557
Views
116
CrossRef citations to date
0
Altmetric
Articles

Intermolecular CH···O/N H-bonds in the biologically important pairs of natural nucleobases: a thorough quantum-chemical study

, &
Pages 993-1022 | Received 10 Mar 2013, Accepted 22 Apr 2013, Published online: 03 Jun 2013

References

  • Abrescia, N. G., Gonzalez, C., Gouyette, C., & Subrina, J. A. (2004). X-ray and NMR studies of the DNA oligomer d(ATATAT): Hoogsteen base pairing in duplex DNA. Biochemistry, 43, 4092–4100.
  • Abrescia, N. G., Thompson, A., Huynh-Dinh, T., & Subrina, J. A. (2002). Crystal structure of an antiparallel DNA fragment with Hoogsteen base pairing. Proceedings of the National Academy of Sciences of the United States of America, 99, 2806–2811.
  • Aishima, J., Gitti, R. K., Noah, J. E., Gan, H. H., Schlick, T., & Wolberger, C. (2002). A Hoogsteen base pair embedded in undistorted B-DNA. Nucleic Acids Research, 30, 5244–5252.
  • Alabugin, I. V., Manoharan, M., Peabody, S., & Weinhold, F. (2003). Electronic basis of improper hydrogen bonding: A subtle balance of hyperconjugation and rehybridization. Journal of the American Chemical Society, 125, 5973–5987.
  • Allerhand, A., & Schleyer, P. V. A. (1963). A survey of C–H groups as proton donors in hydrogen bonding. Journal of the American Chemical Society, 85, 1715–1723.
  • Asensio, A., Kobko, N., & Dannenberg, J. J. (2003). Cooperative hydrogen-bonding in adenine–thymine and guanine–cytosine base pairs. Density functional theory and Moller–Plesset molecular orbital study. Journal of Physical Chemistry A, 107, 6441–6443.
  • Bacolla, A., & Wells, R. D. (2004). Non-B DNA conformations, genomic rearrangements, and human disease. Journal of Biological Chemistry, 279, 47411–47414.
  • Bader, R. F. W. (1990). Atoms in molecules: A quantum theory. Oxford: Clarendon Press.
  • Bader, R. F. W. (2009). Bond paths are not chemical bonds. Journal of Physical Chemistry A, 113, 10391–10396.
  • Bader, R. F. W. (2010). Definition of molecular structure: By choice or by appeal to observation? Journal of Physical Chemistry A, 114, 7431–7444.
  • Becke, A. D. (1988). Density-functional exchange-energy approximation with correct asymptotic behaviour. Physical Review A, 38, 3098–3100.
  • Berger, I., Egli, M., & Rich, A. (1996). Inter-strand C–H···O hydrogen bonds stabilizing four-stranded intercalated molecules: Stereoelectronic effects of O4′ in cytosine-rich DNA. Proceedings of the National Academy of Sciences of the United States of America, 93, 12116–12121.
  • Bohnuud, T., Beglov, D., Ngan, C. H., Zerbe, B., Hall, D. R., Brenke, R., Vajda, S., Frank-Kamenetskii, M. D., & Kozakov, D. (2012). Computational mapping reveals dramatic effect of Hoogsteen breathing on duplex DNA reactivity with formaldehyde. Nucleic Acids Research, 40, 7644–7652.
  • Bondi, A. J. (1964). Van der Waals volumes and radii. Journal of Physical Chemistry, 68, 441–451.
  • Borissova, O. F., Shchyolkina, A. K., Chernov, B. K., & Tchurikov, N. A. (1993). Relative stability of AT and GC pairs in parallel DNA duplex formed by a natural sequence. FEBS Letters, 322, 304–306.
  • Boyd, R. J., & Choi, S. (1985). A bond-length-bond-order relationship for intermolecular interactions based on the topological properties of molecular charge distributions. Chemical Physics Letters, 120, 80–85.
  • Boyd, R. J., & Choi, S. (1986). Hydrogen bonding between nitriles and hydrogen halides and the topological properties of molecular charge distributions. Chemical Physics Letters, 129, 62–65.
  • Boys, S. F., & Bernardi, F. (1970). The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Molecular Physics, 19, 553–566.
  • Brandhorst, K., & Grunenberg, J. (2008). How strong is it? The interpretation of force and compliance constants as bond strength descriptors. Chemical Society Reviews, 37, 1558–1567.
  • Brandhorst, K., & Grunenberg, J. (2010). Efficient computation of compliance matrices in redundant internal coordinates from Cartesian Hessians for nonstationary points. Journal of Chemical Physics, 132, 184101–184107.
  • Brandl, M., Lindauer, K., Meyer, M., & Sühnel, J. (1999). C–H···O and C–H···N interactions in RNA structures. Theoretical Chemistry Accounts: Theory, Computation, and Modeling (Theoretica Chimica Acta), 103, 77–80.
  • Brandl, M., Meyer, M., & Sühnel, J. (2001). Quantum-chemical analysis of C–H···O and C–H···N interactions in RNA base pairs – H-bond versus anti-H-bond pattern. Journal of Biomolecular Structure and Dynamics, 18, 545–555.
  • Brovarets’, O. O. (2013a). Structurally-energetic properties of the four configurations of the А–Т and G–C DNA base pairs: Comparative quantum-chemical analysis. Ukrainian Biochemical Journal, 85, in press.
  • Brovarets’, O. O. (2013b). Under what conditions does G–C Watson–Crick DNA base pair acquire all four configurations characteristic for A–T Watson-Crick DNA base pair? Quantum-chemical study. Ukrainian Biochemical Journal, 85, in press.
