147
Views
9
CrossRef citations to date
0
Altmetric
Articles

How good are ensembles in improving QSAR models? The case with eCoRIA

, , , &
Pages 749-769 | Received 20 Jan 2014, Accepted 26 Mar 2014, Published online: 22 Apr 2014

References

  • Ajay & Murcko, M. A. (1995). Computational methods to predict binding free energy in ligand–receptor complexes. Journal of Medicinal Chemistry, 38, 4953–4967.
  • Alzate-Morales, J., & Caballero, J. (2009). Computational study of the interactions between guanine derivatives and cyclin-dependent kinase 2 (CDK2) by CoMFA and QM/MM. Journal of Chemical Information and Modeling, 50, 110–122.
  • Alzate-Morales, J. H., Caballero, J., Vergara Jague, A., & GonzaÌlez Nilo, F. D. (2009). Insights into the structural basis of N2 and O6 substituted guanine derivatives as cyclin-dependent kinase 2 (CDK2) inhibitors: Prediction of the binding modes and potency of the inhibitors by docking and ONIOM calculations. Journal of Chemical Information and Modeling, 49, 886–899.
  • Andrade, C. H., Pasqualoto, K. F., Ferreira, E. I., & Hopfinger, A. J. (2010). 4D-QSAR: Perspectives in drug design. Molecules, 15, 3281–3294.
  • Araújo, J. Q., de Brito, M. A., Hoelz, L. V. B., de Alencastro, R. B., Castro, H. C., Rodrigues, C. R., & Albuquerque, M. G. (2011). Receptor-dependent (RD) 3D-QSAR approach of a series of benzylpiperidine inhibitors of human acetylcholinesterase (HuAChE). European Journal of Medicinal Chemistry, 46, 39–51.
  • Berendsen, H. J. C., Postma, J. P. M., Van Gunsteren, W. F., DiNola, A., & Haak, J. R. (1984). Molecular dynamics with coupling to an external bath. The Journal of Chemical Physics, 81, 3684.
  • Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., Shindyalov, I. N., & Bourne, P. E. (2000). The protein data bank. Nucleic Acids Research, 28, 235–242.
  • Bernstein, F. C., Koetzle, T. F., Williams, G. J., Meyer Jr, E. F., Brice, M. D., Rodgers, J. R., … Tasumi, M. (1977). The protein data bank. A computer-based archival file for macromolecular structures. European Journal of Biochemistry, 80, 319–324.
  • Bernstein, F. C., Koetzle, T. F., Williams, G. J., Meyer Jr, E. F., Brice, M. D., Rodgers, J. R., … Tasumi, M. (1978). The protein data bank: A computer-based archival file for macromolecular structures. Archives of Biochemistry and Biophysics, 185, 584–591.
  • Brandsdal, B. R. O., Osterberg, F., Almlof, M., Feierberg, I., Luzhkov, V. B., & Aqvist, J. (2003). Free energy calculations and ligand binding. Advances in Protein Chemistry, 66, 123–158.
  • Cramer III, R. D., Patterson, D. E., & Bunce, J. D. (1988). Comparative molecular field analysis (CoMFA). I. Effect of shape on binding of steroids to carrier proteins. Journal of the American Chemical Society, 110, 5959–5967.
  • Datar, P. A., Khedkar, S. A., Malde, A. K., & Coutinho, E. C. (2006). Comparative residue interaction analysis (CoRIA): A 3D-QSAR approach to explore the binding contributions of active site residues with ligands. Journal of Computer-Aided Molecular Design, 20, 343–360.
  • Deep, R. (2006). Regression. In R. Deep (Ed.), Probability and statistics (pp. 455–515). London: Academic Press.
  • Dominy, B. N., & Brooks, C. L. (1999). Methodology for protein-ligand binding studies: Application to a model for drug resistance, the HIV/FIV protease system. Proteins: Structure, Function, and Bioinformatics, 36, 318–331.
  • Doweyko, A. M. (1991). The hypothetical active site lattice – In vitro and in vivo explorations using a three-dimensional QSAR technique. Journal of Mathematical Chemistry, 7, 273–285.
  • Duca, J. S., & Hopfinger, A. J. (2001). Estimation of molecular similarity based on 4D-QSAR analysis: Formalism and validation. Journal of Chemical Information and Computer Science, 41, 1367–1387.
  • Dunn III, W. J., & Rogers, D. (1996). Genetic partial least squares in QSAR. In J. Devillers (Ed.), Genetic algorithms in molecular modeling (pp. 109–130). London: Academic Press.
