231
Views
10
CrossRef citations to date
0
Altmetric
Articles

Investigation for antimicrobial resistance-modulating activity of diethyl malate and 1-methyl malate against beta-lactamase class A from Bacillus licheniformis by molecular dynamics, in vitro and in vivo studies

, , , &
Pages 1016-1026 | Received 12 Feb 2014, Accepted 13 May 2014, Published online: 19 Jun 2014

References

  • Aeschlimann, J. R. (2003). The role of multidrug efflux pumps in the antibiotic resistance of Pseudomonas aeruginosa and other gram-negative bacteria. Insights from the Society of Infectious Diseases Pharmacists. Pharmacotherapy, 23, 916–924.10.1592/phco.23.7.916.32722
  • Alimirzaee, P., Gohari, A. R., Hajiaghaee, R., Mirzaee, S., Jamalifar, H., Monsef-Esfahani, H. R., … Shahverdi, A. R. (2009). 1-methyl malate from Berberis integerrima fruits enhances the antibacterial activity of ampicillin against Staphylococcus aureus. Phytotherapy Research, 23, 797–800.10.1002/ptr.v23:6
  • Andrews, J. M. (2001). Determination of minimum inhibitory concentrations. Journal of Antimicrobial Chemotherapy, 48, 5–16.10.1093/jac/48.suppl_1.5
  • Babic, M., Hujer, A. M., & Bonomo, R. A. (2006). What’s new in antibiotic resistance? Focus on beta-lactamases. Drug Resistance Updates, 9, 142–156.10.1016/j.drup.2006.05.005
  • Back, S.-Y., Jin, H.-H., & Lee, S.-Y. (2009). Inhibitory effect of organic acids against Enterobacter sakazakii in laboratory media and liquid foods. Food Control, 20, 867–872.10.1016/j.foodcont.2008.11.002
  • Bas, D. C., Rogers, D. M., & Jensen, J. H. (2008). Very fast prediction and rationalization of pKa values for protein-ligand complexes. Proteins: Structure, Function, and Bioinformatics, 73, 765–783.10.1002/prot.22102
  • Bassetti, M., Righi, E., & Viscoli, C. (2008). Novel β-lactam antibiotics and inhibitor combinations. Expert Opinion on Investigational Drugs, 17, 285–296.10.1517/eid.2008.17.issue-3
  • Bayles, K. W. (2000). The bactericidal action of penicillin: New clues to an unsolved mystery. Trends in Microbiology, 8, 274–278.10.1016/S0966-842X(00)01762-5
  • Bebrone, C., Lassaux, P., Vercheval, L., Sohier, J. S., Jehaes, A., Sauvage, E., & Galleni, M. (2010). Current challenges in antimicrobial chemotherapy. Drugs, 70, 651–679.10.2165/11318430-000000000-00000
  • Beck, J., Sauvage, E., Charlier, P., & Marchand-Brynaert, J. (2008). 2-Aminopropane-1,2,3-tricarboxylic acid: Synthesis and co-crystallization with the class A beta-lactamase BS3 of Bacillus licheniformis. Bioorganic & Medicinal Chemistry Letters, 18, 3764–3768.10.1016/j.bmcl.2008.05.045
  • Berendsen, H. J. C., Postma, J. P. M., van Gunsteren, W. F., DiNola, A., & Haak, J. R. (1984). Molecular dynamics with coupling to an external bath. The Journal of Chemical Physics, 81, 3684–3690.10.1063/1.448118
  • Bush, K. (1998). Metallo‐β‐lactamases: A class apart. Clinical Infectious Diseases, 27, S48–S53.10.1086/cid.1998.27.issue-s1
  • Darden, T., York, D., & Pedersen, L. (1993). Particle mesh Ewald: An N⋅log(N) method for Ewald sums in large systems. The Journal of Chemical Physics, 98, 10089–10092.10.1063/1.464397
  • Dideberg, O., Charlier, P., Werry, J. P., Dehottay, P., Dusart, J., Erpicum, T., … Ghuysen, J. M. (1987). The crystal structure of the beta-lactamase of Streptomyces albus G at 0.3 nm resolution. Biochemical Journal, 245, 911–913.