  • Brovarets’, O. O., & Hovorun, D. M. (2010a). How stable are the mutagenic tautomers of DNA bases? Biopolymers and Cell, 26, 72–76.
  • Brovarets’, O. O., & Hovorun, D. M. (2010b). Stability of mutagenic tautomers of uracil and its halogen derivatives: The results of quantum-mechanical investigation. Biopolymers and Cell, 26, 295–298.
  • Brovarets’, O. O., & Hovorun, D. M. (2010c). Quantum-chemical investigation of the elementary molecular mechanisms of pyrimidine–purine transversions. Ukrainian Biochemical Journal, 82, 57–67.
  • Brovarets’, O. O., & Hovorun, D. M. (2011a). IR Vibrational spectra of H-bonded complexes of adenine, 2-aminopurine and 2-aminopurine+ with cytosine and thymine: Quantum-chemical study. Optics and Spectroscopy, 111, 750–757.
  • Brovarets’, O. O., & Hovorun, D. M. (2011b). Intramolecular tautomerization and the conformational variability of some classical mutagens – cytosine derivatives: Quantum chemical study. Biopolymers and Cell, 27, 221–230.
  • Brovarets’, O. O., & Hovorun, D. M. (2012). Prototropic tautomerism and basic molecular principles of hypoxanthine mutagenicity: An exhaustive quantum-chemical analysis. Journal of Biomolecular Structure and Dynamics. doi:10.1080/07391102.2012.715041.
  • Brovarets’, O. O., & Hovorun, D. M. (2013). Can tautomerisation of the A–T Watson–Crick base pair via double proton transfer provoke point mutations during DNA replication? A comprehensive QM and QTAIM analysis. Journal of Biomolecular Structure and Dynamics. doi:10.1080/07391102.2012.755795.
  • Brovarets’, O. O., Kolomiets’, I. M., & Hovorun, D. M. (2012a). Elementary molecular mechanisms of the spontaneous point mutations in DNA: A novel quantum-chemical insight into the classical understanding. In T. Tada (Ed.), Quantum chemistry – molecules for innovations (pp. 59–102). Rijeka: In Tech Open Access.
  • Brovarets’, O. O., Yurenko, Y. P., Dubey, I. Ya, & Hovorun, D. M. (2012b). Can DNA-binding proteins of replisome tautomerize nucleotide bases? Ab initio model study. Journal of Biomolecular Structure & Dynamics, 29, 1101–1109.
  • Brovarets’, O. O., Zhurakivsky, R. O., & Hovorun, D. M. (2010). Is there adequate ionization mechanism of the spontaneous transitions? Quantum-chemical investigation. Biopolymers and Cell, 26, 398–405.
  • Brovarets’, O. O., Zhurakivsky, R. O., & Hovorun, D. M. (2013). The physico-chemical ‘anatomy’ of the tautomerisation through the DPT of the biologically important pairs of hypoxanthine with DNA bases: QM and QTAIM perspectives. Journal of Molecular Modelingdoi:10.1007/s00894-012-1720-9.
  • Bruce, R. St L., Cooper, M. K., Freeman, H. C., & McGrath, B. G. (1974). Evidence for an intramolecular C–H···N hydrogen bond in (E) -5-methylpyridine-2-carboxaldehyde-2′-pyridylhydrazonetetracarbonylmolybdenum(O) from its crystal structure and proton magnetic resonance spectrum. Inorganic Chemistry, 13, 1032–1037.
  • Buckingham, A. D., Del Bene, J. E., & McDowell, S. A. C. (2008). The hydrogen bond. Chemical Physics Letters, 463, 1–10.
  • Calhorda, M. J. (2000). Weak hydrogen bonds: Theoretical studies. Chemical Communications. 801–809.
  • Carpenter, M. A., Li, M., Rathore, A., Lackey, L., Law, E. K., Land, A. M., … Harris, R. S. (2012). Methylcytosine and normal cytosine deamination by the foreign DNA restriction enzyme APOBEC3A. Journal of Biological Chemistry, 287, 34801–34808.
  • Cerón-Carrasco, J. P., Requena, A., Perpète, E. A., Michaux, C., & Jacquemin, D. (2009). Double proton transfer mechanism in the adenine–uracil base pair and spontaneous mutation in RNA duplex. Chemical Physics Letters, 484, 64–68.
  • Chaney, J. D., Goss, C. R., Folting, K., Santarsiero, B. D., & Hollingsworth, M. D. (1996). Formyl C−H···O hydrogen bonding in crystalline bis-formamides? Journal of the American Chemical Society, 118, 9432–9433.
  • Cheng, Y.-K., & Pettitt, B. M. (1992). Hoogsteen versus reversed-Hoogsteen base pairing: DNA triple helixes. Journal of the American Chemical Society, 114, 4465–4474.
  • Chung, S., & Hippler, M. (2006). Infrared spectroscopy of hydrogen-bonded CHCl3–SO2 in the gas phase. Journal of Chemical Physics, 124, 214316–214323.
  • Ciao, X., & Patel, D. J. (1988). NMR studies of echinomycin bisintercalation complexes with d(A1–C2–G3–T4) and d(T1–C2–G3–A4) duplexes in aqueous solution: Sequence-dependent formation of Hoogsteen Al T4 and Watson–Crick A4 base pairs flanking the bisintercalation site. Biochemistry, 27, 1744–l751.
  • Cleland, W. W., & Kreevoy, M. M. (1994). Low-barrier hydrogen bonds and enzymic catalysis. Science, 264, 1887–1890.
  • Cubero, E., Orozco, M., Hobza, P., & Luque, F. J. (1999a). Hydrogen bond versus anti-hydrogen bond: A comparative analysis based on the electron density topology. Journal of Physical Chemistry A, 103, 6394–6401.
