202
Views
30
CrossRef citations to date
0
Altmetric
Articles

Conformational analysis of the anti-HIV Nikavir prodrug: comparisons with AZT and Thymidine, and establishment of structure–activity relationships/tendencies in other 6′-derivatives

, , &
Pages 723-748 | Received 18 Jan 2014, Accepted 26 Mar 2014, Published online: 24 Apr 2014

References

  • Alcolea Palafox, M. (1998). The prediction of vibrational spectra: The use of scale factors. Recent Research Developments in Physical Chemistry India: Transworld Research Network, 2, 213–232.
  • Alcolea Palafox, M. (2014a). Molecular structure differences between the antiviral nucleoside analogue 5-iodo-2′-deoxyuridine and the natural nucleoside 2’-deoxythymidine using MP2 and DFT methods: conformational analysis, crystal simulations, DNA pairs and possible behaviour. Journal of Biomolecular Structure and Dynamics, 32, 831–851.10.1080/07391102.2013.789402
  • Alcolea Palafox, M. (2014b). Anticancer drug IUdR and other 5-halogen derivatives of 2′-deoxyuridine: Conformers, hydrates and structure-activity relationships. Structural Chemistry, 25, 53–69.10.1007/s11224-013-0225-1
  • Alcolea Palafox, M., & Iza, N. (2010). Tautomerism of the natural thymidine nucleoside and in the antiviral analogue d4T. Structure and influence of an aqueous environment using MP2 and DFT methods. Physical Chemistry Chemical Physics, 12, 881–893.10.1039/b915566j
  • Alcolea Palafox, M., & Iza, N. (2012). Structure of the antiviral Stavudine using quantum chemical methods: Complete conformational space análisis, 3D potential energy surfaces and solid state simulations. Journal of Molecular Structure, 1028, 181–195.10.1016/j.molstruc.2012.06.022
  • Alcolea Palafox, M., & Iza, N. (2013). Structure-activity relationships of the antiviral d4T and seven 4′-substituted derivatives using MP2 and DFT methods. Structural Chemistry, 24, 967–980.10.1007/s11224-012-0193-x
  • Alcolea Palafox, M., Iza, N., de la Fuente, M., & Navarro, R. (2009). Simulation of the first hydration shell of nucleosides d4T and thymidine: Structures obtained using MP2 and DFT methods. Journal of Physical Chemistry B, 113, 2458–2476.10.1021/jp806684v
  • Alcolea Palafox, M., Iza, N., & Gil, M. (2002). The hydration effect on the uracil frequencies: An experimental and quantum chemical study. Journal of Molecular Structure: THEOCHEM, 585, 69–92.10.1016/S0166-1280(02)00033-7
  • Alcolea Palafox, M., Nielsen, O. F., Lang, K., Garg, P., & Rastogi, V. K. (2004). Geometry and vibrational spectra of 5-substituted uracils. Asian Chemistry Letters, 8, 81–93.
  • Alcolea Palafox, M., Posada-Moreno, P., Villarino-Marín, A. L., Martinez-Rincon, C., Ortuño-Soriano, I., & Zaragoza-García, I. (2011). DFT Calculation of four new potential agents muscarinic of bispyridinium type: structure, synthesis, biological activity, hydration, and relations with the potents W84 and DUO-3O. Journal of Computed-Aided Molecular Design, 25, 145–161.10.1007/s10822-010-9406-9
  • Alcolea Palafox, M., & Rastogi, V. K. (2002). Quantum chemical predictions of the vibrational spectra of polyatomic molecules. The uracil molecule and two derivatives. Spectrochimica acta part A: Molecular and biomolecular spectroscopy, 58, 411–440.10.1016/S1386-1425(01)00509-1
  • Alcolea Palafox, M., & Talaya, J. (2010). Hydration analysis of antiviral agent AZT by means of DFT and MP2 calculations. Journal of Physical Chemistry B, 114, 15199–15211.10.1021/jp1048452
  • Allen, F. H., Bellard, S., Brice, M. D., Cartwright, B. A., Doubleday, A., Higgs, H., … Watson, D. G. (1979). The Cambridge crystallographic data centre: Computed-based search, retrieval, analysis and display of information. Acta Crystallographica Section B: Structural Crystallographic Crystal Chemistry, B35, 2331–2339.10.1107/S0567740879009249
  • Alvarez-Ros, M. C., & Alcolea Palafox, M. (2013). Molecular structure of the nucleoside analogue inosine using DFT methods: Conformational analysis, crystal simulations and possible behaviour. Journal of Molecular Structure, 1047, 358–371.10.1016/j.molstruc.2013.05.035
  • Arissawa, M., Taft, C. A., & Felcman, J. (2003). Investigation of nucleoside analogs with anti-HIV activity. International Journal of Quantum Chemistry, 93, 422–432.10.1002/(ISSN)1097-461X
  • Baumgartner, M. T., Motura, M. I., Contreras, R. H., Pierini, A. B., & Briñón, M. C. (2003). Conformational Studies of novel antiretroviral analogs of zidovudine. Nucleosides, Nucleotides & Nucleic Acids, 22, 45–62.
