327
Views
9
CrossRef citations to date
0
Altmetric
Articles

Quantifying ligand–receptor interactions for gorge-spanning acetylcholinesterase inhibitors for the treatment of Alzheimer’s disease

, , , , , , , & show all
Pages 1107-1125 | Received 12 Mar 2014, Accepted 27 May 2014, Published online: 11 Jul 2014

References

  • Abuhamdah, S., Habash, M., & Taha, M. O. (2013). Elaborate ligand-based modeling coupled with QSAR analysis and in silico screening reveal new potent acetylcholinesterase inhibitors. Journal of Computer-Aided Molecular Design, 27, 1075–1092.10.1007/s10822-013-9699-6
  • Accerlys Inc. (2011). Discovery Studio v3.1. San Diego, USA.
  • Alvarez, A., Opazo, C., Alarcón, R., Garrido, J., & Inestrosa, N. C. (1997). Acetylcholinesterase promotes the aggregation of amyloid-β-peptide fragments by forming a complex with the growing fibrils. Journal of Molecular Biology, 272, 348–361.10.1006/jmbi.1997.1245
  • Ambre, P. K., Pissurlenkar, R. R., Coutinho, E. C., & Iyer, R. P. (2012). Identification of new checkpoint kinase-1 (Chk1) inhibitors by docking, 3D-QSAR, and pharmacophore-modeling methods. Canadian Journal of Chemistry, 90, 675–692.10.1139/v2012-047
  • Ambure, P., Kar, S., & Roy, K. (2014). Pharmacophore mapping-based virtual screening followed by molecular docking studies in search of potential acetylcholinesterase inhibitors as anti-Alzheimer's agents. Biosystems, 116, 10–20.10.1016/j.biosystems.2013.12.002
  • Ambure, P., & Roy, K. (2014a). Advances in quantitative structure–activity relationship models of anti-Alzheimer’s agents. Expert Opinion on Drug Discovery, 9, 697–723.10.1517/17460441.2014.909404
  • Ambure, P., & Roy, K. (2014b). Exploring structural requirements of leads for improving activity and selectivity against CDK5/p25 in Alzheimer's disease: An in silico approach. RSC Advances, 4, 6702–6709.10.1039/c3ra46861e
  • Archontis, J. M. H. a. G (2012). MM-GB(PB)SA calculations of protein-ligand binding free energies. In L. Wang (Ed.), Molecular dynamics – Studies of synthetic and biological macromolecules (pp. 171–190). Croatia: InTech Open Access Publishers.
  • Balasubramanian, P. K., Balupuri, A., Kothandan, G., & Cho, S. J. (2014). In silico study of 1-(4-Phenylpiperazin-1-yl)-2-(1H-pyrazol-1-yl) ethanones derivatives as CCR1 antagonist: Homology modeling, docking and 3D-QSAR approach. Bioorganic & Medicinal Chemistry Letters, 24, 928–933.10.1016/j.bmcl.2013.12.065
  • Bartolini, M., Bertucci, C., Cavrini, V., & Andrisano, V. (2003). β-Amyloid aggregation induced by human acetylcholinesterase: Inhibition studies. Biochemical Pharmacology, 65, 407–416.10.1016/S0006-2952(02)01514-9
  • Belluti, F., Bartolini, M., Bottegoni, G., Bisi, A., Cavalli, A., Andrisano, V., & Rampa, A. (2011). Benzophenone-based derivatives: A novel series of potent and selective dual inhibitors of acetylcholinesterase and acetylcholinesterase-induced beta-amyloid aggregation. European Journal of Medicinal Chemistry, 46, 1682–1693.10.1016/j.ejmech.2011.02.019
  • Bourne, Y., Palmer Taylor, Z. R., & Marchot, P. (2003). Structural insights into ligand interactions at the acetylcholinesterase peripheral anionic site. The EMBO Journal, 22, 1–12.10.1093/emboj/cdg005
  • Bush, B. L., & Nachbar Jr., R. B., (1993). Sample-distance partial least squares: PLS optimized for many variables, with application to CoMFA. Journal of Computer-Aided Molecular Design, 7, 587–619.10.1007/BF00124364
  • Correa-Basurto, J., Bello, M., Rosales-Hernández, M., Hernández-Rodríguez, M., Nicolás-Vázquez, I., & Rojo-Domínguez, A., … Trujillo-Ferrara, J.G. (2014). QSAR, docking, dynamic simulation and quantum mechanics studies to explore the recognition properties of cholinesterase binding sites. Chemico-Biological Interactions, 209, 1–13.10.1016/j.cbi.2013.12.001
  • Cramer, R. D., Bunce, J. D., Patterson, D. E., & Frank, I. E. (1988). Crossvalidation, bootstrapping, and partial least squares compared with multiple regression in conventional QSAR studies. Quantitative Structure–Activity Relationships, 7, 18–25.10.1002/qsar.v7:1