  • Essmann, U., Perera, L., Berkowitz, M. L., Darden, T., Lee, H., & Pedersen, L. G. (1995). A smooth particle mesh Ewald method. The Journal of Chemical Physics, 103, 8577.
  • Fernandez, M., Tundidor-Camba, A., & Caballero, J. (2005). Modeling of cyclin-dependent kinase inhibition by 1 H-pyrazolo [3, 4-d] pyrimidine derivatives using artificial neural network ensembles. Journal of Chemical Information and Modeling, 45, 1884–1895.
  • Fontes Ferreira da Cunha, E., Albuquerque, M. G., Ceva Antunes, O. A., & Bicca de Alencastro, R. (2005). 4D-QSAR models of HOE/BAY-793 analogues as HIV-1 protease inhibitors. QSAR & Combinatorial Science, 24, 240–253.
  • Friesner, R. A., Banks, J. L., Murphy, R. B., Halgren, T. A., Klicic, J. J., Mainz, D. T., … Shenkin, P. S. (2004). Glide: A new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. Journal of Medicinal Chemistry, 47, 1739–1749.
  • Friesner, R. A., Murphy, R. B., Repasky, M. P., Frye, L. L., Greenwood, J. R., Halgren, T. A., … Mainz, D. T. (2006). Extra precision glide: Docking and scoring incorporating a model of hydrophobic enclosure for protein–ligand complexes. Journal of Medicinal Chemistry, 49, 6177–6196.
  • Gancia, E., Bravi, G., Mascagni, P., & Zaliani, A. (2000). Global 3D-QSAR methods: MS-WHIM and autocorrelation. Journal of Computer-Aided Molecular Design, 14, 293–306.
  • Goodford, P. J. (1985). A computational procedure for determining energetically favorable binding sites on biologically important macromolecules. Journal of Medicinal Chemistry , 28, 849–857.
  • Holloway, M. K., Wai, J. M., Halgren, T. A., Fitzgerald, P. M., Vacca, J. P., Dorsey, B. D., … deSolms, S. J. (1995). A priori prediction of activity for HIV-1 protease inhibitors employing energy minimization in the active site. Journal of Medicinal Chemistry, 38, 305–317.
  • Hopfinger, A. J. (1980). A QSAR investigation of dihydrofolate reductase inhibition by Baker triazines based upon molecular shape analysis. Journal of the American Chemical Society, 102, 7196–7206.
  • Hopfinger, A. J., Wang, S., Tokarski, J. S., Jin, B., Albuquerque, M., Madhav, P. J., & Duraiswami, C. (1997). Construction of 3D-QSAR models using the 4D-QSAR analysis formalism. Journal of the American Chemical Society , 119, 10509–10524.
  • Jorgensen, W. L., & Tirado-Rives, J. (1988). The OPLS [optimized potentials for liquid simulations] potential functions for proteins, energy minimizations for crystals of cyclic peptides and crambin. Journal of the American Chemical Society, 110, 1657–1666.
  • Jorgensen, W. L., Maxwell, D. S., & Tirado-Rives, J. (1996). Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. Journal of the American Chemical Society, 118, 11225–11236.
  • Kellogg, G. E., Semus, S. F., & Abraham, D. J. (1991). HINT: A new method of empirical hydrophobic field calculation for CoMFA. Journal of Computer-Aided Molecular Design, 5, 545–552.
  • Khedkar, S. A., Malde, A. K., & Coutinho, E. C. (2007). Design of inhibitors of the MurF enzyme of Streptococcus pneumoniae using docking, 3D-QSAR, and de novo design. Journal of Chemical Information and Modeling, 47, 1839–1846.
  • Khedkar, V. M., Ambre, P. K., Verma, J., Shaikh, M. S., Pissurlenkar, R. R., & Coutinho, E. C. (2010). Molecular docking and 3D-QSAR studies of HIV-1 protease inhibitors. Journal of Molecular Modeling, 16, 1251–1268.
  • Klebe, G., Abraham, U., & Mietzner, T. (1994). Molecular similarity indices in a comparative analysis (CoMSIA) of drug molecules to correlate and predict their biological activity. Journal of Medicinal Chemistry, 37, 4130–4146.
  • Lan, P., Chen, W. N., Xiao, G. K., Sun, P. H., & Chen, W. M. (2010). 3D-QSAR and docking studies on pyrazolo [4, 3-h] qinazoline-3-carboxamides as cyclin-dependent kinase 2 (CDK2) inhibitors. Bioorganic & Medicinal Chemistry Letters, 20, 6764–6772.
