145
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Association of antitumor antibiotic Mithramycin with Mn2+ and the potential cellular targets of Mithramycin after association with Mn2+

, , , &
Pages 434-446 | Received 16 Aug 2013, Accepted 21 Jan 2014, Published online: 21 Feb 2014

References

  • Aich, P., & Dasgupta, D. (1995). Role of magnesium ion in mithramycin-DNA interaction: Binding of mithramycin-Mg2+ complexes with DNA. Biochemistry, 34, 1376–1385.
  • Bannister, J. V., Bannister, W. H., & Rotilio, G. (1987). Aspects of the structure, function, and applications of superoxide dismutas. Critical Reviews in Biochemistry and Molecular Biology, 22, 111–180.
  • Banville, D. L., Keniry, M. A., Kam, M., & Shafer, R. H. (1990). NMR studies of the interaction of chromomycin A3 with small DNA duplexes. Binding to GC-containing sequences. Biochemistry, 29, 6521–6534.
  • Banville, D. L., Keniry, M. A., & Shafer, R. H. (1990). NMR investigation of mithramycin A binding to d (ATGCAT) 2: A comparative study with chromomycin A3. Biochemistry, 29, 9294–9304.
  • Blobel, G., & Potter, V. R. (1966). Nuclei from rat liver: Isolation method that combines purity with high yield. Science, 154, 1662–1665.
  • Calabresi, P., Chabner, B. A., Hardman, L. E., & Limbard, L. E. (1991). Goodman and Gilman’s the pharmacological basis of therapeutics: Chemotherapy of neoplastic disease. New York, NY: Macmillan.
  • Campbell, V. W., Davin, D., Thomas, S., Jones, D., Roesel, J., Tran-Patterson, R., … Rodu, R. A. (1994). The G–C specific DNA binding drug, mithramycin, selectively inhibits transcription of the C-MYC and C-HA-RAS genes in regenerating liver. The American Journal of the Medical Sciences, 307, 167–172.
  • Chakraborty, H., Devi, P. G., Sarkar, M., & Dasgupta, D. (2008). Multiple functions of generic drugs: Future perspectives of aureolic acid group of anti-cancer antibiotics and non-steroidal anti-inflammatory drugs. Mini-Reviews in Medicinal Chemistry, 8, 331–349.
  • Chandra, S., & Shukla, G. (2006). Concentrations of striatal catecholamines in rats given manganese chloride through drinking water. Journal of neurochemistry, 36, 683–687.
  • Das, S., & Dasgupta, D. (2005). Binding of (MTR)2Zn2+ complex to chromatin: A comparison with (MTR)2 Mg2+ complex. Journal of Inorganic Biochemistry, 99, 707–715.
  • Davey, C. A., & Richmond, T. J. (2002). DNA-dependent divalent cation binding in the nucleosome core particle. Proceedings of the National Academy of Sciences, 99, 11169–11174.
  • Demicheli, C., Albertini, J. P., & Garnier-Suillerot, A. (1991). Interaction of mithramycin with DNA. Evidence that mithramycin binds to DNA as a dimer in a right-handed screw conformation. European Journal of Biochemistry, 198, 333–338.
  • Devi, P. G., Chakraborty, P. K., & Dasgupta, D. (2009). Inhibition of a Zn(II)-containing enzyme, alcohol dehydrogenase, by anticancer antibiotics, mithramycin and chromomycin A3. JBIC Journal of Biological Inorganic Chemistry, 14, 347–359.
  • Devi, P. G., Pal, S., Banerjee, R., & Dasgupta, D. (2007). Association of antitumor antibiotics, mithramycin and chromomycin, with Zn(II). Journal of Inorganic Biochemistry, 101, 127–137.
  • Ferrante, R. J., Ryu, H., Kubilus, J. K., D’Mello, S., Sugars, K. L., Lee, J., … Beal, M. F. (2004). Chemotherapy for the brain: The antitumor antibiotic mithramycin prolongs survival in a mouse model of Huntington’s disease. Journal of Neuroscience, 24, 10335–10342.
