149
Views
51
CrossRef citations to date
0
Altmetric
Articles

DPT tautomerisation of the wobble guanine·thymine DNA base mispair is not mutagenic: QM and QTAIM arguments

, &
Pages 674-689 | Received 24 Jan 2014, Accepted 19 Feb 2014, Published online: 21 Mar 2014

References

  • Atkins, P. W. (1998). Physical chemistry. Oxford: Oxford University Press.
  • Bader, R. F. W. (1990). Atoms in molecules: A quantum theory. Oxford: Oxford University Press.
  • Bebenek, K., Pedersen, L. C., & Kunkel, T. A. (2011). Replication infidelity via a mismatch with Watson-Crick geometry. Proceedings of the National Academy of Sciences of United States of America, 108, 1862–1867.10.1073/pnas.1012825108
  • Boys, S. F., & Bernardi, F. (1970). The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Molecular Physics, 19, 553–566.10.1080/00268977000101561
  • Brovarets’, O. O., & Hovorun, D. M. (2010a). How stable are the mutagenic tautomers of DNA bases? Biopolymers and Cell, 26, 72–76.
  • Brovarets’, O. O., & Hovorun, D. M. (2010b). Stability of mutagenic tautomers of uracil and its halogen derivatives: The results of quantum-mechanical investigation. Biopolymers and Cell, 26, 295–298.
  • Brovarets’, O. O., & Hovorun, D. M. (2010c). Molecular mechanisms of transitions induced by cytosine analogue: Comparative quantum-chemical study. Ukrains’kyi Biokhimichnyi Zhurnal, 82, 51–56.
  • Brovarets’, O. O., & Hovorun, D. M. (2010d). Quantum-chemical investigation of tautomerization ways of Watson-Crick DNA base pair guanine-cytosine. Ukrains’kyi Biokhimichnyi Zhurnal, 82, 55–60.
  • Brovarets’, O. O., & Hovorun, D. M. (2010e). Quantum-chemical investigation of the elementary molecular mechanisms of pyrimidine-purine transversions. Ukrains’kyi Biokhimichnyi Zhurnal, 82, 57–67.
  • Brovarets’, O. O., & Hovorun, D. M. (2011a). Intramolecular tautomerization and the conformational variability of some classical mutagens – cytosine derivatives: Quantum chemical study. Biopolymers and Cell, 27, 221–230.
  • Brovarets’, O. O., & Hovorun, D. M. (2011b). IR vibrational spectra of H-bonded complexes of adenine, 2-aminopurine and 2-aminopurine+ with cytosine and thymine: Quantum-chemical study. Optics and Spectroscopy, 111, 750–757.10.1134/S0030400X11120058
  • Brovarets’, O. O., & Hovorun, D. M. (2013a). Prototropic tautomerism and basic molecular principles of hypoxanthine mutagenicity: An exhaustive quantum-chemical analysis. Journal of Biomolecular Structure and Dynamics, 31, 913–936.10.1080/07391102.2012.715041
  • Brovarets’, O. O., & Hovorun, D. M. (2013b). Can tautomerisation of the A·T Watson-Crick base pair via double proton transfer provoke point mutations during DNA replication? A comprehensive QM and QTAIM analysis. Journal of Biomolecular Structure and Dynamics, 32, 127–154.
  • Brovarets’, O. O., & Hovorun, D. M. (2013c). Why the tautomerization of the G·C Watson–Crick base pair via the DPT does not cause point mutations during DNA replication? QM and QTAIM comprehensive analysis. Journal of Biomolecular Structure and Dynamics. doi:10.1080/07391102.2013.822829.
  • Brovarets’, O. O., & Hovorun, D. M. (2013d). The physicochemical essence of the purine·pyrimidine transition mismatches with Watson-Crick geometry in DNA: A·C* versa A*·C. A QM and QTAIM atomistic understanding, Journal of Biomolecular Structure and Dynamics. doi:10.1080/07391102.2013.852133.