  • Datar, P. A., Khedkar, S. A., Malde, A. K., & Coutinho, E. C. (2006). Comparative residue interaction analysis (CoRIA): A 3D-QSAR approach to explore the binding contributions of active site residues with ligands. Journal of Computer-Aided Molecular Design, 20, 343–360.10.1007/s10822-006-9051-5
  • DeLano, W. L. (2002). PyMOL v0.99. DeLano Scientific, San Carlos, CA, 700
  • Dhaked, D. K., Verma, J., Saran, A., & Coutinho, E. C. (2009). Exploring the binding of HIV-1 integrase inhibitors by comparative residue interaction analysis (CoRIA). Journal of Molecular Modeling, 15, 233–245.10.1007/s00894-008-0399-4
  • Dvir, H., Silman, I., Harel, M., Rosenberry, T. L., & Sussman, J. L. (2010). Acetylcholinesterase: From 3D structure to function. Chemico-Biological Interactions, 187, 10–22.10.1016/j.cbi.2010.01.042
  • Ellman, G. L., Courtney, K. D., & A., Valentino (1961). A new and rapid colorimetric determination of acetylcholinesterase activity. Biochemical Pharmacology, 7, 88–95.10.1016/0006-2952(61)90145-9
  • Friesner, R. A., Murphy, R. B., Halgren, T. A., Klicic, J. J., Mainz, D. T., Repasky, M. P., … Shenkin, P. S. (2004). Glide: A new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. Journal of Medicinal Chemistry, 47, 1739–1749.10.1021/jm0306430
  • Ghose, A. K., & Crippen, G. M. (1986). Atomic physicochemical parameters for three-dimensional structure-directed quantitative structure–activity relationships I. Partition coefficients as a measure of hydrophobicity. Journal of Computational Chemistry, 7, 565–577.10.1002/(ISSN)1096-987X
  • Ghose, A. K., Pritchett, A., & Crippen, G. M. (1988). Atomic physicochemical parameters for three dimensional structure directed quantitative structure-activity relationships III: Modeling hydrophobic interactions. Journal of Computational Chemistry, 9, 80–90.10.1002/(ISSN)1096-987X
  • Golbraikh, A., & Tropsha, A. (2002). Beware of q2! Journal of Molecular Graphics and Modelling, 20, 269.10.1016/S1093-3263(01)00123-1
  • Guo, J., Hurley, M. M., Wright, J. B., & Lushington, G. H. (2004). A docking score function for estimating ligand−protein interactions:  Application to acetylcholinesterase inhibition. Journal of Medicinal Chemistry, 47, 5492–5500.10.1021/jm049695v
  • Halgren, T. A., Murphy, R. B., Friesner, R. A., Beard, H. S., Frye, L. L., Pollard, W., & Banks, J. L. (2004). Glide:  A new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening. Journal of Medicinal Chemistry, 47, 1750–1759.10.1021/jm030644s
  • Han, S. H., Hulette, C., Saunders, A. M., Einstein, G., Pericak-Vance, M., Strittmatter, W. J., & Roses, A. D. (1994). Apolipoprotein E is present in hippocampal neurons without neurofibrillary tangles in Alzheimer's disease and in age-matched controls. Experimental Neurology, 128, 13–26.10.1006/exnr.1994.1108
  • Harel, M., Schalk, I., Ehret-Sabatier, L., Bouet, F., Goeldner, M., Hirth, C., & Axelsen, P. H. (1993). Quaternary ligand binding to aromatic residues in the active-site gorge of acetylcholinesterase. Proceedings of the National Academy of Sciences, 90, 9031.10.1073/pnas.90.19.9031
  • Hassan, M., Bielawski, J. P., Hempel, J. C., & Waldman, M. (1996). Optimization and visualization of molecular diversity of combinatorial libraries. Molecular Diversity, 2, 64–74.10.1007/BF01718702
  • Huang, N., Shoichet, B. K., & Irwin, J. J. (2006). Benchmarking sets for molecular docking. Journal of Medicinal Chemistry, 49, 6789–6801.10.1021/jm0608356
  • Huang, W., Tang, L., Shi, Y., Huang, S., Xu, L., Sheng, R., & Wu, P. (2011). Searching for the multi-target-directed ligands against Alzheimer’s disease: Discovery of quinoxaline-based hybrid compounds with AChE, H3R and BACE 1 inhibitory activities. Bioorganic & Medicinal Chemistry, 19, 7158–7167.10.1016/j.bmc.2011.09.061
  • Inestrosa, N. C., & Alarcón, R. (1998). Molecular interactions of acetylcholinesterase with senile plaques. Journal of Physiology-Paris, 92, 341–344.10.1016/S0928-4257(99)80002-3
  • Inestrosa, N., Alvarez, A., & Calderon, F. (1996). Acetylcholinesterase is a senile plaque component that promotes assembly of amyloid beta-peptide into Alzheimer’s filaments. Molecular Psychiatry, 1, 359–361.