  • Fridovich, I. (1975). Superoxide dismutases. Annual Review of Biochemistry, 44, 147–159.
  • Fridovich, I. (1997). Superoxide anion radical (obardot 2), superoxide dismutases, and related matters. Journal of Biological Chemistry, 272, 18515–18517.
  • Gochin, M. (1998). Nuclear magnetic resonance characterization of a paramagnetic DNA-drug complex with high spin cobalt; Assignment of the 1H and 31P NMR spectra, and determination of electronic, spectroscopic and molecular properties. Journal of Biomolecular NMR, 12, 243–257.
  • Goldberg, I. H., & Friedman, P. A. (1971). Antibiotics and nucleic acids. Annual Review of Biochemistry, 40, 775–810.
  • Helm, L., & Merbach, A. E. (2005). Inorganic and bioinorganic solvent exchange mechanisms. Chemical Reviews, 105, 1923–1960.
  • Horsburgh, M. J., Wharton, S. J., Karavolos, M., & Foster, S. J. (2002). Manganese: Elemental defence for a life with oxygen. Trends in Microbiology, 10, 496–501.
  • Hou, M. H., Lu, W. J., Huang, C. Y., Fan, R. J., & Yuann, J. M. (2009). Effects of polyamines on the DNA-reactive properties of dimeric mithramycin complexed with cobalt(II): Implications for anticancer therapy. Biochemistry, 48, 4691–4698.
  • Hou, M. H., & Wang, A. H. (2005). Mithramycin forms a stable dimeric complex by chelating with Fe(II): DNA-interacting characteristics, cellular permeation and cytotoxicity. Nucleic Acids Research, 33, 1352–1361.
  • Huheey, J. E., Keiter, E. A., & Keiter, R. L. (1993). Inorganic chemistry: Principles of structure and reactivity. New York, NY.
  • Jamuar, S. S., & Lai, A. H. (2012). Safety and efficacy of iron chelation therapy with deferiprone in patients with transfusion-dependent thalassemia. Therapeutic advances in hematology, 3, 299–307.
  • Jones, D. E., Jr, Cui, D. M., & Miller, D. M. (1995). Expression of beta-galactosidase under the control of the human c-myc promoter in transgenic mice is inhibited by mithramycin. Oncogene, 10, 2323–2330.
  • Keniry, M. A., Banville, D. L., Simmonds, P. M., & Shafer, R. (1993). Nuclear magnetic resonance comparison of the binding sites of mithramycin and chromomycin on the self-complementary oligonucleotide d(ACCCGGGT)2. Journal of Molecular Biology, 231, 753–767.
  • Keniry, M. A., Brown, S. C., Berman, E., & Shafer, R. H. (1987). NMR studies of the interaction of chromomycin A3 with small DNA duplexes I. Biochemistry, 26, 1058–1067.
  • Lah, M. S., Dixon, M. M., Pattridge, K. A., Stallings, W. C., Fee, J. A., & Ludwig, M. L. (1995). Structure-function in Escherichia coli iron superoxide dismutase: Comparisons with the manganese enzyme from Thermus thermophilus. Biochemistry, 34, 1646–1660.
  • Lahiri, S., Takao, T., Devi, P. G., Ghosh, S., Ghosh, A., Dasgupta, A., & Dasgupta, D. (2012). Association of aureolic acid antibiotic, chromomycin A3 with Cu2+ and its negative effect upon DNA binding property of the antibiotic. Biometals, 25, 435–450.
  • Lu, W. J., Wang, H. M., Yuann, J. M., Huang, C. Y., & Hou, M. H. (2009). The impact of spermine competition on the efficacy of DNA-binding Fe(II), Co(II), and Cu(II) complexes of dimeric chromomycin A3. Journal of Inorganic Biochemistry, 103, 1626–1633.
  • Lumachi, F., Brunello, A., Roma, A., & Basso, U. (2008). Medical treatment of malignancy-associated hypercalcemia. Current Medicinal Chemistry, 15, 415–421.
  • Majumder, P., & Dasgupta, D. (2011). Effect of DNA groove binder distamycin A upon chromatin structure. PLoS One, 6, e26486.