  • Birnbaum, G. I., Giziewicz, J., Gabe, E. J., Lin, T. S., & Prussoff, W. H. (1987). Structure and conformation of 3′-azido-3′-deoxythymidine (AZT), an inhibitor of the HIV (AIDS) virus. Canadian Journal of Chemistry, 65, 2135–2139.10.1139/v87-356
  • Brovarets’, O. O., & Hovorun, D. M. (2010). Stability of mutagenic tautomers of uracil and its halogen derivatives: The results of quantum-mechanical investigation. Biopolymers and Cell, 26, 295–298.10.7124/bc
  • Brovarets’, O. O., & Hovorun, D. M. (2013). Prototropic tautomerism and basic molecular principles of hypoxanthine mutagenicity: An exhaustive quantum-chemical analysis. Journal of Biomolecular Structure & Dynamics, 31, 913–936.
  • Brovarets’, O. O., & Hovorun, D. M. (2014). Can tautomerization of the A·T Watson-Crick base pair via double proton transfer provoke point mutations during DNA replication? A comprehensive QM and QTAIM analysis. Journal of Biomolecular Structure & Dynamics, 32, 127–154.
  • Brovarets’, O. O., Yurenko, Y. P., & Hovorun, D. M. (2014). Intermolecular CH…O/N H-bonds in the biologically important pairs of natural nucleobases: A thorough quantum-chemical study. Journal of Biomolecular Structure & Dynamics, 32, 993–1022.
  • Burke, J. D., & Fish, E. N. (2009). Antiviral strategies: The present and beyond. Current Molecular Pharmacology, 2, 32–39.10.2174/1874467210902010032
  • Carmerman, A., Mastropaolo, D., & Camerman, N. (1987). Azidothymidine: Crystal structure and possible functional role of the azido group. Proceeding of the National Academy of Sciences of the United States of America, 84, 8239–8242.10.1073/pnas.84.23.8239
  • Carpenter, J. E., & Weinhold, F. (1988). Analysis of the geometry of the hydroxymethyl radical by the “different hybrids for different spins” natural bond orbital procedure. Journal of Molecular Structure: THEOCHEM, 169, 41–62.10.1016/0166-1280(88)80248-3
  • Choi, Y., George, C., Comin, M. J., Barchi, J. J., Jr, Kim, H. S., Jacobson, K. A., … Marquez, V. E. (2003). A conformationally locked analogue of the anti-HIV agent stavudine. An important correlation between pseudorotation and maximum amplitude. Journal of Medicinal Chemistry, 46, 3292–3299.10.1021/jm030116 g
  • Choi, Y., Moon, H. R., Yoshimura, Y., & Marquez, V. E. (2003). Recent advances in the synthesis of conformationally locked nucleosides and their success in probing the critical question of conformational preferences by their biological targets. Nucleosides, Nucleotides and Nucleic Acids, 22, 547–557.10.1081/NCN-120021954
  • Danilov, V. I., Anisimov, V. M., Kurita, N., & Hovorun, D. M. (2005). MP2 and DFT studies of the DNA rare base pairs: The molecular mechanism of the spontaneous substitution mutations conditioned by tautomerism of bases. Chemical Physics Letters, 412, 285–293.10.1016/j.cplett.2005.06.123
  • Danilov, V. I., van Mourik, T., Kurita, N., Wakabayashi, H., Tsukamoto, T., & Hovorun, D. M. (2009). On the mechanism of the mutagenic action of 5-bromouracil: A DFT study of uracil and 5-bromouracil in a water cluster. Journal of Physical Chemistry A, 113, 2233–2235.10.1021/jp811007j
  • Danilov, V. I., van Mourik, T., & Poltev, V. I. (2006). Modeling of the ‘hydration shell’ of uracil and thymine in small water clusters by DFT and MP2 methods. Chemical Physics Letters, 429, 255–260.10.1016/j.cplett.2006.08.035
  • Desiraju, G. R., & Steiner, T. (1999). The weak hydrogen bond. New York, NY: Oxford University Press.