  • Cubero, E., Orozco, M., & Luque, F. J. (1999b). Electron density topological analysis of the C–H···O anti-hydrogen bond in the fluoroform–oxirane complex. Chemical Physics Letters, 310, 445–450.
  • Danilov, V. I., Anisimov, V. M., Kurita, N., & Hovorun, D. (2005). MP2 and DFT studies of the DNA rare base pairs: The molecular mechanism of the spontaneous substitution mutations conditioned by tautomerism of bases. Chemical Physics Letters, 412, 285–293.
  • Danilov, V. I., van Mourik, T., Kurita, N., Wakabayashi, H., Tsukamoto, T., & Hovorun, D. M. (2009). On the mechanism of the mutagenic action of 5-bromouracil: A DFT study of uracil and 5-bromouracil in a water cluster. Journal of Physical Chemistry A, 113, 2233–2235.
  • Deng, J., & Sundaralingam, M. (2000). Synthesis and crystal structure of an octamer RNA r(guguuuac)/r(guaggcac) with G center dot G/U center dot U tandem wobble base pairs: Comparison with other tandem G center dot U pairs. Nucleic Acid Research, 28, 4376–4381.
  • Desiraju, G. R. (1989). Crystal engineering. The design of organic solids. Amsterdam: Elsevier.
  • Desiraju, G. R. (1991). The C–H···O hydrogen bond in crystals. What is it? Accounts of Chemical Research, 24, 290–296.
  • Desiraju, G. R. (1995). Supramolecular synthons in crystal engineering – A new organic synthesis. Angewandte Chemie International Edition, 34, 2311–2327.
  • Desiraju, G. R. (2002). Hydrogen bridges in crystal engineering: Interactions without borders. Accounts of Chemical Research, 35, 565–573.
  • Desiraju, G. R., & Steiner, T. (1999). The weak hydrogen bond in structural chemistry and biology. New York, NY: Oxford University Press Inc..
  • Dong, H., Hua, W., & Li, S. (2007). Estimation on the individual hydrogen-bond strength in molecules with multiple hydrogen bonds. Journal of Physical Chemistry A, 111, 2941–2945.
  • Donohue, J., & Kenneth, N. (1960). Trueblood base pairing in DNA. Journal of Molecular Biology, 2, 363–371.
  • Egli, M., & Gessner, R. V. (1995). Stereoelectronic effects of deoxyribose O4′ on DNA conformation. Proceedings of the National Academy of Sciences of the United States of America, 92, 180–185.
  • Escude, C., Mohammadi, S., Sun, J.-S., Nguyen, C.-H., Bisagni, E., Liquier, J., … Helene, C. (1996). Ligand-induced formation of Hoogsteen-paired parallel DNA. Chemistry & Biology, 3, 57–65.
  • Espinosa, E., & Molins, E. (2000). Retrieving interaction potentials from the topology of the electron density distribution: The case of hydrogen bonds. Journal of Chemical Physics, 113, 5686–5694.
  • Espinosa, E., Molins, E., & Lecomte, C. (1998). Hydrogen bond strengths revealed by topological analyses of experimentally observed electron densities. Chemical Physics Letters, 285, 170–173.
  • Fonseca Guerra, C., Bickelhaupt, F. M., Snijders, J. G., & Baerends, E. (1999). The nature of the hydrogen bond in DNA base pairs: The role of charge transfer and resonance assistance. Chemistry – A European Journal, 5, 3581–3594.
  • Frank-Kamenetskii, M. D. (2011). DNA breathes Hoogsteen. Artificial DNA: PNA& XNA, 2, 1–3.
  • Frieden, E. (1975). Non-covalent interactions: Key to biological flexibility and specificity. Journal of Chemical Education, 52, 754–756.
  • Frisch, M. J., Head-Gordon, M., & Pople, J. A. (1990). Semi-direct algorithms for the MP2 energy and gradient. Chemical Physics Letters, 166, 281–289.
  • Frisch, M. J., Pople, J. A., & Binkley, J. S. (1984). Self-consistent molecular orbital methods 25. Supplementary functions for Gaussian basis sets. Journal of Chemical Physics, 80, 3265–3269.
  • Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., … Pople, J. A. (2010). Gaussian 09 (Revision B.01). Wallingford, CT: Gaussian Inc..
  • Gerlt, J. A., Kreevoy, M. M., Cleland, W. W., & Frey, P. A. (1997). Understanding enzymic catalysis: The importance of short, strong hydrogen bonds. Chemical Biology, 4, 259–367.
  • Ghosal, G., & Muniyappa, K. (2006). Hoogsteen base-pairing revisited: Resolving a role in normal biological processes and human diseases. Biochemical and Biophysical Research Communications, 343, 1–7.
  • Gilbert, D. E., van der Marel, G. A., van Boom, J. H., & Feigon, J. (1989). Unstable Hoogsteen base pairs adjacent to echinomycin binding sites within a DNA duplex. Proceedings of the National Academy of Sciences of the United States of America, 86, 3006–3010.
  • Gilli, P., Bertolasi, V., Ferretti, V., & Gilli, G. (1994). Evidence for resonance-assisted hydrogen bonding. 4. Covalent nature of the strong homonuclear hydrogen bond. Study of the O–H···O system by crystal structure correlation methods. Journal of the American Chemical Society, 116, 909–915.
  • Grabowski, S. J. (2001). Ab initio calculations on conventional and unconventional hydrogen bonds. Study of the hydrogen bond strength. Journal of Physical Chemistry A, 105, 10739–10746.
  • Grabowski, S. J. (2004). Hydrogen bonding strength – Measures based on geometric and topological parameters. Journal of Physical Organic Chemistry, 17, 18–31.