  • Docquier, J. D., Benvenuti, M., Calderone, V., Rossolini, G. M., & Mangani, S. (2011). Structure of the extended-spectrum β-lactamase TEM-72 inhibited by citrate. Acta Crystallographica Section F Structural Biology and Crystallization Communications, 67, 303–306.10.1107/S1744309110054680
  • Drawz, S. M., & Bonomo, R. A. (2010). Three decades of β-lactamase inhibitors. Clinical Microbiology Reviews, 23, 160–201.10.1128/CMR.00037-09
  • Dubus, A., Wilkin, J. M., Raquet, X., Normark, S., & Frere, J. M. (1994). Catalytic mechanism of active-site serine beta-lactamases: Role of the conserved hydroxy group of the Lys-Thr(Ser)-Gly triad. Biochemical Journal, 301, 485–494.
  • Eswaranandam, S., Hettiarachchy, N. S., & Johnson, M. G. (2004). Antimicrobial activity of citric, lactic, malic, or tartaric acids and Nisin-incorporated soy protein film against Listeria monocytogenes, Escherichia coli O157:H7, and Salmonella gaminara. Journal of Food Science, 69, FMS79–FMS84.
  • Fisette, O., Morin, S., Savard, P. Y., Lague, P., & Gagne, S. M. (2010). TEM-1 backbone dynamics – Insights from combined molecular dynamics and nuclear magnetic resonance. Biophysical Journal, 98, 637–645.10.1016/j.bpj.2009.08.061
  • Gasteiger, J., & Marsili, M. (1980). Iterative partial equalization of orbital electronegativity – A rapid access to atomic charges. Tetrahedron, 36, 3219–3228.10.1016/0040-4020(80)80168-2
  • Hess, B., Bekker, H., Berendsen, H. J. C., & Fraaije, J. G. E. M. (1997). LINCS: A linear constraint solver for molecular simulations. Journal of Computational Chemistry, 18, 1463–1472.10.1002/(ISSN)1096-987X
  • Hileman, B. (2006). Accounting for R&D many doubt the$800 million pharmaceutical price tag. Chemical & Engineering News, 84, 50–70.
  • Ishii, Y., Eto, M., Mano, Y., Tateda, K., & Yamaguchi, K. (2010). In vitro potentiation of carbapenems with ME1071, a novel metallo-beta-lactamase inhibitor, against metallo-beta-lactamase- producing Pseudomonas aeruginosa clinical isolates. Antimicrobial Agents and Chemotherapy, 54, 3625–3629.10.1128/AAC.01397-09
  • Jelsch, C., Mourey, L., Masson, J.-M., & Samama, J.-P. (1993). Crystal structure of Escherichia coli TEM1 β-lactamase at 1.8 Å resolution. Proteins: Structure, Function, and Genetics, 16, 364–383.10.1002/(ISSN)1097-0134
  • Jiao, J. A., Podesta, F. E., Chollet, R., O’Leary, M. H., & Andreo, C. S. (1990). Isolation and sequence of an active-site peptide from maize leaf phosphoenolpyruvate carboxylase inactivated by pyridoxal 5’-phosphate. Biochimica et Biophysica Acta, 1041, 291–295.10.1016/0167-4838(90)90287-P
  • Knox, J. R. (1995). Extended-spectrum and inhibitor-resistant TEM-type beta-lactamases: Mutations, specificity, and three-dimensional structure. Antimicrobial Agents and Chemotherapy, 39, 2593–2601.10.1128/AAC.39.12.2593
  • Lamotte-Brasseur, J., Knox, J., Kelly, J. A., Charlier, P., Fonze, E., Dideberg, O., & Frere, J. M. (1994). The structures and catalytic mechanisms of active-site serine β-lactamases. Biotechnology and Genetic Engineering Reviews, 12, 189–230.10.1080/02648725.1994.10647912
  • Lee, N., Yuen, K. Y., & Kumana, C. R. (2003). Clinical role of beta-lactam/beta-lactamase inhibitor combinations. Drugs, 63, 1511–1524.10.2165/00003495-200363140-00006
  • Lemkul, J. A., Allen, W. J., & Bevan, D. R. (2010). Practical considerations for building GROMOS-compatible small-molecule topologies. Journal of Chemical Information and Modeling, 50, 2221–2235.10.1021/ci100335w
  • Li, X. Z., Zhang, L., & Poole, K. (2000). Interplay between the MexA-MexB-OprM multidrug efflux system and the outer membrane barrier in the multiple antibiotic resistance of Pseudomonas aeruginosa. Journal of Antimicrobial Chemotherapy, 45, 433–436.10.1093/jac/45.4.433
  • Lim, D., Sanschagrin, F., Passmore, L., De Castro, L., Levesque, R. C., & Strynadka, N. C. J. (2000). Insights into the molecular basis for the carbenicillinase activity of PSE-4 β-lactamase from crystallographic and kinetic studies. Biochemistry, 40, 395–402.
