949
Views
5
CrossRef citations to date
0
Altmetric
Articles

Complex of the herpes simplex virus type 1 origin binding protein UL9 with DNA as a platform for the design of a new type of antiviral drugs

, , , , , , , , & show all
Pages 1456-1473 | Received 05 Dec 2012, Accepted 25 Jun 2013, Published online: 24 Jul 2013

References

  • Andronova, V. L., Grokhovsky, S. L., Deryabin, P. G., Gursky, G. V., Galegov, G. A., & L’vov, D. K. (2012). Antiherpetic activity of netropsin derivatives as tested in experiments on laboratory animals. Voprosi Virusologii (Russian), 57, 24–26.
  • Andronova, V. L., Grokhovsky, S. L., Surovaya, А. N., Arkhipova, V. S., Gursky, G. V., & Galegov, G. А. (2008). Antiviral and cytotoxic activity of netropsin derivatives in Vero cells infected with vaccinia virus and herpes simplex virus type I. Doklady Biochemistry and Biophysics, 422, 688–693.
  • Andronova, V. L., Grokhovsky, S. L., Surovaya, А. N., Gursky, G. V., & Galegov, G. А. (2001). Antiherpetic activity of dimeric derivatives of netropsin. Doklady Biochemistry and Biophysics, 380, 345–348.
  • Andronova, V. L., Grokhovsky, S. L., Surovaya, А. N., Gursky, G. V., & Galegov, G. А. (2004). DNA-binding and antiviral activity of bis-netropsins containing clusters of lysine residues in the N-terminal region. Doklady Biochemistry and Biophysics, 399, 829–834.
  • Andronova, V. L., Grokhovsky, S. L., Surovaya, А. N., Gursky, G. V., & Galegov, G. А. (2007). Effect of dimeric derivatives of netropsin and their combinations with acyclovir on herpes simplex virus type 1 infection in mice. Doklady Biochemistry and Biophysics, 413, 830–834.
  • Andronova, V. L., Grokhovsky, S. L., Surovaya, А. N., Gursky, G. V., & Galegov, G. A. (2013). Estimation of the activities of bis-netropsin derivatives on a model of an experimental cutaneous herpes simplex disease of guinea pigs. Voprosi Virusologii (Russian), 58, 32–35.
  • Ariyoshi, M., Nishino, T., Iwasaki, H., Shinagawa, H., & Morikawa, K. (2000). Crystal structure of the Holliday junction DNA in complex with a single RuvA tetramer. Proceedings of the National Academy of Sciences of the USA, 97, 8257–8262.
  • Aslani, A., Macao, B., Simonsson, S., & Elias, P. (2001). Complementary intrastrand base pairing during initiation of herpes simplex virus type 1 DNA replication. Proceedings of the National Academy of Sciences of the USA, 98, 7194–7199.
  • Aslani, A., Olsson, M., & Elias, P. (2002). ATP-dependent unwinding of a minimal origin of DNA replication by the origin-binding protein and the single-strand DNA-binding protein ICP8 from herpes simplex virus type I. Journal of Biological Chemistry, 277, 41204–41212.
  • Bailly, C., & Chaires, J. B. (1998). Sequence-specific DNA minor groove binders: Design and synthesis of netropsin and distamycin analogues. Bioconjugate Chemistry, 9, 513–538.
  • Bazhulina, N. P., Surovaya, A. N., Gursky, Y. G., Andronova, V. L., Arkhipova, V. S., Golovkin, M. V., … Gursky, G. V. (2012). Inhibition of herpes simplex virus helicase UL9 by netropsin derivatives and antiviral activities of bis-netropsins. Biophysics, 57, 153–162.
  • Belikov, S. L., Grokhovsky, S. L., Isaguliants, M. G., Surovaya, A. N., & Gursky, G. V. (2005). Sequence-specific minor groove binding ligands as potential regulators of gene expression in Xenopus Laevis oocytes. Journal of Biomolecular Structure & Dynamics, 23, 193–202.
  • Belon, C. A., High, Y. D., Lin, T. I., Pauwells, F., & Frick, D. N. (2010). Mechanism and specificity of a symmetrical benzimidazolephenylcarboxamide helicase inhibitor. Biochemistry, 49, 1822–1832.
  • Bennett, R. J., & West, S. C. (1995). RuvC protein resolves Holliday junctions via cleavage of the continuous (noncrossover) strands. Proceedings of the National Academy of Sciences of the USA, 92, 5635–5639.
  • Biertümpfel, C., Yang, W., & Suck, D. (2007). Crystal structure of T4 endonuclease VII resolving a Holliday junction. Nature, 449, 616–620.
  • Boehmer, P. E., Craigie, M. C., Stow, N. D., & Lehman, I. R. (1994). Association of origin binding protein and single strand DNA-binding protein, ICP8, during herpes simplex virus type 1 DNA replication in vivo. Journal of Biological Chemistry, 269, 29329–29334.
