290
Views
16
CrossRef citations to date
0
Altmetric
Articles

Oxime-dipeptides as anticholinesterase, reactivator of phosphonylated-serine of AChE catalytic triad: probing the mechanistic insight by MM-GBSA, dynamics simulations and DFT analysis

, , , , &
Pages 978-990 | Received 04 Feb 2014, Accepted 03 May 2014, Published online: 29 May 2014

References

  • Acharya, J., Dubey, D. K., & Kaushik, P. M. (2011). In vitro reactivation potency of novel symmetrical bis-pyridinium oximes for electric eel acetylcholinesterase inhibited by nerve agent sarin. Toxicology in Vitro, 25, 2135–2139.10.1016/j.tiv.2011.06.014
  • Acharya, J., Rana, H., & Kaushik, P. M. (2011). Synthesis and in vitro evaluation of xylene linked carbamoyl bis-pyridinium monooximes as reactivators of organophosphorus (OP) inhibited electric eel acetylcholinesterase (AChE). European Journal of Medicinal Chemistry, 46, 3926–3933.10.1016/j.ejmech.2011.05.064
  • Bajgar, J. (2004). Organophosphates/nerve agent poisoning: Mechanism of action, diagnosis, prophylaxis and treatment. Advances in Clinical Chemistry, 38, 151–216.10.1016/S0065-2423(04)38006-6
  • Bharate, S. B., Guo, L., Reeves, T. E., Cerasoli, D. M., & Thompson, C. M. (2010). Bisquaternary pyridinium oximes: Comparison of in vitro reactivation potency of compounds bearing aliphatic linkers and heteroaromatic linkers for paraoxon-inhibited electric eel and recombinant human acetylcholinesterase. Bioorganic & Medicinal Chemistry, 18, 787–794.10.1016/j.bmc.2009.11.052
  • Bui, M. J., Tai, K., & McCammon, J. A. (2004). Acetylcholinesterase: Enhanced fluctuations and alternative routes to the active site in the complex with fasciculin-2. Journal of the American Chemical Society, 126, 7198–7205.10.1021/ja0485715
  • Chadha, N., Tiwari, A. K., Kumar, V., Milton, M. D., & Mishra, A. K. (2014). In silico thermodynamics stability change analysis involved in BH4 responsive mutations in phenylalanine hydroxylase: QM/MM and MD simulations analysis. Journal of Biomolecular Structure and Dynamics. Retrieved from http://dx.doi.org/10.1080/07391102.2014.897258
  • Cummings, J. L. (2004). Alzheimer’s disease. The New England Journal of Medicine, 351, 56–67.
  • D. E. Shaw Research, New York, NY. (2011). Desmond molecular dynamics system, version 3.1, Maestro-Desmond interoperability tools, version 3.0. Schrödinger: New York, NY.
  • Delfino, R. T., & Figueroa-Villar, J. D. (2009). Nucleophilic reactivation of sarin-inhibited acetylcholinesterase: A molecular modeling study. The Journal of Physical Chemistry B, 113, 8402–8411.10.1021/jp810686k
  • Ekström, F., Hörnberg, A., Artursson, E., Hammarström, L. G., & Schneider, G. (2009). Structure of HI-6-sarin-acetylcholinesterase determined by X-ray crystallography and molecular dynamics simulation: Reactivator mechanism and design. PLoS ONE, 4, e5957.10.1371/journal.pone.0005957
  • Inestrosa, N. C., Alvarez, A., Perez, C. A., Moreno, R. D., Vicente, M., Linker, C., Casanueva, O. I., Soto, C., & Garrido. (1996). Acetylcholinesterase accelerates assembly of amyloid-beta-peptides into Alzheimer’s fibrils: Possible role of the peripheral site of the enzyme. Neuron Journal, 16, 881–891.10.1016/S0896-6273(00)80108-7
  • Jacquemin, D., Perpète, E. A., Ciofini, I., Adamo, C., Valero, R., Zhao, Y., & Truhlar, D. G. (2010). On the performances of the M06 family of density functionals for electronic excitation energies. Journal of Chemical Theory and Computation, 6, 2071–2085.10.1021/ct100119e
  • Kuca, K., Jun, D., & Musilek, K. (2006). Structural requirements of acetylcholinesterase reactivators. Mini-Reviews in Medicinal Chemistry, 6, 269–277.10.2174/138955706776073510
  • Kuĉa, K., Racakova, V., Jun, D., & Bajgar, J. (2007). Structure-activity relationship of acetylcholinesterase reactivators antidotes against nerve agents. Letters in Organic Chemistry, 4, 212–217.10.2174/157017807780737282
  • MarVin 5.0.0. (2008). ChemAxon: Calculator plugins were used for structure property prediction and calculation. Budapest. Retrieved from http://www.chemaxon.com