  • Livermore, D. M., & Brown, D. F. (2001). Detection of beta-lactamase-mediated resistance. Journal of Antimicrobial Chemotherapy, 48, 59–64.10.1093/jac/48.suppl_1.59
  • Massova, I., & Mobashery, S. (1998). Kinship and diversification of bacterial penicillin-binding proteins and beta-lactamases. Antimicrobial Agents and Chemotherapy, 42, 1–17.
  • Mine, Y., Kamimura, T., Watanabe, Y., Tawara, S., Matsumoto, Y., Shibayama, F., … Kuwahara, S. (1988). In vitro antibacterial activity of FK482, a new orally active cephalosporin. The Journal of Antibiotics, 41, 1873–1887.10.7164/antibiotics.41.1873
  • Mirzaie, S., Monajjemi, M., Hakhamaneshi, M. S., Fathi, F., & Jamalan, M. (2013). Combined 3D-QSAR modeling and molecular docking study on multi-acting quinazoline derivatives as HER2 kinase inhibitors. EXCLI Journal, 12, 130–143.
  • Mirzaie, S., Rafii, F., Yasunaga, K., Yoshunaga, K., Sepehrizadeh, Z., Kanno, S., … Reza Shahverdi, A. (2012). Prediction of the mode of interaction between monoterpenes and the nitroreductase from Enterobacter cloacae by docking simulation. Computers in Biology and Medicine, 42, 414–421.10.1016/j.compbiomed.2011.12.009
  • Morin, S., & Gagne, S. M. (2009). NMR dynamics of PSE-4 β-lactamase: An interplay of ps-ns order and μs-ms motions in the active site. Biophysical Journal, 96, 4681–4691.10.1016/j.bpj.2009.02.068
  • Mussi, M. A., Limansky, A. S., & Viale, A. M. (2005). Acquisition of resistance to carbapenems in multidrug-resistant clinical strains of Acinetobacter baumannii: Natural insertional inactivation of a gene encoding a member of a novel family of beta-barrel outer membrane proteins. Antimicrobial Agents and Chemotherapy, 49, 1432–1440.10.1128/AAC.49.4.1432-1440.2005
  • Naide, A., Izui, K., Yoshinaga, T., & Katsuki, H. (1979). Phosphoenolpyruvate carboxylase of Escherichia coli. The role of lysyl residues in the catalytic and regulatory functions. Journal of Biochemistry, 85, 423–432.
  • Oefner, C., D’Arcy, A., Daly, J., Gubernator, K., Charnas, R., Heinze, I., … Winkler, F. (1990). Refined crystal structure of β-lactamase from Citrobacter freundii indicates a mechanism for β-lactam hydrolysis. Nature, 343, 284–288.10.1038/343284a0
  • Ohsuka, S., Arakawa, Y., Horii, T., Ito, H., & Ohta, M. (1995). Effect of pH on activities of novel beta-lactamases and beta-lactamase inhibitors against these beta-lactamases. Antimicrobial Agents and Chemotherapy, 39, 1856–1858.10.1128/AAC.39.8.1856
  • Parrinello, M., & Rahman, A. (1981). Polymorphic transitions in single crystals: A new molecular dynamics method. Journal of Applied Physics, 52, 7182–7190.10.1063/1.328693
  • Payne, D. J., Hueso-Rodriguez, J. A., Boyd, H., Concha, N. O., Janson, C. A., Gilpin, M., … Rivera-Sagredo, A. (2002). Identification of a series of tricyclic natural products as potent broad-spectrum inhibitors of metallo-beta-lactamases. Antimicrobial Agents and Chemotherapy, 46, 1880–1886.10.1128/AAC.46.6.1880-1886.2002
  • Poirel, L., & Nordmann, P. (2006). Carbapenem resistance in Acinetobacter baumannii: Mechanisms and epidemiology. Clinical Microbiology and Infection, 12, 826–836.10.1111/clm.2006.12.issue-9
  • Raybaudi-Massilia, R. M., Mosqueda-Melgar, J., & Martín-Belloso, O. (2009). Antimicrobial activity of malic acid against Listeria monocytogenes, Salmonella Enteritidis and Escherichia coli O157:H7 in apple, pear and melon juices. Food Control, 20, 105–112.10.1016/j.foodcont.2008.02.009
  • Rice, L. B. (2008). Federal funding for the study of antimicrobial resistance in nosocomial pathogens: No ESKAPE. The Journal of Infectious Diseases, 197, 1079–1081.10.1086/588758
  • Richmond, M. H. (1975). [53c] β-Lactamase (Staphylococcus aureus). Methods in Enzymology, 43, 664–672. H. H. John, Academic Press.