  • Carter, A. S., Tahmaseb, K., Compton, S. A., & Matson, S. W. (2012). Resolving Holliday junctions with Escherichia coli UvrD helicase. Journal of Biological Chemistry, 287, 8126–8134.
  • Chattopadhyay, S., & Weller, S. K. (2007). Direct interaction between the N- and C-terminal portions of the herpes simplex virus type 1 origin binding protein UL9 implies the formation of a head-to-tail dimer. Journal of Virology, 81, 13659–13667.
  • Chen, X., Ramakrishnan, B., Rao, S. T., & Sundaralingam, M. (1994). Binding of two distamycin A molecules in the minor groove of an alternating B-DNA duplex. Structural Biology, 1, 169–175.
  • Coll, M., Frederick, C. A., Wang, A. H.-J., & Rich, A. (1987). A bifurcated hydrogen bonded conformation in the d(AT) base pairs of the DNA dodecamer d(CGCAAATTTGCG) and its complex with distamycin. Proceedings of the National Academy of Sciences of the USA, 84, 8385–8389.
  • Coull, J. J., He, G., Melander, Ch, Rucker, V. C., Dervan, P. B., & Margolis, D. M. (2002). Targeted derepression of the human immunodeficiency virus type 1 long terminal repeat by pyrrole-imidazole polyamides. Journal of Virology, 76, 12349–12354.
  • Dickinson, L. A., Gulizia, R. J., Trauger, J. W., Baird, E. E., Mosier, D. E., Gottesfeld, J. M., & Dervan, P. B. (1998). Inhibition of RNA polymerase II transcription in human cells by synthetic DNA-binding ligands. Proceedings of the National Academy of Sciences of the USA, 95, 12890–12895.
  • Doherty, A. J., Serpell, L. C., & Ponting, Ch P. (1996). The helix–hairpin–helix DNA-binding motif: A structural basis for non-sequence-specific recognition of DNA. Nucleic Acids Research, 24, 2488–2492.
  • Fierer, D. S., & Challberg, M. D. (1992). Purification and characterization of UL9, the herpes simplex virus type 1 origin-binding protein. Journal of Virology, 66, 3986–3995.
  • Förster, Th (1948). Intermolecular energy migration and fluorescence. Annalen der Physik, 2, 55–75.
  • Gearhart, M. D., Dickinson, L., Ehley, J., Melander, Ch, Dervan, P. B., Wright, P. E., & Gottesfel, J. L. (2005). Inhibition of DNA binding by human estrogen-related receptor 2 and estrogen receptor α with minor groove binding polyamides. Biochemistry, 44, 4196–4203.
  • Geierstanger, B. H., Mrksich, M., Dervan, P. B., & Wemmer, D. E. (1994). Design of a G•C-specific DNA minor groove-binding peptide. Science, 266, 646–650.
  • Gopal, D. N., Guo, F., & Van Duyne, G. D. (1998). Structure of the Holliday junction intermediate in Cre-loxP site-specific recombination. The EMBO Journal, 17, 4175–4187.
  • Grokhovsky, S. L., Gottikh, B. P., & Zhuze, A. L. (1992). Ligands possessing affinity to specific DNA base pair sequences. IX. Synthesis of netropsin and distamycin A analogs having sarcolysine residues or a platinum(II) atom. Bioorganic Chemistry, 18, 570–583.
  • Grokhovsky, S. L., Nikolaev, V. A., Zubarev, V. E., Surovaya, A. N., Zhuze, A. L., Chernov, B. K., … Gursky, G. V. (1993). Specific DNA cleavage by a netropsin analog containing a copper(II)-chelating peptide Gly-Gly-His. Molecular Biology, 6, 839–850.
  • Grokhovsky, S. L., Surovaya, A. N., Burckhardt, G., Pismensky, V. F., Chernov, B. K., Zimmer, C., & Gursky, G. V. (1998). DNA sequence recognition by bis-linked netropsin and distamycin derivatives. FEBS Letters, 439, 346–350.
  • Grokhovsky, S. L., Surovaya, A. N., Sidorova, N. Yu, Votavova, H., Sponar, J., Frich, I., & Gursky, G. V. (1988). Design and synthesis of peptides capable of binding specically to DNA. Molecular Biology, 22, 1056–1073.
  • Gursky, G. V., Nikitin, A. M., Surovaya, A. N., Grokhovsky, S. L., Andronova, V. L., Galegov. G. A. (2008). Isohelical DNA-binding oligomers: Antiviral activity and application for design of nano-structured devices. Nanomaterials for Application in Medicine and Biology (NATO Workshop: Security through Science Series C: Environmental Security, Bonn) (pp. 17–28). Dordrecht: Springer.