  • Grabowski, S. J. (2006). Hydrogen bonding – New insights. In J. Leszczynski (Ed.), Series challenges and advances in computational chemistry and physics (p.). New York, NY: Springer.
  • Grabowski, S. J. (2011). Red- and blue-shifted hydrogen bonds: The bent rule from quantum theory of atoms in molecules perspective. Journal of Physical Chemistry A, 115, 12789–12799.
  • Grunenberg, J. (2004). Direct assessment of interresidue forces in Watson–Crick base pairs using theoretical compliance constants. Journal of the American Chemical Society, 126, 16310–16311.
  • Grunenberg, J., & Barone, G. (2013). Are compliance constants ill-defined descriptors for weak interactions? RSC Advances, 3, 4757–4762.
  • Gu, Y., Kar, T., & Scheiner, S. (1999). Fundamental properties of the CH···O interaction: Is it a true hydrogen bond? Journal of the American Chemical Society, 121, 9411–9422.
  • Gutowski, M., Van Lenthe, J. H., Verbeek, J., Van Duijneveldt, F. B., & Chalasinski, G. (1986). The basis set superposition error in correlated electronic structure calculations. Chemical Physics Letters, 124, 370–375.
  • Hamdani, H. Y., Appasamy, S. D., Willett, P., Artymiuk, P. J., & Firdaus-Raih, M. (2012). NASSAM: A server to search for and annotate tertiary interactions and motifs in three-dimensional structures of complex RNA molecules. Nucleic Acids Research, 40, W35–W41.
  • Hariharan, P. C., & Pople, J. A. (1973). The influence of polarization functions on molecular orbital hydrogenation energies. Theoretical Chemistry Accounts: Theory, Computation, and Modeling (Theoretica Chimica Acta), 28, 213–222.
  • Harris, V. H., Smith, C. L., Cummins, W. J., Hamilton, A. L., Adams, H., Dickman, M., … Williams, D. M. (2003). The effect of tautomeric constant on the specificity of nucleotide incorporation during DNA replication: Support for the rare tautomer hypothesis of substitution mutagenesis. Journal of Molecular Biology, 326, 1389–1401.
  • Haschemeyer, A. E. V., & Sobell, H. M. (1963). The crystal structure of an intermolecular nucleoside complex: Adenosine and 5-bromouridine. Proceedings of the National Academy of Sciences of the United States of America, 50, 872–877.
  • Hermann, T., & Westhof, E. (1999). Non-Watson–Crick base pairs in RNA-protein recognition. Chemistry & Biology, 6, R335–R343.
  • Hermansson, K. (2002). Blue-shifting hydrogen bonds. Journal of Physical Chemistry A, 106, 4695–4702.
  • Hill-Perkins, M., Jones, M. D., & Karran, P. (1986). Site-specific mutagenesis in vivo by single methylated or deaminated purine bases. Mutation Research, 162, 153–163.
  • Hobza, P., Sponer, J., Cubero, E., Orozco, M., & Luque, F. J. (2000). C–H···O contacts in the adenine···uracil and uracil···uracil nucleic acid base pairs: Nonempirical ab initio study with inclusion of electron correlation effects. Journal of Physical Chemistry B, 104, 6286–6292.
  • Hoogsteen, K. (1963). The crystal and molecular structure of a hydrogenbonded complex between 1-methylthymine and 9-methyladenine. Acta Crystallographica, 16, 907–916.
  • Hunter, W. N., Brown, T., Anand, N. N., & Kennard, O. (1986). Structure of an adenine·cytosine base pair in DNA and its implications for mismatch repair. Nature, 320, 552–555.
  • Hydrogen-transfer reactions Hynes J. T. Klinman J. P. Limbach H.-H. Schowen R. L. Wiley-VCH Verlag GmbH & Co. KGaA Weinheim 2007
  • Jeffrey, G. A. (1997). An introduction to hydrogen bonding. New York, NY: Oxford University Press.
  • Jeffrey, G. A., Maluszynska, H., & Mitra, J. (1985). Hydrogen bonding in nucleosides and nucleotides. International Journal of Biological Macromolecules, 7, 336–348.
  • Jeffrey, G. A., & Saenger, W. (1991). Hydrogen bonding in biological structures. Berlin: Springer-Verlag.
  • Johnson, R. E., Prakash, L., & Prakash, S. (2005). Biochemical evidence for the requirement of Hoogsteen base pairing for replication by human DNA polymerase iota. Proceedings of the National Academy of Sciences of the United States of America, 102, 10466–10471.
  • Jones, C. R., Baruah, P. K., Thompson, A. L., Scheiner, S., & Smith, M. D. (2012). Can a C−H···O interaction be a determinant of conformation? Journal of the American Chemical Society, 134, 12064–12071.
  • Joseph, J., & Jemmis, E. D. (2007). Red-, blue-, or no-shift in hydrogen bonds: A unified explanation. Journal of the American Chemical Society, 129, 4620–4632.
  • Jovin, T. M., Rippe, K., Ramsing, N. B., Klement, R., Elhorst, W., & Voijtiskova, M. (1990). Parallel stranded DNA. In R. H. Sarma, & M. H. Sarma (Eds.), Structure and methods: DNA and RNA (pp. 155–174). New York, NY: Adenine Press, Schenectady.
  • Kaplan, I. (2006). Intermolecular interactions: Physical picture, computational methods and model potentials (Wiley Series in Theoretical Chemistry). Chichester: John Wiley.
  • Keith, T. A. (2010). AIMAll (Version 10.07.01). Retrieved from http://www.aim.tkgristmill.com.
  • Khuu, P., & Ho, P. S. (2009). A rare nucleotide base tautomer in the structure of an asymmetric DNA junction. Biochemistry, 48, 7824–7832.