  • Dyer, I., Low, J. N., Tollin, P., Wilson, H. R., & Howie, R. A. (1988). Structure of 3′-Azido-3′-deoxythymidine, AZT. Acta Crystallographica, C44, 767–769.
  • Fidanza, N. G., Sosa, G. L., Lobayan, R. M., & Peruchena, N. M. (2005). Topological analysis of the electronic charge density in nucleoside analogues derivatives of the AZT. Effects of X-H···O and X–H···F intramolecular H-bonds. Journal of Molecular Structure: THEOCHEM, 722, 65–78.10.1016/j.theochem.2004.12.039
  • Frisch, M. J., Trucks, G. W., Schlegel, H. B., G. E.Scuseria, Robb, M. A., Cheeseman, J. R., … Pople, J. A. (2003). Gaussian 03, Revision B.04, Pittsburgh, PA: Gaussian, Inc.
  • Gorb, L., Shishkin, O., & Leszczynski, J. (2005). Charges of phosphate groups. A role in stabilization of 2′-deoxyribonucleotides. A DFT investigation. Journal of Biomolecular Structure and Dynamics, 22, 441–454.10.1080/07391102.2005.10507015
  • Hao, Z., Cooney, D. A., Farquhar, D., Perno, C. F., Zhang, K., Masood, R., Wilson, Y., Hartman, N. R., Balzarini, J., & Johns, D. G. (1990). Potent DNA chain termination activity and selective inhibition of human immunodeficiency virus reverse transcriptase by 2′,3′-dideoxyuridine-5′-triphosphate. Molecular Pharmacology, 37, 157–163.
  • Hecker, S. J., & Erion, M. D. (2008). Prodrugs of phosphates and phosphonates. Journal of Medicinal Chemistry, 51, 2328–2345.10.1021/jm701260b
  • Hocquet, A., Leulliot, N., & Ghomi, M. (2000). Ground-state properties of nucleic acid constituents studied by density functional calculations. 3. Role of sugar puckering and base orientation on the energetics and geometry of 2′-deoxyribonucleosides and ribonucleosides. Journal of Physical Chemistry B, 104, 4560–4568.10.1021/jp994077p
  • Hoffmann, M., & Rychlewski, J. (2002). Density functional theory (DFT) and drug design. Reviews of Modern Quantum Chemistry, 2, 1767–1803.
  • Hovorun, D. M., Gorb, L., & Leszczynski, J. (1999). From the nonplanarity of the amino group to the structural nonrigidity of the molecule: A post-hartree-fock ab initio study of 2-aminoimidazole. International Journal of Quantum Chemistry, 75, 245–253.10.1002/(ISSN)1097-461X
  • Hovorun, D. M., Mishchuk, Y. R., & Yurenko, Y. P. (2002). Low-frequency Raman spectra of polycrystalline ribonucleosides. Biopolymer Cell, 18, 219–226.10.7124/bc
  • Hsu, C.-H., Hu, R., Dutschman, G. E., Yang, G., Krishnan, P., Tanaka, H., … Cheng, Y.-C. (2007). Comparison of the phosphorylation of 4′-Ethynyl 2′,3′-Dihydro-3′-Deoxythymidine with that of other anti-human immunodeficiency virus thymidine analogs. Antimicrobial Agents and Chemotherapy, 51, 1687–1693.10.1128/AAC.01432-06
  • Isayev, O., Furmanchuk, A., Shishkin, O. V., Gorb, L., & Leszczynski, J. (2007). Are isolated nucleic acid bases really planar? A car-parrinello molecular dynamics study. Journal of Physical Chemistry B, 111, 3476–3480.10.1021/jp070857j
  • Ivanova, E. S., Shmagel, N. G., & Vorobyeva, N. N. (2010). Nikavir in chemoprevention regimens for vertical HIV infection transmission. Vorprosy Virusologii, 55, 31–34.