  • Brovarets’, O. O., & Hovorun, D. M. (2013e). Atomistic understanding of the C·T mismatched DNA base pair tautomerization via the DPT: QM and QTAIM computational approaches. Journal of Computational Chemistry, 34, 2577–2590.10.1002/jcc.v34.30
  • Brovarets’, O. O., & Hovorun, D. M. (2013f). Atomistic nature of the DPT tautomerisation of the biologically important C·C* DNA base mispair containing amino and imino tautomers of cytosine: a QM and QTAIM approach. Physical Chemistry Chemical Physics, 15, 20091–20104.10.1039/c3cp52644e
  • Brovarets’, O. O., Kolomiets’, I. M., & Hovorun, D. M. (2012). Elementary molecular mechanisms of the spontaneous point mutations in DNA: A novel quantum-chemical insight into the classical understanding. In: T. Tada (Ed.), Quantum chemistry – molecules for innovations (pp. 59–102). Rijeka: Tech Open Access.
  • Brovarets’, O. O., Yurenko, Y. P., Dubey, I. Ya, & Hovorun, D. M. (2012). Can DNA-binding proteins of replisome tautomerize nucleotide bases? Ab initio model study. Journal of Biomolecular Structure and Dynamics, 29, 1101–1109.10.1080/07391102.2011.672624
  • Brovarets’, O. O., Yurenko, Y. P., & Hovorun, D. M. (2014). Intermolecular CH…O/N H-bonds in the biologically important pairs of natural nucleobases: A thorough quantum-chemical study. Journal of Biomolecular Structure and Dynamics, 32, 993–1022.
  • Brovarets’, O. O., Zhurakivsky, R. O., & Hovorun, D. M. (2010). Is there adequate ionization mechanism of the spontaneous transitions? Quantum-chemical investigation. Biopolymers and Cell, 26, 398–405.
  • Brovarets’, O. O., Zhurakivsky, R. O., & Hovorun, D. M. (2013a). The physico-chemical “anatomy” of the tautomerisation through the DPT of the biologically important pairs of hypoxanthine with DNA bases: QM and QTAIM perspectives. Journal of Molecular Modeling, 19, 4119–4137.10.1007/s00894-012-1720-9
  • Brovarets’, O. O., Zhurakivsky, R. O., & Hovorun, D. M. (2013b). DPT tautomerization of the long A·A* Watson-Crick base pair formed by the amino and imino tautomers of adenine: Combined QM and QTAIM investigation. Journal of Molecular Modeling, 19, 4223–4237.10.1007/s00894-013-1880-2
  • Brovarets’, O. O., Zhurakivsky, R. O., & Hovorun, D. M. (2013c). The physico-chemical mechanism of the tautomerisation via the DPT of the long Hyp*·Hyp Watson-Crick base pair containing rare tautomer: A QM and QTAIM detailed look. Chemical Physics Letters, 578, 126–132.10.1016/j.cplett.2013.05.067
  • Brovarets’, O. O., Zhurakivsky, R. O., & Hovorun, D. M. (2014a). Does the tautomeric status of the adenine bases change under the dissociation of the A*·Asyn Topal-Fresco DNA mismatch? A combined QM and QTAIM atomistic insight. Physical Chemistry Chemical Physics, 16, 3715–3725.10.1039/c3cp54708f
  • Brovarets’, O. O., Zhurakivsky, R. O., & Hovorun, D. M. (2014b). Structural, energetic and tautomeric properties of the T·T*/T*·T DNA mismatch involving mutagenic tautomer of thymine: A QM and QTAIM insight. Chemical Physics Letters, 592, 247–255.10.1016/j.cplett.2013.12.034
  • Brovarets’, O. O., Zhurakivsky, R. O., & Hovorun, D. M. (2014c). Is the DPT tautomerization of the long A·G Watson–Crick DNA base mispair a source of the adenine and guanine mutagenic tautomers? A QM and QTAIM response to the biologically important question. Journal of Computational Chemistry, 35, 451–466.10.1002/jcc.23515