  • Marklund, S., & Marklund, G. (1974). Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. European Journal of Biochemistry, 47, 469–474.
  • Mena, I., Marin, O., Fuenzalida, S., & Cotzias, G. C. (1967). Chronic manganese poisoning: Clinical picture and manganese turnover. Neurology, 17, 128–128.
  • Millonig, H., Pous, J., Gouyette, C., Subirana, J. A., & Campos, J. L. (2009). The interaction of manganese ions with DNA. Journal of Inorganic Biochemistry, 103, 876–880.
  • Mir, M. A., Das, S., & Dasgupta, D. (2004). N-terminal tail domains of core histones in nucleosome block the access of anticancer drugs, mithramycin and daunomycin, to the nucleosomal DNA. Biophysical Chemistry, 109, 121–135.
  • Mir, M. A., & Dasgupta, D. (2001). Association of the anticancer antibiotic Chromomycin A3 with the nucleosome: Role of core histone tail domains in the binding process. Biochemistry, 40, 11578–11585.
  • Montes, S., Alcaraz-Zubeldia, M., Muriel, P., & Rı́os, C. (2001). Striatal manganese accumulation induces changes in dopamine metabolism in the cirrhotic rat. Brain Research, 891, 123–129.
  • Olanow, C. W. (2004). Manganese-induced parkinsonism and Parkinson’s disease. Annals of the New York Academy of Sciences, 1012, 209–223.
  • Pal, P. K., Samii, A., & Calne, D. B. (1999). Manganese neurotoxicity: A review of clinical features, imaging and pathology. Neurotoxicology, 20, 227–238.
  • Sastry, M., Fiala, R., & Patel, D. J. (1995). Solution structure of mithramycin dimers bound to partially overlapping sites on DNA. Journal of Molecular Biology, 251, 674–689.
  • Sastry, M., & Patel, D. J. (1993). Solution structure of the mithramycin dimer-DNA complex. Biochemistry, 32, 6588–6604.
  • Scatchard, G. (1949). The attractions of proteins for small molecules and ions. Annals of the New York Academy of Sciences, 51, 660–672.
  • Smith, M. W., & Doolittle, R. F. (1992). A comparison of evolutionary rates of the two major kinds of superoxide dismutase. Journal of Molecular Evolution, 34, 175–184.
  • Subirana, J. A., & Soler-López, M. (2003). Cations as hydrogen bond donors: A view of electrostatic Interactions in DNA. Annual Review of Biophysics and Biomolecular Structure, 32, 27–45.
  • van de Sande, J. H., McIntosh, L. P., & Jovin, T. M. (1982). Mn2+ and other transition metals at low concentration induce the right-to-left helical transformation of poly[d(G–C)]. The EMBO Journal, 1, 777–782.
  • Wells, R. D., Larson, J. E., Grant, R. C., Shortle, B. E., & Cantor, C. R. (1970). Physicochemical studies on polydeoxyribonucleotides containing defined repeating nucleotide sequences. Journal of Molecular Biology, 54, 465–497.
  • Wohlert, S. E., Künzel, E., Machinek, R., Méndez, C., Salas, J. A., & Rohr, J. (1999). The structure of mithramycin reinvestigated. Journal of Natural Products, 62, 119–121.
  • Yamakura, F., Rardin, R. L., Petsko, G. A., Ringe, D., Hiraoka, B. Y., Nakayama, K., … Taka, K. (1998). Inactivation and destruction of conserved Trp159 of Fe-superoxide dismutase from Porphyromonas gingivalis by hydrogen peroxide. European Journal of Biochemistry, 253, 49–56.
  • Yavuz, Ö., Altunkaynak, Y., & Güzel, F. (2003). Removal of copper, nickel, cobalt and manganese from aqueous solution by kaolinite. Water Research, 37, 948–952.
  • Zheng, J., Domsic, J. F., Cabelli, D., McKenna, R., & Silverman, D. N. (2007). Structural and kinetic study of differences between human and Escherichia coli manganese superoxide dismutases. Biochemistry, 46, 14830–14837.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.