  • Lightstone, F. C., Zheng, Y.-J., & Bruice, T. C. (1998). Molecular dynamics simulations of ground and transition states for the Sn2 displacement of Cl-from 1, 2-dichloroethane at the active site of Xanthobacter autotrophicus haloalkane dehalogenase. Journal of the American Chemical Society, 120, 5611–5621.
  • Lozano, J. J., Pastor, M., Cruciani, G., Gaedt, K., Centeno, N. B., Gago, F., & Sanz, F. (2000). 3D-QSAR methods on the basis of ligand–receptor complexes. Application of COMBINE and GRID/GOLPE methodologies to a series of CYP1A2 ligands. Journal of Computer-Aided Molecular Design, 14, 341–353.
  • Lu, N., & Kofke, D. A. (2001). Accuracy of free-energy perturbation calculations in molecular simulation. I. Modeling. The Journal of Chemical Physics, 114, 7303–7311.
  • Mazanetz, M. P., Withers, I. M., Laughton, C. A., & Fischer, P. M. (2009). A study of CDK2 inhibitors using a novel 3D-QSAR method exploiting receptor flexibility. QSAR & Combinatorial Science, 28, 878–884.
  • Mitchell, M. J., & McCammon, J. A. (1991). Free energy difference calculations by thermodynamic integration: Difficulties in obtaining a precise value. Journal of Computational Chemistry, 12, 271–275.
  • Oliveira, A. A., Ramalho, T. C., & da Cunha, E. F. F. (2009). QSAR study of androstenedione analogs as aromatase inhibitors. Letters in Drug Design & Discovery, 6, 554–562.
  • Ortiz, A. R., Pisabarro, M. T., Gago, F., & Wade, R. C. (1995). Prediction of drug binding affinities by comparative binding energy analysis. Journal of Medicinal Chemistry, 38, 2681–2691.
  • Pan, D., Tseng, Y., & Hopfinger, A. J. (2003). Quantitative structure-based design: Formalism and application of receptor-dependent RD-4D-QSAR analysis to a set of glucose analogue inhibitors of glycogen phosphorylase. Journal of Chemical Information and Computer Science, 43, 1591–1607.
  • Pan, D., Liu, J., Senese, C., Hopfinger, A. J., & Tseng, Y. (2004). Characterization of a ligand–receptor binding event using receptor-dependent four-dimensional quantitative structure-activity relationship analysis. Journal of Medicinal Chemistry, 47, 3075–3088.
  • Pastor, M., Cruciani, G., McLay, I., Pickett, S., & Clementi, S. (2000). GRid-INdependent descriptors (GRIND): A novel class of alignment-independent three-dimensional molecular descriptors. Journal of Medicinal Chemistry, 43, 3233–3243.
  • Perez, C., Pastor, M., Ortiz, A. R., & Gago, F. (1998). Comparative binding energy analysis of HIV-1 protease inhibitors: Incorporation of solvent effects and validation as a powerful tool in receptor-based drug design. Journal of Medicinal Chemistry, 41, 836–852.
  • Pissurlenkar, R. R. S., Khedkar, V. M., Iyer, R. P., & Coutinho, E. C. (2011). Ensemble QSAR: A QSAR method based on conformational ensembles and metric descriptors. Journal of Computational Chemistry, 32, 2204–2218.
  • Pratim Roy, P., Paul, S., Mitra, I., & Roy, K. (2009). On two novel parameters for validation of predictive QSAR models. Molecules, 14, 1660–1701.
  • Reddy, M. R., & Erion, M. D. (2001). Free energy calculations in rational drug design. New York, NY: Springer.
  • Richard, D., Cramer III, R. D., Bunce, J. D., Patterson, D. E., & Frank, I. E. (1988). Crossvalidation, bootstrapping, and partial least squares compared with multiple regression in conventional QSAR studies. Quantitative Structure-Activity Relationships, 7, 18–25.
  • Robinson, D. D., Winn, P. J., Lyne, P. D., & Richards, W. G. (1999). Self-organizing molecular field analysis: A tool for structure-activity studies. Journal of Medicinal Chemistry, 42, 573–583.
  • Romeiro, N. C., Albuquerque, M. G. O, de Alencastro, R. B., Ravi, M., & Hopfinger, A. J. (2005). Construction of 4D-QSAR models for use in the design of novel p38-MAPK inhibitors. Journal of Computer-Aided Molecular Design, 19, 385–400.
  • Rucker, C., Rucker, G., & Meringer, M. (2007). y-Randomization and its variants in QSPR/QSAR. Journal of Chemical Information and Modeling, 47, 2345–2357.