  • Cantara, W. A., Murphy, F. V., IV, Demirci, H., & Agris, P. F. (2013). Expanded use of sense codons is regulated by modified cytidines in tRNA. Proceedings of the National academy of Sciences of the United States of America, 110, 10964–10969.10.1073/pnas.1222641110
  • Cerón-Carrasco, J. P., Requena, A., Michaux, C., Perpète, E. A., & Jacquemin, D. (2009). Effects of hydration on the proton transfer mechanism in the adenine-thymine base pair. The Journal of Physical Chemistry A, 113, 7892–7898.10.1021/jp900782h
  • Cerón-Carrasco, J. P., Requena, A., Zúñiga, J., Michaux, C., Perpète, E. A., & Jacquemin, D. (2009). Intermolecular proton transfer in microhydrated guanine−cytosine base pairs: A new mechanism for spontaneous mutation in DNA. The Journal of Physical Chemistry A, 113, 10549–10556.10.1021/jp906551f
  • Cerón-Carrasco, J. P., Zúñiga, J., Requena, A., Perpète, E. A., Michaux, C., & Jacquemin, D. (2011). Combined effect of stacking and solvation on the spontaneous mutation in DNA. Physical Chemistry Chemical Physics, 13, 14584–14589.10.1039/c1cp20946a
  • Danilov, V. I., Anisimov, V. M., Kurita, N., & Hovorun, D. (2005). MP2 and DFT studies of the DNA rare base pairs: The molecular mechanism of the spontaneous substitution mutations conditioned by tautomerism of bases. Chemical Physics Letters, 412, 285–293.10.1016/j.cplett.2005.06.123
  • Danilov, V. I., & Kventsel, G. F. (1971). Electronic representation in the point mutation theory. Kiev: Naukova Dumka.
  • Danilov, V. I., Van Mourik, T., Kurita, N., Wakabayashi, H., Tsukamoto, T., & Hovorun, D. M. (2009). On the mechanism of the mutagenic action of 5-bromouracil: A DFT study of uracil and 5-bromouracil in a water cluster. Journal of Physical Chemistry A, 113, 2233–2235.10.1021/jp811007j
  • Dunning, T. H.,Jr. (1989). Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. Journal of Chemical Physics, 90, 1007–1023.10.1063/1.456153
  • Espinosa, E., Molins, E., & Lecomte, C. (1998). Hydrogen bond strengths revealed by topological analyses of experimentally observed electron densities. Chemical Physics Letters, 285, 170–173.10.1016/S0009-2614(98)00036-0
  • Fogarasi, G., & Szalay, P. G. (2002). The interaction between cytosine tautomers and water: An MP2 and coupled cluster electron correlation study. Chemical Physics Letters, 356, 383–390.10.1016/S0009-2614(02)00370-6
  • Friedberg, E. C., Walker, G. C., Siede, W., Wood, R. D., Schultz, R. A., & Ellenberger, T. (2006). DNA repair and mutagenesis. Washington, DC: ASM Press.
  • Frisch, M. J., Head-Gordon, M., & Pople, J. A. (1990). Semi-direct algorithms for the MP2 energy and gradient. Chemical Physics Letters, 166, 281–289.10.1016/0009-2614(90)80030-H
  • Frisch, M. J., Pople, J. A., & Binkley, J. S. (1984). Self-consistent molecular orbital methods 25. Supplementary functions for Gaussian basis sets. Journal of Chemical Physics, 80, 3265–3269.10.1063/1.447079
  • Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., … Fox, D. J. (2010). GAUSSIAN 09 (revision B.01). Wallingford, CT: Gaussian.