  • Inestrosa, N. C., Dinamarca, M. C., & Alvarez, A. (2008). Amyloid-cholinesterase interactions. FEBS Journal, 275, 625–632.10.1111/ejb.2008.275.issue-4
  • Irwin, J. J., & Shoichet, B. K. (2005). ZINC − A free database of commercially available compounds for virtual screening. Journal of Chemical Information and Modeling, 45, 177–182.10.1021/ci049714+
  • Jack Jr. C. R., Petersen, R. C., Xu, Y. C., O'Brien, P. C., Smith, G. E., Ivnik, R. J., & Boeve, B. F. (1999). Prediction of AD with MRI-based hippocampal volume in mild cognitive impairment. Neurology, 52, 1397–1397.10.1212/WNL.52.7.1397
  • Jiang, Y.-R., Yang, Y.-Y., Chen, Y.-L., & Liang, Z.-J. (2013). CoMFA, CoMSIA and HQSAR studies of acetylcholinesterase inhibitors. Current Computer Aided-Drug Design, 9, 385–395.10.2174/15734099113099990015
  • Jin, Z., Yang, L., Xu, H., Huang, E., Wan, D. C., Li, S., & Lin, H. Q. (2010). Synthesis and biological activity of 3,6-diaryl-7H-thiazolo[3,2-b][1,2,4]triazin-7-one derivatives as novel acetylcholinesterase inhibitors. Science China Chemistry, 53, 2297–2303.10.1007/s11426-010-4094-9
  • Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W., & Klein, M. L. (1983). Comparison of simple potential functions for simulating liquid water. The Journal of Chemical Physics, 79, 926–935.10.1063/1.445869
  • Jorgensen, W. L., Maxwell, D. S., & Tirado-Rives, J. (1996). Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. Journal of the American Chemical Society, 118, 11225–11236.10.1021/ja9621760
  • Kellogg, G. E., Semus, S. F., & Abraham, D. J. (1991). HINT: A new method of empirical hydrophobic field calculation for CoMFA. Journal of Computer-Aided Molecular Design, 5, 545–552.10.1007/BF00135313
  • Kryger, G., Silman, I., & Sussman, J. L. (1998). Three-dimensional structure of a complex of E2020 with acetylcholinesterase from Torpedo californica. Journal of Physiology-Paris, 92, 191–194.10.1016/S0928-4257(98)80008-9
  • Kryger, G., Silman, I., & Sussman, J. L. (1999). Structure of acetylcholinesterase complexed with E2020 (Aricept®): Implications for the design of new anti-Alzheimer drugs. Structure, 7, 297–307.10.1016/S0969-2126(99)80040-9
  • Kubinyi, H. (1993). 3D Qsar in drug design: Theory methods and applications (Vol. 1). Dordrecht: Kluwer Academic Publishers.