  • Jalluri, R. K., Yuh, Y. H., & Taylor, E. W. (1993). O–C–N anomeric effect in nucleosides. A major factor underlying the experimentally observed eastern barrier to pseudorotation. In G. R. J. Thatcher (Ed.), The anomeric effect and associated stereo-electronic effects (pp. 277–293). Washington, DC: American Chemical Society.
  • Jasko, M. V., Shipitsyn, A. V., Khandazhinskaya, A. L., Shirokova, E. A., Sol’yev, P. N., Plyasunova, O. A., & Pokrovskii, A. G. (2006). New derivatives of alkyl- and aminocarbonylphosphonic acids containing 3′-azido-3′-deoxythymidine. Russian Journal of Bioorganic Chemistry, 32, 542–546.10.1134/S1068162006060069
  • Jeffrey, G. A., & Saenger, W. (1994). Hydrogen Bonding in Biological Structures. Heidelberg: Springer.
  • Khandazhinskaya, A. L., Yanvarev, D. V., Jasko, M. V., Shipitsin, A. V., Khalizev, V. A., Shram, S. I., … Kukhanova, M. K. (2009). 5′-Aminocarbonyl phosphonates as new zidovudine depot forms: Antiviral properties, intracellular transformations, and pharmacokinetic parameters. Drug Metabolism and Disposition, 37, 494–501.10.1124/dmd.108.022269
  • Khandazhinskaya, A., Matyugina, E., & Shirokova, E. (2010). Anti-HIV therapy with AZT prodrugs: AZT phosphonate derivatives, current state and prospects. Expert Opinion on Drug Metabolism & Toxicology, 6, 701–714.
  • Krasnokutski, S. A., Ivanov, A. Y., Izvekov, V., Sheina, G. G., & Blagoi, Y. P. (1998). FTIR matrix isolation study of uridine, thymidine, ribose, and glucose. Journal of Molecular Structure, 482, 249–252.
  • Kukhanova, M. -K., & Shirokova, E. A. (2005). Frontiers in nucleic acids, Tucker, GA: IHL Press, p. 339–341.
  • Kukhanova, M. K. (2012). Anti-HIV nucleoside drugs: A retrospective view into the future. Molecular Biology, 46, 768–779.10.1134/S002689331206012X
  • Logansen, A. V. (1981). Hydrogen bond (Russian), p. 112. Moscow: Nauka.
  • Mackman, R. L., Zhan, L. G., Prasad, V., Boojamra, C. G., Chen, J., Douglas, J., … Cihlar, T. (2007). Synthesis and anti-HIV activity of cyclic pyrimidine phosphonomethoxy nucleosides and their prodrugs: A comparison of phosphonates and corresponding nucleosides. Nucleosides, Nucleotides and Nucleic Acids, 26, 573–577.10.1080/15257770701490126
  • Martel, P., Hennion, B., Durand, D., & Calmettes, P. (1994). Low-frequency vibrations of a nucleoside analog. Journal of Biomolecular Structure & Dynamics, 12, 401–411.
  • Nikolaienko, T. Y., Bulavin, L. A., & Hovorun, D. M. (2011). How flexible are DNA constituents? The quantum-mechanical study. Journal of Biomolecular Structure & Dynamics, 29, 563–575.
  • Nikolaienko, T. Y., Bulavin, L. A., & Hovorun, D. M. (2012a). Structural flexibility of DNA-like conformers of canonica 2′-deoxyribonucleosides. Physical Chemistry Chemical Physics, 14, 15554–15561.10.1039/c2cp43120c
  • Nikolaienko, T. Y., Bulavin, L. A., & Hovorun, D. M. (2012b). Bridging QTAIM with vibrational spectroscopy: the energy of intramolecular hydrogen bonds in DNA-related biomolecules. Physical Chemistry Chemical Physics, 14, 7441–7447.10.1039/c2cp40176b
  • Nowak, M. J., Lapinski, L., Kwiatkowski, J. S., & Leszczynski, J. (1997). Molecular structure and infrared spectra of the DNA bases and their derivatives: Theory and experiment. In J. Leszczynski (Ed.), Computational Chemistry, Reviews of Current Trends (pp. 140–216). Singapore: World Scientific.