  • Knop, O., Rankin, K. N., & Boyd, R. J. (2001). Coming to grips with N−H···N bonds. 1. Distance relationships and electron density at the bond critical point. Journal of Physical Chemistry A, 105, 6552–6566.
  • Knop, O., Rankin, K. N., & Boyd, R. J. (2003). Coming to grips with N−H···N bonds. 2. Homocorrelations between parameters deriving from the electron density at the bond critical point. Journal of Physical Chemistry A, 107, 272–284.
  • Koch, U., & Popelier, P. L. A. (1995). Characterization of CH–O hydrogen bonds on the basis of the charge density. Journal of Physical Chemistry, 99, 9747–9754.
  • Kollman, P. A. (1977). Noncovalent interaction. Accounts of Chemical Research, 10, 365–371.
  • Krishnan, R., Binkley, J. S., Seeger, R., & Pople, J. A. (1980). Self-consistent molecular orbital methods. XX. A basis set for correlated wave functions. Journal of Chemical Physics, 72, 650–654.
  • Kryachko, E. S. (2006). Hydrogen bonding – New insights. Dordrecht: Springer.
  • Kryachko, E. S. (2010). Three computational mise-en-scènes of red- and blue-shifted hydrogen bonding motifs: Concept of negative intramolecular coupling. What else? International Journal of Quantum Chemistry, 110, 104–119.
  • Lee, J. C., & Gutell, R. R. (2004). Diversity of base-pair conformations and their occurrence in rRNA structure and RNA structural motifs. Journal of Molecular Biology, 344, 1225–1249.
  • Lee, C., Yang, W., & Parr, R. G. (1988). Development of the Colle–Salvetti correlation-energy formula into a functional of the electron density. Physical Review B: Condensed Matter and Materials Physics, 37, 785–789.
  • Lehn, J.-M. (1995). Supramolecular chemistry. Weinheim: Verlag-Chemie.
  • Lemieux, A., & Major, F. (2002). RNA canonical and non-canonical base pairing types: A recognition method and complete repertoire. Nucleic Acids Research, 30, 4250–4263.
  • Leonard, G. A., McAuley-Hecht, K., Brown, T., & Hunter, W. N. (1995). Do C–H···O hydrogen bonds contribute to the stability of nucleic acid base pairs? Acta Crystallographica, Section D: Biological Crystallography, 51, 136–139.
  • Leontis, N. B., Stombaugh, J., & Westhof, E. (2002). The non-Watson–Crick base pairs and their associated isostericity matrices. Nucleic Acid Research, 30, 3497–3531.
  • Leontis, N. B., & Westhof, E. (1998). Conserved geometrical base-pairing patterns in RNA. Quarterly Reviews of Biophysics, 31, 399–455.
  • Leontis, N. B., & Westhof, E. (2001). Geometric nomenclature and classification of RNA base pairs. RNA, 7, 499–512.
  • Lescoute, A., Leontis, N. B., Massire, C., & Westhof, E. (2005). Recurrent structural RNA motifs, isostericity matrices and sequence alignments. Nucleic Acid Research, 33, 2395–2409.
  • Lindahl, T. (1993). Instability and decay of the primary structure of DNA. Nature, 362, 709–715.
  • Liu, K., Miles, T. H., Frazier, J., & Sasisekharan, V. (1993). A novel DNA duplex. A parallel-stranded DNA helix with Hoogsteen base pairing. Biochemistry, 32, 11802–11809.
  • Löwdin, P.-O. (1963). Proton tunneling in DNA and its biological implications. Reviews of Modern Physics, 35, 724–732.
  • Löwdin, P.-O. (1966). Quantum genetics and the aperiodic solid: Some aspects on the biological problems of heredity, mutations, aging, and tumors in view of the quantum theory of the DNA molecule. In P.-O. Löwdin (Ed.), Advances in quantum chemistry (pp. 213–360). New York, NY: Academic Press.
  • Mandel-Gutfreund, Y., Margalit, H., Jernigan, R. L., & Zhurkin, V. B. (1998). A role for CH–O interactions in protein-DNA recognition. Journal of Molecular Biology, 277, 1129–1140.
  • Mata, I., Alkorta, I., Espinosa, E., & Molins, E. (2011). Relationships between interaction energy, intermolecular distance and electron density properties in hydrogen bonded complexes under external electric fields. Chemical Physics Letters, 507, 185–189.
  • Matsuura, H., Yoshida, H., Hieda, M., Yamanaka, S. Y., Harada, T., Shinya, K., & Ohno, K. (2003). Experimental evidence for intramolecular blue-shifting C–H···O hydrogen bonding by matrix-isolation infrared spectroscopy. Journal of the American Chemical Society, 125, 13910–13911.
  • Matta, C. F., Castillo, N., & Boyd, R. J. (2006). Extended weak bonding interactions in DNA: π-stacking (base–base), base-backbone, and backbone–backbone interactions. Journal of Physical Chemistry B, 110, 563–578.
  • Mishchuk, Ya R., Potyagaylo, A. L., & Hovorun, D. M. (2000). Structure and dynamics of 6-azacytidine by MNDO/H quantum-chemical method. Journal of Molecular Structure, 552, 283–289.
  • Mizuno, K., Ochi, T., & Shindo, Y. (1998). Hydrophobic hydration of acetone probed by nuclear magnetic resonance and infrared: Evidence for the interaction C–H···OH2. Journal of Chemical Physics, 109, 9502–9507.
  • Nagaswamy, U., Voss, N., Zhang, Z., & Fox, G. E. (2000). Database of non-canonical base pairs found in known RNA structures. Nucleic Acids Research, 28, 375–376.