  • Samanta, S., Debnath, B., Basu, A., Gayen, S., Srikanth, K., & Jha, T. (2006). Exploring QSAR on 3-aminopyrazoles as antitumor agents for their inhibitory activity of CDK2/cyclin A. European Journal of Medicinal Chemistry, 41, 1190–1195.
  • Santos-Filho, O. A., Mishra, R. K., & Hopfinger, A. J. (2001). Free energy force field (FEFF) 3D-QSAR analysis of a set of Plasmodium falciparum dihydrofolate reductase inhibitors. Journal of Computer-Aided Molecular Design, 15, 787–810.
  • Senese, C. L., & Hopfinger, A. J. (2003). Receptor-independent 4D-QSAR analysis of a set of norstatine derived inhibitors of HIV-1 protease. Journal of Chemical Information and Computer Science, 43, 1297–1307.
  • Silverman, B. D., & Platt, D. E. (1996). Comparative molecular moment analysis (CoMMA): 3D-QSAR without molecular superposition. Journal of Medicinal Chemistry, 39, 2129–2140.
  • Stone, M. (1974). Cross-validatory choice and assessment of statistical predictions. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 36, 111–147.
  • Straatsma, T. P., & Berendsen, H. J. C. (1988). Free energy of ionic hydration: Analysis of a thermodynamic integration technique to evaluate free energy differences by molecular dynamics simulations. The Journal of Chemical Physics, 89, 5876–5886.
  • Tokarski, J. S., & Hopfinger, A. J. (1997). Prediction of ligand–receptor binding thermodynamics by free energy force field (FEFF) 3D-QSAR analysis: Application to a set of peptidometic renin inhibitors. Journal of Chemical Information and Computer Science, 37, 792–811.
  • Vedani, A., Briem, H., Dobler, M., Dollinger, H., & McMasters, D. R. (2000). Multiple-conformation and protonation-state representation in 4D-QSAR: The neurokinin-1 receptor system. Journal of Medicinal Chemistry, 43, 4416–4427.
  • Vedani, A., & Dobler, M. (2000). Multi-dimensional QSAR in drug research. Predicting binding affinities, toxicity and pharmacokinetic parameters. Progress in Drug Research, 55, 105–135.
  • Vedani, A., & Dobler, M. (2002a). 5D-QSAR: The key for simulating induced fit? Journal of Medicinal Chemistry, 45, 2139–2149.
  • Vedani, A., & Dobler, M. (2002b). Quasar. Basel: Biographics Laboratory 3R.
  • Vedani, A., Dobler, M., & Lill, M. A. (2005). Combining protein modeling and 6D-QSAR. Simulating the binding of structurally diverse ligands to the estrogen receptor. Journal of Medicinal Chemistry, 48, 3700–3703.
  • Venkatarangan, P., & Hopfinger, A. J. (1999). Prediction of ligand–receptor binding thermodynamics by free energy force field three-dimensional quantitative structure-activity relationship analysis: Applications to a set of glucose analogue inhibitors of glycogen phosphorylase. Journal of Medicinal Chemistry, 42, 2169–2179.
  • Verma, J., Khedkar, V. M., Prabhu, A. S., Khedkar, S. A., Malde, A. K., & Coutinho, E. C. (2008). A comprehensive analysis of the thermodynamic events involved in ligand–receptor binding using CoRIA and its variants. Journal of Computer-Aided Molecular Design, 22, 91–104.
  • Verma, J., Khedkar, V. M., & Coutinho, E. C. (2010). 3D-QSAR in drug design–A review. Current Topics in Medicinal Chemistry, 10, 95–115.
  • Verma, J., Malde, A., Khedkar, S., Iyer, R., & Coutinho, E. (2009). Local indices for similarity analysis (LISA)-a 3D-QSAR formalism based on local molecular similarity. Journal of Chemical Information and Modeling, 49, 2695–2707.
  • Wade, R. C., Ortiz, A. R., & Gago, F. (1998). Comparative binding energy analysis. Perspectives in Drug Discovery and Design, 9, 19–34.
  • Wildman, S. A., & Crippen, G. M. (2002). Three-dimensional molecular descriptors and a novel QSAR method. Journal of Molecular Graphics and Modelling, 21, 161–170.
  • Withers, I. M., Mazanetz, M. P., Wang, H., Fischer, P. M., & Laughton, C. A. (2008). Active site pressurization: A new tool for structure-guided drug design and other studies of protein flexibility. Journal of Chemical Information and Modeling, 48, 1448–1454.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.