  • Ortiz, S., Alcolea Palafox, M., Rastogi, V. K., & Tomer, R. (2012). Solid state simulation in the tetramer form of 5-aminoorotic acid: The vibrational spectra and molecular structure by using MP2 and DFT calculations. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 97, 948–962.10.1016/j.saa.2012.06.048
  • Painter, G. R., Aulabaugh, A. E., & Andrews, C. W. (1993). A comparison of the conformations of the 5′-triphosphates of zidovudine (AZT) and thymidine bound to HIV-1 reverse transcriptase. Biochemical and Biophysical Research Communications, 191, 1166–1171.10.1006/bbrc.1993.1339
  • Painter, G. R., Andrews, C. W., & Furman, P. A. (2000). Conformation and local environment of nucleotides bound to HIV type 1 reverse transcriptase (HIV-1 RT) in the ground state. Nucleosides Nucleotides & Nucleic Acids, 19, 13–29.
  • Palamarchuk, G. V., Shishkin, O. V., Gorb, L., & Leszczynski, J. (2009). Dependence of deformability of geometries and characteristics of intramolecular hydrogen bonds in canonical 2′-deoxyribonucleotides on DNA conformations. Journal of Biomolecular Structure & Dynamics, 26, 653–661.
  • Palamarchuk, G. V., Shishkin, O. V., Gorb, L., & Leszczynski, J. (2013). Nucleic acid bases in anionic 2′-deoxyribonucleotides: A DFT/B3LYP study of structures, relative stability, and proton affinities. Journal of Physical Chemistry B, 117, 2841–2849.10.1021/jp311363c
  • Panigrahi, S. K., & Desiraju, G. R. (2007). Strong and weak hydrogen bonds in drug-DNA complexes: A statistical analysis. Journal of Bioscience, 32, 677–691.10.1007/s12038-007-0068-2
  • Parang, K., Wiebe, L. I., & Knaus, E. E. (2000). Novel approaches for designing 5′-O-ester prodrugs of 3′-azido-2′3′-dideoxythymidine (AZT). Current Medicinal Chemistry, 7, 995–1039.10.2174/0929867003374372
  • Parthasara, T. K. (1988). Conformation and sandwiching of bases by azido groups in the crystal structure of 3′-azido-3′-deoxy-thymidine (AZT), an antiviral agent that inhibits HIV reverse transcriptase. Biochemical and Biophysical Research Communications, 152, 351–358.10.1016/S0006-291X(88)80721-6
  • Pelmenschikov, A., Hovorun, D. M., Shishkin, O. V., & Leszczynski, J. (2000). A density functional theory study of vibrational coupling between ribose and base rings of nucleic acids with ribosyl guanosine as a model system. Journal of Chemical Physics, 113, 5986–5990.10.1063/1.1290021
  • Piperno, A., Chiacchio, M. A., Iannazzo, D., & Romeo, R. (2006). Synthesis and Biological Activity of Phosphonated Nucleosides: Part 1. Furanose, Carbocyclic and Heterocyclic Analogues. Current Medicinal Chemistry, 13(30), 3675–3695.10.2174/092986706779026110
  • Ponomareva, A. G., Yurenko, Y. P., Zhurakivsky, R. O., van Mourik, T., & Hovorun, D. M. (2012). Complete conformational space of the potential HIV-1 reverse transcriptase inhibitors d4U and d4C. A quantum chemical study. Physical Chemistry Chemical Physics, 14, 6787–6795.10.1039/c2cp40290d
  • Ponomareva, A. G., Yurenko, Y. P., Zhurakivsky, R. O., van Mourik, T., & Hovorun, D. M. (2013). Structural and energetic properties of the potential HIV-1 reverse transcriptase inhibitors d4A and d4G. A comprehensive theoretical investigation. Journal of Biomolecular Structure & Dynamics, 32, 730–740.