  • Nair, D. T., Johnson, R. E., Prakash, S., Prakash, L., & Aggarwal, A. K. (2004). Replication by human DNA polymerase-ι occurs by Hoogsteen base pairing. Nature, 430, 377–380.
  • Nair, D. T., Johnson, R. E., Prakash, S., Prakash, L., & Aggarwal, A. K. (2005). Human DNA polymerase iota incorporates dCTP opposite template G via a GC+ Hoogsteen base pair. Structure, 13, 1569–1577.
  • Neidle, S. (2008). Principles of nucleic acid structure. Amsterdam: Elsevier.
  • Nikolova, E. N., Goh, G. B., Brooks, C. L., III, & Al-Hashimi, H. M. (2013). Characterizing the protonation state of cytosine in transient G•C Hoogsteen base pairs in duplex DNA. Journal of the American Chemical Society, 135, 6766–6769. doi:10.1021/ja400994e.
  • Nikolova, E. N., Kim, E., Wise, A. A., O’Brien, P. J., Andricioaei, I., & Al-Hashimi, H. M. (2011). Transient Hoogsteen base pairs in canonical duplex DNA. Nature, 470, 498–502.
  • Novoa, J. J., Lafuente, P., & Mota, F. (1998). Are non-linear C–H···O contacts hydrogen bonds or van der Waals interactions? Establishing the limits between hydrogen bonds and van der Waals interactions. Chemical Physics Letters, 290, 519–525.
  • Olson, W. K., Esguerra, M., Xin, Y., & Lu, X. J. (2009). New information content in RNA base pairing deduced from quantitative analysis of high-resolution structures. Methods, 47, 177–186.
  • Otto, C., Thomas, G. A., Rippe, K., Jovin, T. M., & Pelicolas, W. L. (1991). The hydrogen-bonding structure in parallel-stranded duplex DNA is reverse Watson–Crick. Biochemistry, 30, 3062–3069.
  • Pan, B., Ban, C., Wahl, M. C., & Sundaralingam, M. (1997). Crystal structure of d(GCGCGCG) with 5′-overhang G residues. Biophysical Journal, 73, 1553–1561.
  • Panigrahi, S., Pal, R., & Bhattacharyya, D. (2011). Structure and energy of non-canonical basepairs: Comparison of various computational chemistry methods with crystallographic ensembles. Journal of Biomolecular Structure and Dynamics, 29, 541–556.
  • Parr, R. G., & Yang, W. (1989). Density-functional theory of atoms and molecules. Oxford: Oxford University Press.
  • Parthasarathi, R., Amutha, R., Subramanian, V., Nair, B. U., & Ramasami, T. (2004). Bader’s and reactivity descriptors’ analysis of DNA base pairs. Journal of Physical Chemistry A, 108, 3817–3828.
  • Parvathy, V. R., Bhaumik, S. R., Chary, K. V., Govil, G., Liu, K., Howard, F. B., & Miles, H. T. (2002). NMR structure of a parallel-stranded DNA duplex at atomic resolution. Nucleic Acids Research, 30, 1500–1511.
  • Patel, D. J., Phan, A. T., & Kuryavyi, V. (2007). Human telomere, oncogenic promoter and 5′-UTR G-quadruplexes: Diverse higher order DNA and RNA targets for cancer therapeutics. Nucleic Acids Research, 35, 7429–7455.
  • Patikoglou, G. A., Kim, J. L., Sun, L., Yang, S. H., Kodadek, T., & Burley, S. K. (1999). TATA element recognition by the TATA box-binding protein has been conserved throughout evolution. Genes & Development, 13, 3217–3230.
  • Pelmenschikov, A., Hovorun, D. M., Shishkin, O. V., & Leszczynski, J. (2000). A density functional theory study of vibrational coupling between ribose and base rings of nucleic acids with ribosyl guanosine as a model system. Journal of Chemical Physics, 113, 5986–5990.
  • Perrin, C. L., & Nielson, J. B. (1997). ‘Strong’ hydrogen bonds in chemistry and biology. Annual Review of Physical Chemistry, 48, 511–544.
  • Platonov, M. O., Samijlenko, S. P., Sudakov, O. O., Kondratyuk, I. V., & Hovorun, D. M. (2005). To what extent can methyl derivatives be regarded as stabilized tautomers of xanthine? Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 62, 112–114.
  • Ponomareva, A. G., Yurenko, Ye P., Zhurakivsky, R. O., van Mourik, T., & Hovorun, D. M. (2012). Complete conformational space of the potential HIV-1 reverse transcriptase inhibitors d4U and d4C. A quantum chemical study. Physical Chemistry Chemical Physics, 14, 6787–6795.
  • Ponomareva, A. G., Yurenko, Ye P., Zhurakivsky, R. O., van Mourik, T., & Hovorun, D. M. (2013a). Conformational landscape of the nucleoside reverse transcriptase inhibitor d4T: A comprehensive quantum-chemical approach. Current Physical Chemistry, 3, 83–92.
  • Ponomareva, A. G., Yurenko, Ye. P., Zhurakivsky, R. O., van Mourik, T., & Hovorun, D. M. (2013b). Structural and energetic properties of the potential HIV-1 reverse transcriptase inhibitors d4A and d4G: A comprehensive theoretical investigation, Journal of Biomolecular Structure & Dynamics, in press.
  • Pranav, R. S., & Wategaonkar, S. (2010). Blue shifted hydrogen bond in 3-methylindole CHX3 complexes (X = Cl, F). Physical Chemistry Chemical Physics, 12, 6650–6659.
  • Quigley, G. J., Ughetto, G., van der Marel, G. A., van Boom, J. H., Wang, A. H.-J., & Rich, A. (1986). Non-Watson–Crick G C and A T base pairs in a DNA-antibiotic complex. Science, 232, 1255–1258.