  • Gursky, G. V., Zasedatelev, A. S., Zhuze, A. L., Khorlin, А. А., Grokhovsky, S. L., Streltsov, S. A., … Gottikh, B. P. (1983). Synthetic sequence-specific ligands. Cold Spring Harbor Symposium Quantitative Biology, 47, 367–378.
  • Hadden, J. M., Déclais, A. C., Carr, S. B., Lilley, D. M., & Phillips, S. E. (2007). The structural basis of Holliday junction resolution by T7 endonuclease I. Nature, 449, 621–624.
  • He, X., & Lehman, I. R. (2001). An initial ATP-independent step in the unwinding of a herpes simplex virus type I origin of replication by a complex of the viral origin-binding protein and single-strand DNA-binding protein. Proceedings of the National Academy of Sciences of the USA, 98, 3024–3028.
  • Janssen, S., Cuvier, O., Muller, M., & Laemmli, U. K. (2000). Specific gain- and loss-of-function phenotypes induced by satellite-specific DNA-binding drugs fed to Drosophila melanogaster. Molecular Cell, 6, 1013–1024.
  • Khorlin, A. A., Krylov, A. S., Grokhovsky, S. L., Zhuze, A. L., Zasedatelev, A. S., Gursky, G. V., & Gottikh, B. P. (1980). A new type of AT-specific ligand constructed of two netropsin-like molecules. FEBS Letters, 118, 311–314.
  • Kleikopf, C. L., Bremer, R. E., White, S., Szewczyk, J. W., Turner, J. M., Baird, E. E., … Rees, D. C. (2000). Structural effects of DNA sequence on TA recognition by hydroxypyrrole/pyrrole pairs in the minor groove. Journal of Molecular Biology, 295, 557–567.
  • Klevit, R. E., Wemmer, D. E., & Reid, B. R. (1986). 1H NMR studies on the interaction between distamycin A and a symmetrical DNA dodecamer. Biochemistry, 25, 3296–3303.
  • Koff, A., Schwedes, J. F., & Tegtmeyer, P. J. (1991). Herpes simplex virus origin-binding protein (UL9) loops and distorts the viral replication origin. Journal of Virology, 65, 3284–3292.
  • Kopka, M. L., Goodsell, D. S., Han, G. W., Chiu, T. K., Lown, J. W., & Dickerson, R. E. (1997). Defining GC-specificity in the minor groove: Side-by-side binding of diimidazole lexitropsin to CATGGCCATG. Structure, 5, 1033–1044.
  • Kopka, M. L., Yoon, C., Goodsell, D., Pjura, P., & Dickerson, R. E. (1985). The molecular origin of DNA-drug specificity in netropsin and distamycin. Proceedings of the National Academy of Sciences of the USA, 82, 1376–1380.
  • Lee, S. S., & Lehman, I. R. (1997). Unwinding of the box I element of a herpes simplex virus type 1 origin by a complex of the viral origin binding protein, single-strand DNA binding protein, and single-stranded DNA. Proceedings of the National Academy of Sciences of the USA, 94, 2838–2842.
  • Leinsoo, T. A., Nikolaev, V. A., Grokhovsky, S. L., Strel’tsov, S. A., Zasedatelev, A. S., Zhuze, A. L., & Gursky, G. V. (1988). Attachment of trivaline to a netropsin analog changes the specificity of its binding to DNA. Molecular Biology, 22, 159–175.
  • Lown, J. W., Krowicki, K., Balzarini, J., Newman, R. A., & De Clerk, E. (1989). Novel linked antiviral and antitumor agents related to netropsin and distamycin: Synthesis and biological evaluation. Journal of Medical Chemistry, 32, 2368–2375.
  • Macao, B., Olsson, M., & Elias, P. (2004). Functional properties of the herpes simplex virus type I origin-binding protein are controlled by precise interactions with the activated form of the origin of DNA replication. Journal of Biological Chemistry, 279, 29211–29217.
  • Mahdi, A. A., McGlynn, P., Levett, S. D., & Lloyd, R. G. (1997). DNA binding and helicase domains of the Escherichia coli recombination protein RecG. Nucleic Acids Research, 25, 3875–3880.
  • Makhov, A. M., Boehmer, P. E., Lehman, I. R., & Griffith, J. D. (1996). The herpes simplex virus type 1 origin-binding protein carries out origin specific DNA unwinding and forms stem-loop structures. EMBO Journal, 15, 1742–1750.
  • Malik, A. K., & Weller, S. K. (1996). Use of transdominant mutants of the origin-binding protein (UL9) of herpes simplex virus type 1 to define functional domains. Journal of Virology, 70, 7859–7866.
  • Manolaridis, I., Mumtsidu, E., Konarev, P., Makhov, A. M., Fullerton, S. W., Sinz, A., … Tucker, P. A. (2009). Structural and biophysical characterization of the proteins interacting with the herpes simplex virus 1 origin of replication. Journal of Biological Chemistry, 284, 16343–16353.