  • Kumar, V., Chadha, N., Tiwari, A. K., Sehgal, N., & Mishra, A. K. (2014). Prospective atom-based 3D-QSAR model prediction, pharmacophore generation, and molecular docking study of carbamate derivatives as dual inhibitors of AChE and MAO-B for Alzheimer’s disease. Medicinal Chemistry Research, 23, 1114–1122.10.1007/s00044-013-0704-3
  • Li, Y.-P., Weng, X., Ning, F.-X., Ou, J.-B., Hou, J.-Q., Luo, H.-B., & Li, D. (2013). 3D-QSAR studies of azaoxoisoaporphine, oxoaporphine, and oxoisoaporphine derivatives as anti-AChE and anti-AD agents by the CoMFA method. Journal of Molecular Graphics and Modelling, 41, 61–67.10.1016/j.jmgm.2013.02.003
  • Mark, P., & Nilsson, L. (2001). Structure and dynamics of the TIP3P, SPC, and SPC/E water models at 298 K. The Journal of Physical Chemistry A, 105, 9954–9960.10.1021/jp003020w
  • Martín-Santamaría, S., Muñoz-Muriedas, J., Luque, F. J., & Gago, F. (2004). Modulation of binding strength in several classes of active site inhibitors of acetylcholinesterase studied by comparative binding energy analysis. Journal of Medicinal Chemistry, 47, 4471–4482.10.1021/jm049877p
  • Mohamed, T., Yeung, J. C., & Rao, P. P. (2011). Development of 2-substituted-N-(naphth-1-ylmethyl) and N-benzhydrylpyrimidin-4-amines as dual cholinesterase and Aβ-aggregation inhibitors: Synthesis and biological evaluation. Bioorganic & Medicinal Chemistry Letters, 21, 5881–5887.10.1016/j.bmcl.2011.07.091
  • Nemukhin, A. V., Lushchekina, S. V., Bochenkova, A. V., Golubeva, A. A., & Varfolomeev, S. D. (2008). Characterization of a complete cycle of acetylcholinesterase catalysis by ab initio QM/MM modeling. Journal of Molecular Modeling, 14, 409–416.10.1007/s00894-008-0287-y
  • Palakurti, R., Sriram, D., Yogeeswari, P., & Vadrevu, R. (2013). Multiple e-pharmacophore modeling combined with high-throughput virtual screening and docking to identify potential inhibitors of β-secretase(BACE1). Molecular Informatics, 32, 385–398.10.1002/minf.201200169
  • Pratim Roy, P., Paul, S., Mitra, I., & Roy, K. (2009). On two novel parameters for validation of predictive QSAR models. Molecules, 14, 1660–1701.10.3390/molecules14051660
  • Rachinsky, T. L., Camp, S., Li, Y., Ekström, T. J., Newton, M., & Taylor, P. (1990). Molecular cloning of mouse acetylcholinesterase: Tissue distribution of alternatively spliced mRNA species. Neuron, 5, 317–327.10.1016/0896-6273(90)90168-F
  • Recanatini, M., Cavalli, A., Belluti, F., Piazzi, L., Rampa, A., Bisi, A., & Gobbi, S. (2000). SAR of 9-amino-1,2,3,4-tetrahydroacridine-based acetylcholinesterase inhibitors:  Synthesis, enzyme inhibitory activity, QSAR, and structure-based CoMFA of tacrine analogues. Journal of Medicinal Chemistry, 43, 2007–2018.10.1021/jm990971t
  • Ripoll, D. R., Faerman, C. H., Axelsen, P. H., Silman, I., & Sussman, J. L. (1993). An electrostatic mechanism for substrate guidance down the aromatic gorge of acetylcholinesterase. Proceedings of the National Academy of Sciences, 90, 5128–5132.10.1073/pnas.90.11.5128
  • Rogers, D., & Hopfinger, A. (1994). Application of genetic function approximation to quantitative structure-activity relationships and quantitative structure-property relationships. Journal of Chemical Information and Modeling, 34, 854–866.10.1021/ci00020a020
  • Roy, K., Chakraborty, P., Mitra, I., Ojha, P. K., Kar, S., & Das, R. N. (2013a). RmSquare Calculator. Retrieved from http://aptsoftware.co.in/rmsquare/
  • Roy, K., Chakraborty, P., Mitra, I., Ojha, P. K., Kar, S., & Das, R. N. (2013b). Some case studies on application of “rm2” metrics for judging quality of quantitative structure–activity relationship predictions: Emphasis on scaling of response data. Journal of Computational Chemistry, 34, 1071–1082.10.1002/jcc.23231
  • Roy, K., & Mitra, I. (2012). On the use of the metric rm2 as an effective tool for validation of QSAR models in computational drug design and predictive toxicology. Mini-Reviews in Medicinal Chemistry, 12, 491–504.10.2174/138955712800493861
  • Samadi, A., Chioua, M., Bolea, I., de los Ríos, C., Iriepa, I., Moraleda, I., & Bastida, A. (2011). Synthesis, biological assessment and molecular modeling of new multipotent MAO and cholinesterase inhibitors as potential drugs for the treatment of Alzheimer’s disease. European Journal of Medicinal Chemistry, 46, 4665–4668.10.1016/j.ejmech.2011.05.048
  • Schmechel, D., Saunders, A., Strittmatter, W., Crain, B., Hulette, C., Joo, S., & Pericak-Vance, M. A. (1993). Increased amyloid beta-peptide deposition in cerebral cortex as a consequence of apolipoprotein E genotype in late-onset Alzheimer disease. Proceedings of the National Academy of Sciences, 90, 9649–9653.10.1073/pnas.90.20.9649
  • Schrödinger LLC. (2012a). Epik v2.3, New York, NY.