  • Quinn, J. R., Zimmerman, S. C., Del Bene, J. E., & Shavitt, L. (2007). Does the AT or GC base-pair possess enhanced stability? Quantifying the effects of CH···O interactions and secondary interactions on base-pair stability using a phenomenological analysis and ab initio calculations. Journal of the American Chemical Society, 129, 934–941.
  • Rice, P. A., Yang, S., Mizuuchi, K., & Nash, H. A. (1996). Crystal structure of an IHF–DNA complex: A protein-induced DNA U-turn. Cell, 87, 1295–1306.
  • Roy, A., Panigrahi, S., Bhattacharyya, M., & Bhattacharyya, D. (2008). Structure, stability, and dynamics of canonical and noncanonical base pairs: Quantum chemical studies. Journal of Physical Chemistry B, 112, 3786–3796.
  • Saenger, W. (1984). Principles of nucleic acid structure. New York, NY: Springer-Verlag.
  • Samijlenko, S. P., Krechkivska, O. M., Kosach, D. A., & Hovorun, D. M. (2004). Transitions to high tautomeric states can be induced in adenine by interactions with carboxylate and sodium ions: DFT calculation data. Journal of Molecular Structure, 708, 97–104.
  • Samijlenko, S. P., Yurenko, Y. P., Stepanyugin, A. V., & Hovorun, D. M. (2012). Tautomeric equilibrium of uracil and thymine in model protein−nucleic acid contacts. spectroscopic and quantum chemical approach. Journal of Physical Chemistry B, 114, 1454–1461.
  • Scheiner, S., Grabowski, S. T., & Kar, T. (2001). Influence of hybridization and substitution on the properties of the CH···O hydrogen bond. Journal of Physical Chemistry A, 105, 10607–10612.
  • Scheiner, S., & Kar, T. (2002). Red- versus blue-shifting hydrogen bonds: Are there fundamental distinctions? Journal of Physical Chemistry A, 106, 1784–1789.
  • Scheiner, S., & Kar, T. (2008). Spectroscopic and structural signature of the CH–O hydrogen bond. Journal of Physical Chemistry A, 112, 11854–11860.
  • Schuster, P., Zundel, G., & Sandorfy, C. (1976). The hydrogen bond. Structure and spectroscopy. Amsterdam: North-Holland.
  • Seaman, F. C., & Hurley, L. (1993). Interstrand cross-linking by bizelesin produces a Watson–Crick to Hoogsteen base-pairing transition region in d(CGTAATTACC). Biochemistry, 32, 12577–l2585.
  • Shishkin, O. V., Pelmenschikov, A., Hovorun, D. M., & Leszczynski, J. (2000). Theoretical analysis of low-lying vibrational modes of free canonical 2′-deoxyribonucleosides. Chemical Physics, 260, 317–325.
  • Shishkin, O. V., Sponer, J., & Hobza, P. (1999). Intramolecular flexibility of DNA bases in adenine–thymine and guanine–cytosine Watson–Crick base pairs. Journal of Molecular Structure, 477, 15–21.
  • Sordo, J. A. (2001). On the use of the Boys–Bernardi function counterpoise procedure to correct barrier heights for basis set superposition error. Journal of Molecular Structure: THEOCHEM, 537, 245–251.
  • Sordo, J. A., Chin, S., & Sordo, T. L. (1988). On the counterpoise correction for the basis set superposition error in large systems. Theoretical Chemistry Accounts: Theory, Computation, and Modeling Modeling (Theoretica Chimica Acta), 74, 101–110.
  • Starikov, E. B., & Steiner, T. (1997). Computational support for the suggested contribution of C–H···O=C interactions to the stability of nucleic acid base pairs. Acta Crystallographica, Section D: Biological Crystallography, 53, 345–347.
  • Steiner, T. (1997). Unrolling the hydrogen bond properties of C−H···O interactions. Chemical Communications. 727–734.
  • Steiner, T. (1999). Not all short C–H···O contacts are hydrogen bonds: The prototypical example of contacts to C=O–H. Chemical Communications. 313–314.
  • Steiner, T., & Saenger, W. (1992). Geometry of C–H···O hydrogen bonds in carbohydrate crystal structures. Analysis of neutron diffraction data. Journal of the American Chemical Society, 114, 10146–10154.
  • Steiner, T., & Saenger, W. (1993). Role of C–H···O hydrogen bonds in the coordination of water molecules. Analysis of neutron diffraction data. Journal of the American Chemical Society, 115, 4540–4547.
  • Strobel, A. A., Ortoleva-Donnelly, L., Ryder, S. P., Cate, J. H., & Moncoeur, E. (1998). Complementary sets of noncanonical base pairs mediate RNA helix packing in the group I intron active site. Nature: Structural Biology, 5, 60–66.
  • Sühnel, J. (2002). Beyond nucleic acid base pairs: From triads to heptads. Biopolymers, 61, 32–51.
  • Sutor, D. J. (1962). The C–H···O hydrogen bonds in crystals. Nature, 195, 68–69.
  • Sutor, D. J. (1963). Evidence for the existence of C–H···O hydrogen bonds in crystals. Journal of the Chemical Society. 1105–1110.
  • Szatyłowicz, H., & Sadlej-Sosnowska, N. (2010). Characterizing the strength of individual hydrogen bonds in DNA base pairs. Journal of Chemical Information and Modeling, 50, 2151–2161.
  • Taylor, R., & Kennard, O. (1982). Crystallographic evidence for the existence of C–H···O, C–H···N and C–H···Cl hydrogen bonds. Journal of the American Chemical Society, 104, 5063–5070.