  • Furmanchuk, A., Isayev, O., Gorb, L., Shishkin, O. V., Hovorun, D. M., & Leszczynski, J. (2011). Novel view on the mechanism of water-assisted proton transfer in the DNA bases: Bulk water hydration. Physical Chemistry Chemical Physics, 13, 4311–4317.10.1039/c0cp02177f
  • Gorb, L., & Leszczynski, J. (1998a). Intramolecular proton transfer in monohydrated tautomers of cytosine: An ab initio post-Hartree–Fock study. International Journal of Quantum Chemistry, 70, 855–862.10.1002/(ISSN)1097-461X
  • Gorb, L., & Leszczynski, J. (1998b). Intramolecular proton transfer in mono- and dehydrated tautomers of guanine: An ab initio post Hartree–Fock study. Journal of the American Chemical Society, 120, 5024–5032.10.1021/ja972017w
  • Govorun, D. N., Danchuk, V. D., Mishchuk, Ya. R., Kondratyuk, I. V., Radomsky, N. F., & Zheltovsky, N. V. (1992). AM1 calculation of the nucleic acid bases structure and vibrational spectra. Journal of Molecular Structure, 267, 99–103.10.1016/0022-2860(92)87016-O
  • Grabowski, S. J. (2013). Non-covalent interactions – QTAIM and NBO analysis. Journal of Molecular Modeling, 19, 4713–4721.10.1007/s00894-012-1463-7
  • Grabowski, S. J., Alkorta, I., & Elguero, J. (2013). Complexes between dihydrogen and amine, phosphine, and arsine derivatives. Hydrogen bond versus pnictogen interaction. Journal of Physical Chemistry A, 117, 3243–3251.10.1021/jp4016933
  • Gutowski, M., Van Lenthe, J. H., Verbeek, J., Van Duijneveldt, F. B., & Chałasinski, G. (1986). The basis set superposition error in correlated electronic structure calculations. Chemical Physics Letters, 124, 370–375.10.1016/0009-2614(86)85036-9
  • Hariharan, P. C., & Pople, J. A. (1973). The influence of polarization functions on molecular orbital hydrogenation energies. Theoretical Chemistry Accounts: Theory, Computation, and Modeling, 28, 213–222.
  • Harris, V. H., Smith, C. L., Cummins, W. J., Hamilton, A. L., Adams, H., Dickman, M., … Williams, D. M. (2003). The effect of tautomeric constant on the specificity of nucleotide incorporation during DNA replication: Support for the rare tautomer hypothesis of substitution mutagenesis. Journal of Molecular Biology, 326, 1389–1401.10.1016/S0022-2836(03)00051-2
  • Hovorun, D. M., Gorb, L., & Leszczynski, J. (1999). From the nonplanarity of the amino group to the structural nonrigidity of the molecule: A post-Hartree–Fock ab initio study of 2-aminoimidazole. International Journal of Quantum Chemistry, 75, 245–253.10.1002/(ISSN)1097-461X
  • Hratchian, H. P., & Schlegel, H. B. (2004). Accurate reaction paths using a Hessian based predictor–corrector integrator. Journal of Chemical Physics, 120, 9918–9924.10.1063/1.1724823
  • Hratchian, H. P., & Schlegel, H. B. (2005a). Finding minima, transition states, and following reaction pathways on ab initio potential energy surfaces. In C. E. Dykstra, G. Frenking, K. S. Kim, & G. Scuseria (Eds.), Theory and applications of computational chemistry: The first 40 years (pp. 195–249). Amsterdam: Elsevier.10.1016/B978-044451719-7/50053-6
  • Hratchian, H. P., & Schlegel, H. B. (2005b). Using Hessian updating to increase the efficiency of a Hessian based predictor-corrector reaction path following method. Journal of Chemical Theory and Computation, 1, 61–69.10.1021/ct0499783
  • Iogansen, A. V. (1999). Direct proportionality of the hydrogen bonding energy and the intensification of the stretching ν(XH) vibration in infrared spectra. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 55, 1585–1612.10.1016/S1386-1425(98)00348-5
  • Keith, T. A. (2011). AIMAll (Version 11.12.19). Retrieved from http://aim.tkgristmill.com
  • Kendall, R. A. (1992). Electron affinities of the first-row atoms revisited. Systematic basis sets and wave functions. Journal of Chemical Physics, 96, 6796–6806.10.1063/1.462569
  • Kosenkov, D., Kholod, Y., Gorb, L., Shishkin, O., Hovorun, D. M., Mons, M., & Leszczynski, J. (2009). Ab initio kinetic simulation of gas-phase experiments: Tautomerization of cytosine and guanine. Journal of Physical Chemistry B, 113, 6140–6150.10.1021/jp810570w
  • Krishnan, R., Binkley, J. S., Seeger, R., & Pople, J. A. (1980). Self-consistent molecular orbital methods. XX. A basis set for correlated wave functions. Journal of Chemical Physics, 72, 650–654.10.1063/1.438955
  • Löwdin, P.-O. (1963). Proton tunneling in DNA and its biological implications. Reviews of Modern Physics, 35, 724–732.10.1103/RevModPhys.35.724
  • Löwdin, P.-O. (1966). Quantum genetics and the aperiodic solid: Some aspects on the biological problems of heredity, mutations, aging, and tumors in view of the quantum theory of the DNA molecule. In P.-O. Löwdin (Ed.), Advances in quantum chemistry (Vol. 2, pp. 213–360). New York, NY: Academic Press.