  • Schrödinger LLC. (2012b). Impact v5.8, New York, NY.
  • Schrödinger LLC. (2012c). LigPrep, v2.5, New York, NY.
  • Schrödinger LLC. (2012d). MacroModel version 9.9, New York, NY.
  • Schrödinger LLC. (2012e). Maestro v 9.3.5, New York, NY.
  • Schrödinger LLC. (2012f). Prime v 3.1, New York, NY.
  • Schrödinger LLC. (2012 g). QikProp v3.5, New York, NY.
  • Shan, W.-J., Huang, L., Zhou, Q., Meng, F.-C., & Li, X.-S. (2011). Synthesis, biological evaluation of 9-N-substituted berberine derivatives as multi-functional agents of antioxidant, inhibitors of acetylcholinesterase, butyrylcholinesterase and amyloid-β aggregation. European Journal of Medicinal Chemistry, 46, 5885–5893.10.1016/j.ejmech.2011.09.051
  • Shaw, D. E. (2005). A fast, scalable method for the parallel evaluation of distance-limited pairwise particle interactions. Journal of Computational Chemistry, 26, 1318–1328.10.1002/(ISSN)1096-987X
  • Sopkova-de Oliveira Santos, J., Lesnard, A., Agondanou, J.-H., Dupont, N., Godard, A.-M., Stiebing, S., & Rochais, C. (2010). Virtual screening discovery of new acetylcholinesterase inhibitors issued from CERMN chemical library. Journal of Chemical Information and Modeling, 50, 422–428.10.1021/ci900491t
  • Sugimoto, H., Yamanish, Y., Iimura, Y., & Kawakami, Y. (2000). Donepezil hydrochloride (E2020) and other acetylcholinesterase inhibitors. Current Medicinal Chemistry, 7, 303–339.10.2174/0929867003375191
  • Sussman, J. L., Harel, M., Frolow, F., Oefner, C., Goldman, A., Toker, L., & Silman, I. (1991). Atomic structure of acetylcholinesterase from Torpedo californica: A prototypic acetylcholine-binding protein. Science, 253, 872–879.10.1126/science.1678899
  • Tong, W., Collantes, E. R., Chen, Y., & Welsh, W. J. (1996). A comparative molecular field analysis study of N-benzylpiperidines as acetylcholinesterase inhibitors. Journal of Medicinal Chemistry, 39, 380–387.10.1021/jm950704x
  • Tripos Accociates Inc. (2005). Sybyl v7.1, St. Louis, MO.
  • Tripos Accociates Inc. (2010). Sybyl-X 2.0, St. Louis, MO.
  • Verma, J., Khedkar, V. M., Prabhu, A. S., Khedkar, S. A., Malde, A. K., & Coutinho, E. C. (2008). A comprehensive analysis of the thermodynamic events involved in ligand–receptor binding using CoRIA and its variants. Journal of Computer-Aided Molecular Design, 22, 91–104.10.1007/s10822-008-9172-0
  • Wellenzohn, B., Tonmunphean, S., Khalid, A., Choudhary, M. I., & Rode, B. M. (2003). 3D-QSAR Studies on natural acetylcholinesterase inhibitors of Sarcococca saligna by comparative molecular field analysis (CoMFA). Bioorganic and Medicinal Chemistry Letters, 13, 4375–4380.
  • Wildman, S. A., & Crippen, G. M. (1999). Prediction of physicochemical parameters by atomic contributions. Journal of Chemical Information and Modeling, 39, 868–873.10.1021/ci990307l
  • Wu, Z. P., Wu, X. W., Shen, T., Li, Y. P., Cheng, X., Gu, L. Q., & Huang, Z.-S. (2012). Synthesis and acetylcholinesterase and butyrylcholinesterase inhibitory activities of 7-alkoxyl substituted indolizinoquinoline-5,12-dione derivatives. Archiv der Pharmazie, 345, 175–184.10.1002/ardp.v345.3
  • Zheng, F., Zhan, M., Huang, X., Abdul Hameed, M. D. M., & Zhan, C.-G. (2014). Modeling in vitro inhibition of butyrylcholinesterase using molecular docking, multi-linear regression and artificial neural network approaches. Bioorganic & Medicinal Chemistry, 22, 538–549.10.1016/j.bmc.2013.10.053

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.