  • Ponomareva, A. G., Yurenko, Y. P., Zhurakivsky, R. O., van Mourik, T., & Hovorun, D. M. (2014). Conformational landscape of the nucleoside reverse transcriptase inhibitor d4T: A comprehensive quantum-chemical approach. Current Physical Chemistry, 3, 83–92.10.2174/1877946811303010012
  • Rastogi, V. K., & Alcolea Palafox, M. (2011). Vibrational spectra, tautomerism and thermodynamics of anticarcinogenic drug: 5-fluorouracil. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 79, 970–977.10.1016/j.saa.2011.04.008
  • Rastogi, V. K., Singh, C., Jain, V., & Alcolea Palafox, M. (2000). FTIR and FT-Raman spectra of 5-methyluracil (thymine). Journal of Raman Spectroscopy, 31, 1005–1012.10.1002/(ISSN)1097-4555
  • Reed, A. E., Curtiss, L. A., & Weinhold, F. (1988). Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. Chemical Reviews, 88, 899–926.
  • Sabio, M., & Topiol, S. (1992). A conformational analysis of 3′-azido-3′-deoxythymidine. Journal of Computational Chemistry, 13, 478–491.10.1002/(ISSN)1096-987X
  • Saenger, W. (1984). Principles in nucleic acid structure. New York, NY: Springer Verlag.10.1007/978-1-4612-5190-3
  • Saran, A., & Ojha, R. P. (1993). Viewpoint 5 – conformational studies on anti-AIDS drugs. Journal of Molecular Structure: THEOCHEM, 284, 223–234.10.1016/0166-1280(93)87006-Y
  • Schultz, C. (2003). Prodrugs of biologically active phosphate esters. Bioorganic & Medicinal Chemistry, 11, 885–898.
  • Shen, J., Wang, H., & Xia, Y. (2013). A DFT study of hydrogen bond interactions between oxidative 2′-deoxyadenosine nucleotides and RNA nucleotides. Structural Chemistry, 24, 559–571.10.1007/s11224-012-0108-x
  • Shirokova, E. A., Jasko, M. V., Khandazhinskaya, A. L., Ivanov, A. V., Yanvarev, D. V., Skoblov, Y. S., … Kukhanova, M. K. (2004). New phosphonoformic acid derivatives of 3′-azido-3′-deoxythymidine. Russian Journal of Bioorganic Chemistry, 30, 242–249.10.1023/B:RUBI.0000030131.37092.0a
  • Shishkin, O. V., Gorg, L., & Leszczynski, J. (2000). Conformational flexibility of pyrimidine ring in adenine and related compounds. Chemical Physics Letters, 330, 603–611.10.1016/S0009-2614(00)01127-1
  • Shishkin, O. V., Gorg, L., & Leszczynski, J. (2009). Conformational flexibility of pyrimidine rings of nucleic acid bases in polar environment: PCM study. Structural Chemistry, 20, 743–749.10.1007/s11224-009-9477-1
  • Shishkin, O. V., Gorg, L., Hobza, P., & Leszczynski, J. (2000). Structural nonrigidity of nucleic acid bases. Post-Hartree-Fock ab initio study. International Journal of Quantum Chemistry, 80, 1116–1124.10.1002/(ISSN)1097-461X
  • Shishkin, O. V., Gorb, L., Luzanov, A. V., Elstner, M., Suhai, S., & Leszczynski, J. (2003). Structure and conformational flexibility of uracil: A comprehensive study of performance of the MP2, B3LYP and SCC-DFTB methods. Journal of Molecular Structure (Theochem), 625, 295–303.10.1016/S0166-1280(03)00032-0
  • Shishkin, O. V., Gorg, L., Zhikol, O. A., & Leszczynski, J. (2004a). Conformational analysis of canonical 2-deoxyribonucleotides. 1. Pyrimidine nucleotides. Journal of Biomolecular Structure and Dynamics, 21(4), 537–553.10.1080/07391102.2004.10506947
  • Shishkin, O. V., Gorg, L., Zhikol, O. A., & Leszczynski, J. (2004b). Conformational analysis of canonical 2-deoxyribonucleotides. 2. Purine nucleotides. Journal of Biomolecular Structure and Dynamics, 22, 227–243.10.1080/07391102.2004.10506998
  • Shishkin, O. V., Palamarchuk, G. V., Gorb, L., & Leszczynski, J. (2008). Opposite charges assisted extra strong C-H···O hydrogen bond in protonated 2′-deoxyadenosine monophosphate. Chemical Physics Letters, 452, 198–205.10.1016/j.cplett.2007.12.052