  • Lozynski, M., Rusinska-Roszak, D., & Mack, H.-G. (1998). Hydrogen bonding and density functional calculations: The B3LYP approach as the shortest way to MP2 results. Journal of Physical Chemistry A, 102, 2899–2903.10.1021/jp973142x
  • Mata, I., Alkorta, I., Espinosa, E., & Molins, E. (2011). Relationships between interaction energy, intermolecular distance and electron density properties in hydrogen bonded complexes under external electric fields. Chemical Physics Letters, 507, 185–189.10.1016/j.cplett.2011.03.055
  • Matta, C. F. (2010). How dependent are molecular and atomic properties on the electronic structure method? Comparison of Hartree-Fock, DFT, and MP2 on a biologically relevant set of molecules. Journal of Computational Chemistry, 31, 1297–1311.
  • Mishchuk, Ya. R., Potyagaylo, A. L., & Hovorun, D. M. (2000). Structure and dynamics of 6-azacytidine by MNDO/H quantum-chemical method. Journal of Molecular Structure, 552, 283–289.
  • Nikolaienko, T. Y., Bulavin, L. A., & Hovorun, D. M. (2011). How flexible are DNA constituents? The quantum-mechanical study. Journal of Biomolecular Structure and Dynamics, 29, 563–575.10.1080/07391102.2011.10507406
  • Nikolaienko, T. Y., Bulavin, L. A., & Hovorun, D. M. (2012). Bridging QTAIM with vibrational spectroscopy: The energy of intramolecular hydrogen bonds in DNA-related biomolecules. Physical Chemistry Chemical Physics, 14, 7441–7447.10.1039/c2cp40176b
  • Padermshoke, A., Katsumoto, Y., Masaki, R., & Aida, M. (2008). Thermally induced double proton transfer in GG and wobble GT base pairs: A possible origin of the mutagenic guanine. Chemical Physics Letters, 457, 232–236.10.1016/j.cplett.2008.04.029
  • Palafox, M. A. (2000). Scaling factors for the prediction of vibrational spectra. I. Benzene molecule. International Journal of Quantum Chemistry, 77, 661–684.10.1002/(ISSN)1097-461X
  • Palafox, M. A., & Rastogi, V. K. (2002). Quantum chemical predictions of the vibrational spectra of polyatomic molecules. The uracil molecule and two derivatives. Spectrochimica Acta Part A: Molecular and Biomolecular, 58A, 411–440.
  • Palafox, M. A., Iza, N., & Gil, M. (2002). The hydration effect on the uracil frequencies: An experimental and quantum chemical study. Journal of Molecular Structure: THEOCHEM, 585, 69–92.10.1016/S0166-1280(02)00033-7
  • Parr, R. G., & Yang, W. (1989). Density-functional theory of atoms and molecules. Oxford: Oxford University Press.