  • Marras, S. A. E., Kramer, F. R., & Tyagi, S. (2002). Efficiencies of fluorescence resonance energy transfer and contact-mediated quenching in oligonucleotide probes. Nucleic Acids Research, 30, e122.
  • Meier, J. L., Montgomery, D. C., & Dervan, P. B. (2012). Enhancing the cellular uptake of Py-Im polyamides through next generation aryl turns. Nucleic Acids Research, 40, 2345–2356.
  • Moiseeva, E. D., Bazhulina, N. P., Gursky, Y. G., Surovaya, A. N., Grokhovsky, S. L., & Gursky G. V. (2013). DNA helicase UL9 of herpes simplex virus type 1 binds to the synthetic 4-ways Holiday junction and unwinds it in the presence of ATP. Doklady Biochemistry and Biophysics, 450.
  • Mrksich, M., Parks, M. E., & Dervan, P. B. (1994). Hairpin peptide motif: A new class of oligopeptides for sequence-specific recognition in the minor groove of double-helical DNA. Journal of American Chemical Society, 116, 7983–7988.
  • Nikolaev, V. A., Grokhovsky, S. L., Surovaya, A. N., Leinsoo, T. A., Sidorova, N. Yu, Zasedatelev, A. S., … Gursky, G. V. (1996). Design of sequence-specific DNA binding ligands that use a two-stranded peptide motif for DNA sequence recognition. Journal of Biomolecular Structure & Dynamics, 14, 31–47.
  • Nishino, T., Ariyoshi, M., Iwasaki, H., Shinagawa, H., & Morikawa, K. (1998). Functional analyses of the domain structure in the Holliday junction binding protein RuvA. Structure, 6, 11–21.
  • Olsson, M., Tang, Ka-W, Persson, C., Wilhelmsson, L. M., Billeter, M., & Elias, P. (2009). Stepwise evolution of the herpes simplex virus origin binding protein and origin of replication. Journal of Biological Chemistry, 284, 16246–16255.
  • Ortiz-Lombardia, M., Gonzalez, A., Eritja, R., Aymami, J., Azorin, F., & Coll, M. (1999). Crystal structure of a DNA Holliday junction. Nature Structural Biology, 6, 913–917.
  • Pelton, J. G., & Wemmer, D. E. (1989). Structural characterization of a 2:1 distamycin A d(CGCAAATTGGC) complex by two-dimensional NMR. Proceedings of the National Academy of Sciences of the USA, 86, 5723–5727.
  • Rafferty, J. B., Sedelnikova, S. E., Hargreaves, D., Artymiuk, P. J., Baker, P. J., Sharples, G. J., … Rice, D. W. (1996). Crystal structure of DNA recombination protein RuvA and a model for its binding to the Holliday junction. Science, 274, 415–421.
  • Sambrook, J., Fritsch, E. F., & Maniatis, T. (1989). Molecular cloning: A laboratory manual. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.
  • Shao, X., & Grishin, N. V. (2000). Common fold in helix-hairpin-helix proteins. Nucleic Acids Research, 28, 2643–2650.
  • Surovaya, А. N., Grokhovsky, S. L., Bazhulina, N. P., & Gursky, G. V. (2008). DNA-binding activity of bis-netropsins containing a cis-diaminoplatinum group between two netropsin fragments. Biophysics, 53, 744–753.
  • Surovaya, A. N., Grokhovsky, S. L., Brusov, R. V., Lysov, Yu P., Zhuze, A. L., & Gursky, G. V. (1995). Design of de novo DNA-binding peptides with β-strand-turn-β-strand motif for DNA sequence recognition. Molecular Biology, 28, 859–868.
  • Surovaya, А. N., Grokhovsky, S. L., Gursky, Ya G., Andronova, V. L., Arkhipova, V. S., Bazhulina, N. P., … Gursky, G. V. (2010). Complex of the herpes simplex virus initiator protein UL9 with DNA as a platform for the design of a new type of antiviral drugs. Biophysics, 55, 206–216.
  • Weir, H. M., & Stow, N. D. (1990). Two binding sites for the herpes simplex virus type 1 UL9 protein are required for efficient activity of the OriS replication origin. Journal of General Virology, 71, 1379–1385.
  • Whitby, M. C., & Lloyd, R. C. (1998). Targeting Holliday junctions by the RecG branch migration protein of Escherichia coli. Journal of Biological Chemistry, 273, 19729–19739.
  • White, S., Szewczyk, J. W., Turner, J. M., Baird, E. E., & Dervan, P. B. (1998). Recognition of the four Watson-Crick base pairs in the DNA minor groove by synthetic ligands. Nature, 391, 468–471.