  • Shishkin, O. V., Pelmenschikov, A., Hovorun, D. M., & Leszczynski, J. (2000a). Molecular structure of free canonical 2′-deoxyribonucleosides: A density functional study. Journal of Molecular Structure, 526, 329–341.10.1016/S0022-2860(00)00497-X
  • Shishkin, O. V., Pelmenschikov, A., Hovorun, D. M., & Leszczynski, J. (2000b). Theoretical analysis of low-lying vibrational modes of free canonical 2-deoxyribonucleosides. Chemical Physics, 260, 317–325.10.1016/S0301-0104(00)00251-2
  • Taft, C. A., & Paula da Silva, C. H. T. (2006). Cancer and AIDS: New trends in drug design and chemotherapy. Current Computer-Aided Drug Design, 2, 307–324.10.2174/157340906778226382
  • Tamara, A., & Alcolea Palafox, M. (2011). Structure and conformational analysis of the anti-HIV AZT 5′-aminocarbonylphosphate prodrug using DFT methods. Chemical Physics, 387, 11–24.10.1016/j.chemphys.2011.06.022
  • Troev, K. D., Mitova, V. A., & Ivanov, I. G. (2010). On the design of polymeric 5′-O-ester prodrugs of 3′-azido-2′,3′-dideoxythymidine (AZT). Tetrahedron Letters, 51, 6123–6125.10.1016/j.tetlet.2010.09.076
  • Wagner, C. R., Iyer, V. V., & McIntee, E. J. (2000). Pronucleotides: Toward the in vivo delivery of antiviral and anticancer nucleotides. Medicinal Research Reviews, 20, 417–451.10.1002/(ISSN)1098-1128
  • Yates, P. C., & Kirby, S. V. (1993). Molecular mechanics analysis of the conformations of thymidine and implications for the design of anti-AIDS drugs. Structural Chemistry, 4, 299–302.10.1007/BF00681203
  • Yekeler, H. (2004). Preferred conformations of some pyrimidine nucleoside reverse transcriptase inhibitors (NRTIs). Journal of Molecular Structure: THEOCHEM, 684, 223–230.10.1016/j.theochem.2004.06.036
  • Yurenko, Y. P., Zhurakivsky, R. O., Ghomi, M., Samijlenko, S. P., & Hovorun, D. M. (2007a). Comprehensive conformational analysis of the nucleoside analogue 2′-β-deoxy-6-azacytidine by DFT and MP2 calculations. Journal of Physical Chemistry B, 111, 6263–6271.10.1021/jp066742 h
  • Yurenko, Y. P., Zhurakivsky, R. O., Ghomi, M., Samijlenko, S. P., & Hovorun, D. M. (2007b). How many conformers determine the thymidine low-temperature matrix infrared spectrum? DFT and MP2 quantum chemical study. Journal of Physical Chemistry B, 111, 9655–9663.10.1021/jp073203j
  • Yurenko, Y. P., Zhurakivsky, R. O., Ghomi, M., Samijlenko, S. P., & Hovorun, D. M. (2008). Ab initio comprehensive conformational analysis of 2′-deoxyuridine, the Biologically significant DNA minor nucleoside, and reconstruction of its low-temperature matrix infrared spectrum. Journal of Physical Chemistry B, 112, 1240–1250.10.1021/jp074747o
  • Yurenko, Y. P., Zhurakivsky, R. O., Samijlenko, S. P., & Hovorun, D. M. (2011). Intramolecular CH…O hydrogen bonds in the AI and BI DNA-like conformers of canonical nucleosides and their watson-crick pairs. Quantum chemical and AIM analysis. Journal of Biomolecular Structure & Dynamics, 29, 51–65.
  • Yurenko, Y. P., Zhurakivsky, R. O., Samijlenko, S. P., Ghomi, M., & Hovorun, D. M. (2007). The whole of intramolecular H-bonding in the isolated DNA nucleoside thymidine. AIM electron density topological study. Chemical Physics Letters, 447, 140–146.10.1016/j.cplett.2007.09.008
  • Zhbankov, R. G., Prihodchenko, L. K., Kolosova, T. E., Andrianov, V. M., Korolevich, M. V., Ratajczak, H., & Marchevka, M. (1998). Investigation of selectively substituted monosaccharides by the method of vibrational spectroscopy and X-ray analysis. Journal of Molecular Structure, 450, 29–40.10.1016/S0022-2860(98)00410-4

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.