  • Pelmenschikov, A., Hovorun, D. M., Shishkin, O. V., & Leszczynski, J. (2000). A density functional theory study of vibrational coupling between ribose and base rings of nucleic acids with ribosyl guanosine as a model system. Journal of Chemical Physics, 113, 5986–5990.10.1063/1.1290021
  • Peng, C., & Schlegel, H. B. (1993). Combining synchronous transit and quasi-Newton methods to find transition states. Israel Journal of Chemistry, 33, 449–454.10.1002/ijch.v33.4
  • Peng, C., Ayala, P. Y., Schlegel, H. B., & Frisch, M. J. (1996). Using redundant internal coordinates to optimize equilibrium geometries and transition states. Journal of Computational Chemistry, 17, 49–56.10.1002/(ISSN)1096-987X
  • Platonov, M. O., Samijlenko, S. P., Sudakov, O. O., Kondratyuk, I. V., & Hovorun, D. M. (2005). To what extent can methyl derivatives be regarded as stabilized tautomers of xanthine? Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 62A, 112–114.10.1016/j.saa.2004.12.012
  • Politzer, P., Murray, J. S., & Jaque, P. (2013). Perspectives on the reaction force constant. Journal of Molecular Modeling, 19, 4111–4118.10.1007/s00894-012-1713-8
  • Ponomareva, A. G., Yurenko, Y. P., Zhurakivsky, R. O., van Mourik, T., & Hovorun, D. M. (2012). Complete conformational space of the potential HIV-1 reverse transcriptase inhibitors d4U and d4C. A quantum chemical study. Physical Chemistry Chemical Physics, 14, 6787–6795.10.1039/c2cp40290d
  • Ponomareva, A. G., Yurenko, Y. P., Zhurakivsky, R. O., van Mourik, T., & Hovorun, D. M. (2014). Structural and energetic properties of the potential HIV-1 reverse transcriptase inhibitors d4A and d4G: A comprehensive theoretical investigation. Journal of Biomolecular Structure and Dynamics, 32, 730–740.
  • Saenger, W. (1984). Principles of nucleic acid structure. New York, NY: Springer.10.1007/978-1-4612-5190-3
  • Samijlenko, S. P., Krechkivska, O. M., Kosach, D. A., & Hovorun, D. M. (2004). Transitions to high tautomeric states can be induced in adenine by interactions with carboxylate and sodium ions: DFT calculation data. Journal of Molecular Structure, 708, 97–104.10.1016/j.molstruc.2004.05.034
  • Samijlenko, S. P., Yurenko, Y. P., Stepanyugin, A. V., & Hovorun, D. M. (2011). Tautomeric equilibrium of uracil and thymine in model protein−nucleic acid contacts. Spectroscopic and quantum chemical approach. Journal of Physical Chemistry B, 114, 1454–1461.
  • Shishkin, O. V., Pelmenschikov, A., Hovorun, D. M., & Leszczynski, J. (2000). Theoretical analysis of low-lying vibrational modes of free canonical 2'-deoxyribonucleosides. Chemical Physics, 260, 317–325.10.1016/S0301-0104(00)00251-2
  • Sordo, J. A. (2001). On the use of the Boys–Bernardi function counterpoise procedure to correct barrier heights for basis set superposition error. Journal of Molecular Structure: THEOCHEM, 537, 245–251.10.1016/S0166-1280(00)00681-3
  • Sordo, J. A., Chin, S., & Sordo, T. L. (1988). On the counterpoise correction for the basis set superposition error in large systems. Theoretica Chimica Acta, 74, 101–110.10.1007/BF00528320
  • Tirado-Rives, J., & Jorgensen, W. L. (2008). Performance of B3LYP density functional methods for a large set of organic molecules. Journal of Chemical Theory and Computation, 4, 297–306.10.1021/ct700248k
  • Wang, W., Hellinga, H. W., & Beese, L. S. (2011). Structural evidence for the rare tautomer hypothesis of spontaneous mutagenesis. Proceedings of the National academy of Sciences of the United States of America, 108, 17644–17648.10.1073/pnas.1114496108
  • Watson, J. D., & Crick, F. H. C. (1953). Genetical implications of the structure of deoxyribonucleic acid. Nature, 171, 964–967.10.1038/171964b0
  • Wigner, E. (1932). Über das Überschreiten von Potentialschwellen bei chemischen Reaktionen [Crossing of potential thresholds in chemical reactions]. Zeitschrift für Physikalische Chemie B, 19, 203–216.
  • Yurenko, Y. P., Zhurakivsky, R. O., Samijlenko, S. P., & Hovorun, D. M. (2011). Intramolecular CH⋯O hydrogen bonds in the AI and BI DNA-like conformers of canonical nucleosides and their Watson-Crick pairs. Quantum chemical and AIM analysis. Journal of Biomolecular Structure and Dynamics, 29, 51–65.10.1080/07391102.2011.10507374

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.