  • Maxwell, D. M., Koplovitz, I., Worek, F., & Sweeney, R. E. (2008). A structure–activity analysis of the variation in oxime efficacy against nerve agents. Toxicology and Applied Pharmacology, 231, 157–164.10.1016/j.taap.2008.04.007
  • Musilek, K., Komloova, M., Holas, O., Horova, A., Pohanka, M., Gunn-Moore, F., Dohnal, V., Dolezal, M., & Kuca, K. (2011). Mono-oxime bisquaternary acetylcholinesterase reactivators with prop-1,3-diyl linkage-preparation, in vitro screening and molecular docking. Bioorganic & Medicinal Chemistry, 19, 754–762.10.1016/j.bmc.2010.12.021
  • Musilek, K., Kuĉa, K., Jun, D., Dohnal, V., & Dolezal, M. (2006). Synthesis of the novel series of bispyridinium compounds bearing (E)-but-2-ene linker and evaluation of their reactivation activity against chlorpyrifos-inhibited acetylcholinesterase. Bioorganic & Medicinal Chemistry Letters, 16, 622–627.10.1016/j.bmcl.2005.10.059
  • Nurulain, S. M. (2011). Efficacious oxime for organophosphorus poisoning: A minireview. Tropical Journal of Pharmaceutical Research, 10, 341–349.
  • Quinn, D. M. (1987). Acetylcholinesterase: Enzyme structure, reaction dynamics, and virtual transition states. Chem. Rev, 87, 955–979.
  • Racchi, M., Mazzucchelli, M., Porrello, E., Lanni, C., & Govoni, S. (2004). Acetylcholinesterase inhibitors: Novel activities of old molecules. Pharmacological Research, 50, 441–451.10.1016/j.phrs.2003.12.027
  • Radić, Z., & Taylor, P. (2001). Interaction kinetics of reversible inhibitors and substrates with acetylcholinesterase and its fasciculin 2 complex. Journal of Biological Chemistry, 276, 4622–4633.10.1074/jbc.M006855200
  • Ramalho, T. C., França, T. C. C., Rennó, M. N., Guimarães, A. P., da Cunha, E. F. F., & Kuča, K. (2010). Development of new acetylcholinesterase reactivators: Molecular modeling versus in vitro data. Chemico-Biological Interactions, 185, 73–77.10.1016/j.cbi.2010.02.026
  • Rosenberry, T. L. (1975). Acetylcholinesterase. In A. Meister (Ed.), Advances in enzymology (Vol. 43, pp. 103–218). New York, NY: Wiley.
  • Schrödinger, LLC, New York, NY. (2013). Prime version 2.4, Jaguar version 8.1, Desmond version 3.1, Lig prep version 2.9, Glide version 6.
  • Singh, M., Kaur, M., Kukreja, H., Chugh, R., Silakari, O., & Singh, D. (2013). Acetylcholinesterase inhibitors as Alzheimer therapy: From nerve toxins to neuroprotection. European Journal of Medicinal Chemistry, 70, 165–188.10.1016/j.ejmech.2013.09.050
  • Tai, K., Shen, T., Börjesson, U., Philippopoulos, M., & McCammon, J. A. (2001). Analysis of a 10-ns molecular dynamics simulation of mouse acetylcholinesterase. Biophysical Journal, 81, 715–724.10.1016/S0006-3495(01)75736-0
  • Taylor, P., & Lappi, S. (1975). Interaction of fluorescence probes with acetylcholinesterase. The site and specificity of propidium binding. Biochemistry, 14, 1989–1997.
  • Tiwari, A. K., Singh, V. R., Sinha, D., Datta, A., Sehgal, N., Chuttani, K., & Mishra, A. K. (2012). Design and Docking Studies of [Diethylenetriaminepentaacetic acid-(amino acid)2] with acetylcholine receptor as a molecular imaging agent for single-photon emission computed tomographic application. Molecular Imaging, 3, 240–250.
  • Wang, J., Gu, J., & Leszczynski, J. (2006). Phosphonylation mechanisms of sarin and acetylcholinesterase: A model DFT study. The Journal of Physical Chemistry B, 110, 7567–7573.10.1021/jp060370v
  • Wang, J., Gu, J., Leszczynski, J., Feliks, M., & Sokalski, W. A. (2007). Oxime-induced reactivation of sarin-inhibited AChE: A theoretical mechanisms study. The Journal of Physical Chemistry B, 111, 2404–2408.10.1021/jp067741s
  • Xu, Y., Shen, J., Luo, X., Silman, I., Sussman, L. J., Chen, K., & Jiang, H. (2003). How does huperzine a enter and leave the binding gorge of acetylcholinesterase? Steered molecular dynamics simulations. Journal of the American Chemical Society, 125, 11340–11349.10.1021/ja029775t
  • Zhao, Y., & Truhlar, D. G. (2008). The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: Two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theoretical Chemistry Accounts, 120, 215–241.10.1007/s00214-007-0310-x

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.