  • Risso, V. A., Acierno, J. P., Capaldi, S., Monaco, H. L., & Ermacora, M. R. (2012). X-ray evidence of a native state with increased compactness populated by tryptophan-less B. licheniformis beta-lactamase. Protein Science, 21, 964–976.10.1002/pro.2076
  • Roccatano, D., Sbardella, G., Aschi, M., Amicosante, G., Bossa, C., Nola, A., & Mazza, F. (2005). Dynamical aspects of TEM-1 β-lactamase probed by molecular dynamics. Journal of Computer-Aided Molecular Design, 19, 329–340.10.1007/s10822-005-7003-0
  • Sadeghian, H., Sadeghian, A., Pordel, M., Rahimizadeh, M., Jahandari, P., Orafaie, A., & Bakavoli, M. (2010). Design, synthesis, and structure–activity relationship study of 5-amido-1-(2,4-dinitrophenyl)-1H-4-pyrazolecarbonitrils as DD-carboxypeptidase/penicillin-binding protein inhibitors with Gram-positive antibacterial activity. Medicinal Chemistry Research, 19, 103–119.10.1007/s00044-009-9175-y
  • Schuller, K. A., & Werner, D. (1993). Phosphorylation of soybean (Glycine max L.) nodule phosphoenolpyruvate carboxylase in vitro decreases sensitivity to inhibition by L-malate. Plant Physiology, 101, 1267–1273.
  • Schuttelkopf, A. W., & van Aalten, D. M. (2004). PRODRG: A tool for high-throughput crystallography of protein-ligand complexes. Acta Crystallographica Section D Biological Crystallography, 60, 1355–1363.10.1107/S0907444904011679
  • Shlaes, D. M. (2013). New β-lactam-β-lactamase inhibitor combinations in clinical development. Annals of the New York Academy of Sciences, 1277, 105–114.10.1111/nyas.12010
  • Singh, G. S. (2004). Beta-lactams in the new millennium. Part-I: Monobactams and carbapenems. Mini-Reviews in Medicinal Chemistry, 4, 69–92.10.2174/1389557043487501
  • Singh, G. S. (2004). Beta-lactams in the new millennium. Part-II: Cephems, oxacephems, penams and sulbactam. Mini-Reviews in Medicinal Chemistry, 4, 93–109.10.2174/1389557043487547
  • Srikumar, R., Li, X. Z., & Poole, K. (1997). Inner membrane efflux components are responsible for beta-lactam specificity of multidrug efflux pumps in Pseudomonas aeruginosa. Journal of Bacteriology, 179, 7875–7881.
  • Thatcher, D. R. (1975). [53b] β-Lactamase (Bacillus licheniformis). Methods in Enzymology, 43, 653–664. H. H. John, Academic Press.
  • Trott, O., & Olson, A. J. (2010). AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31, 455–461.
  • Van Der Spoel, D., Lindahl, E., Hess, B., Groenhof, G., Mark, A. E., & Berendsen, H. J. (2005). GROMACS: Fast, flexible, and free. Journal of Computational Chemistry, 26, 1701–1718.10.1002/(ISSN)1096-987X
  • Wedding, R. T., & Black, M. K. (1986). Malate inhibition of phosphoenolpyruvate carboxylase from Crassula. Plant Physiology, 82, 985–990.10.1104/pp.82.4.985
  • Wedding, R. T., Black, M. K., & Meyer, C. R. (1990). Inhibition of phosphoenolpyruvate carboxylase by malate. Plant Physiology, 92, 456–461.10.1104/pp.92.2.456
  • Zhang, S. Q., Outlaw, W. H., Jr, & Chollet, R. (1994). Lessened malate inhibition of guard-cell phosphoenolpyruvate carboxylase velocity during stomatal opening. FEBS Letters, 352, 45–48.10.1016/0014-5793(94)00916-3

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.