  • Tchurikov, N. A., Chernov, B. K., Golova, Y. B., & Nechipurenko, Y. D. (1989). Parallel DNA: Generation of a duplex between two Drosophila sequences in vitro. FEBS Letters, 257, 415–418.
  • Tchurikov, N. A., Chistyakova, L. G., Zavilgelsky, G. B., Manukhov, I. V., Chernov, B. K., & Golova, Y. B. (2000). Gene-specific silencing by expression of parallel complementary RNA in Escherichia coli. Journal of Biological Chemistry, 275, 26523–26529.
  • Tchurikov, N. A., Shchyolkina, A. K., Borissova, O. F., & Chernov, B. K. (1992). Southern molecular hybridization experiments with parallel complementary DNA probes. FEBS Letters, 297, 233–236.
  • Tirado-Rives, J., & Jorgensen, W. L. (2008). Performance of B3LYP density functional methods for a large set of organic molecules. Journal of Chemical Theory and Computation, 4, 297–306.
  • Topal, M. D., & Fresco, J. R. (1976). Complementary base pairing and the origin of substitution mutations. Nature, 263, 285–289.
  • Voet, D., & Rich, A. (1970). The crystal structures of purines, pyrimidines and their intermolecular complexes. Progress in Nucleic Acid Research & Molecular Biology, 10, 183–265.
  • Wahl, M. C., Rao, S. T., & Sundaralingam, M. (1996). The structure of r(UUCGCG) has a 5′-UU-overhang exhibiting Hoogsteen-like trans U–U base pairs. Nature Structural Biology, 3, 24–31.
  • Wahl, M. C., & Sundaralingam, M. (1997). C–H···O hydrogen bonding in biology. Trends in Biochemical Sciences, 22, 97–102.
  • Wang, W., Hellinga, H. W., & Beese, L. S. (2011). Structural evidence for the rare tautomer hypothesis of spontaneous mutagenesis. Proceedings of the National Academy of Sciences of the United States of America, 124, 17644–17648.
  • Warshel, A., Papazyan, A., & Kollman, P. A. (1995). On low-barrier hydrogen bonds and enzyme catalysis. Science, 269, 102–106.
  • Watson, J. D., & Crick, F. H. C. (1953a). Molecular structure of nucleic acids: A structure for deoxyribose nucleic acid. Nature, 171, 737–738.
  • Watson, J. D., & Crick, F. H. C. (1953b). Genetical implications of the structure of deoxyribonucleic acid. Nature, 171, 964–967.
  • Weinhold, F., & Klein, R. A. (2012). What is a hydrogen bond? Mutually consistent theoretical and experimental criteria for characterizing H-bonding interactions. Molecular Physics, 110, 565–579.
  • Weinhold, F., & Landis, C. (2005). Valency and bonding. A natural bond orbital donor-acceptor perspective. Cambridge: Cambridge University Press.
  • Wöhnert, J., Dingley, A. J., Stoldt, M., Görlach, M., Grzesiek, S., & Brown, L. R. (1999). Direct identification of NH···N hydrogen bonds in non-canonical base pairs of RNA by NMR spectroscopy. Nucleic Acid Research, 27, 3104–3110.
  • Xin, Y., & Olson, W. K. (2009). BPS: A database of RNA base-pair structures. Nucleic Acids Research, 37, D83–D88.
  • Yurenko, Y. P., Zhurakivsky, R. O., Ghomi, M., Samijlenko, S. P., & Hovorun, D. M. (2007a). Comprehensive conformational analysis of the nucleoside analogue 2′-β-deoxy-6-azacytidine by DFT and MP2 calculations. Journal of Physical Chemistry B, 111, 6263–6271.
  • Yurenko, Y. P., Zhurakivsky, R. O., Ghomi, M., Samijlenko, S. P., & Hovorun, D. M. (2007b). How many conformers determine the thymidine low-temperature matrix infrared spectrum? DFT and MP2 quantum chemical study. Journal of Physical Chemistry B, 111, 9655–9663.
  • Yurenko, Y. P., Zhurakivsky, R. O., Ghomi, M., Samijlenko, S. P., & Hovorun, D. M. (2007c). The whole of intramolecular H-bonding in the isolated DNA nucleoside thymidine: AIM electron density topological study. Chemical Physics Letters, 447, 140–146.
  • Yurenko, Y. P., Zhurakivsky, R. O., Ghomi, M., Samijlenko, S. P., & Hovorun, D. M. (2008). Ab initio comprehensive conformational analysis of 2′-deoxyuridine, the biologically significant DNA minor nucleoside, and reconstruction of its low-temperature matrix infrared spectrum. Journal of Physical Chemistry B, 112, 1240–1250.
  • Yurenko, Y. P., Zhurakivsky, R. O., Samijlenko, S. P., & Hovorun, D. M. (2011). Intramolecular CH···O hydrogen bonds in the AI and BI DNA-like conformers of canonical nucleosides and their Watson–Crick pairs. Quantum chemical and AIM analysis. Journal of Biomolecular Structure and Dynamics, 29, 51–65.
  • Zagryadskaya, E. I., Doyon, F. R., & Steinberg, S. V. (2003). Importance of the reverse Hoogsteen base pair 54–58 for tRNA function. Nucleic Acids Research, 31, 3946–3953.
  • Zhou, P.-P., & Qiu, W.-Y. (2009). Red-shifted hydrogen bonds and blue-shifted van der Waals contact in the standard Watson–Crick adenine–thymine base pair. Journal of Physical Chemistry A, 113, 10306–10320.
  • Zundel, G. (2000). Hydrogen bonds with large proton polarizability and proton transfer processes in electrochemistry and biology. In I. Prigogine, & S. A. Rice (Eds.), Advances in chemical physics (pp. 1–217). New York, NY: Wiley.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.