S. K., & De Fabritiis, G. (2010). Explicit solvent dynamics and energetics of HIV-1 protease flap opening and closing. Proteins-Structure Function and Bioinformatics, 78, 2873–2885.
  • Shang, Y., & Simmerling, C. (2012). Molecular dynamics applied in drug discovery: The case of HIV-1 protease. Computational Drug Discovery and Design, 819, 527–549 . [R. Baron].
  • Shao, J. Y., Tanner, S. W., Thompson, N., & Cheatham, T. E. (2007). Clustering molecular dynamics trajectories: 1. Characterizing the performance of different clustering algorithms. Journal of Chemical Theory and Computation, 3, 2312–2334.
  • Sielecki, A. R., Hayakawa, K., Fujinaga, M., Murphy, M. E. P., Fraser, M., Muir, A. K., … James, M. N. G. (1989). Structure of recombinant human renin, a target for cardiovascular-active drugs, at 2.5 A resolution. Science, 243, 1346–1351.
  • Sinha, N., Tsai, C. J., & Nussinov, R. (2001). Building blocks, hinge-bending motions and protein topology. Journal of Biomolecular Structure & Dynamics, 19, 369–380.
  • Steiner, D., Oostenbrink, C., Diederich, F., Zurcher, M., & van Gunsteren, W. F. (2011). Calculation of binding free energies of inhibitors to plasmepsin II. Journal of Computational Chemistry, 32, 1801–1812.
  • Suguna, K., Padlan, E. A., Smith, C. W., Carlson, W. D., & Davies, D. R. (1987). Binding of a reduced peptide inhibitor to the aspartic proteinase from rhizopus-chinensis – implications for a mechanism of action. Proceedings of the National Academy of Sciences of the United States of America, 84, 7009–7013.
  • Thangapandian, S., John, S., Sakkiah, S., & Lee, K. W. (2011). Potential virtual lead identification in the discovery of renin inhibitors: Application of ligand and structure-based pharmacophore modeling approaches. European Journal of Medicinal Chemistry, 46, 2469–2476.
  • Tzoupis, H., Leonis, G., Megariotis, G., Supuran, C. T., Mavromoustakos, T., & Papadopoulos, M. G. (2012). Dual inhibitors for aspartic proteases HIV-1 PR and renin: Advancements in AIDS-hypertension-diabetes linkage via molecular dynamics, inhibition assays, and binding free energy calculations. Journal of Medicinal Chemistry, 55, 5784–5796.
  • Vieira, E., Binggeli, A., Breu, V., Bur, D., Fischli, W., Guller, R., … Wostl, W. (1999). Substituted piperidines – highly potent renin inhibitors due to induced fit adaptation of the active site. Bioorganic & Medicinal Chemistry Letters, 9, 1397–1402.
  • Wang, J. M., Wolf, R. M., Caldwell, J. W., Kollman, P. A., & Case, D. A. (2004). Development and testing of a general amber force field. Journal of Computational Chemistry, 25, 1157–1174.
  • Wood, J. M., Maibaum, J., Rahuel, J., Grutter, M. G., Cohen, N. C., Rasetti, V., … Bedigian, M. P. (2003). Structure-based design of aliskiren, a novel orally effective renin inhibitor. Biochemical and Biophysical Research Communications, 308, 698–705.
  • Xu, Z. R., Cacatian, S., Yuan, J., Simpson, R. D., Jia, L. Q., Zhao, W., … Claremon, D. A. (2010). Optimization of orally bioavailable alkyl amine renin inhibitors. Bioorganic & Medicinal Chemistry Letters, 20, 694–699.
  • Xu, Y. C., Li, M. J., Greenblatt, H., Chen, W. Y., Paz, A., Dym, O., … Sussman, J. L. (2012). Flexibility of the flap in the active site of BACE1 as revealed by crystal structures and molecular dynamics simulations. Acta Crystallographica Section D-Biological Crystallography, 68, 13–25.
  • Zhou, A. W., Carrell, R. W., Murphy, M. P., Wei, Z. Q., Yan, Y. H., Stanley, P. L. D., … Read, R. J. (2010). A redox switch in angiotensinogen modulates angiotensin release. Nature, 468, 108–111.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.