217
Views
1
CrossRef citations to date
0
Altmetric
Articles

Mislocalization of BRCA1-complex due to ABRAXAS Arg361Gln mutation

, , , , &
Pages 1291-1301 | Received 10 Mar 2014, Accepted 14 Jul 2014, Published online: 08 Aug 2014

References

  • Aygun, O., Svejstrup, J., & Liu, Y. (2008). A RECQ5-RNA polymerase II association identified by targeted proteomic analysis of human chromatin. Proceedings of the National Academy of Sciences, 105, 8580–8584.10.1073/pnas.0804424105
  • Badgujar, D. C., Sawant, U., Yadav, L., Hosur, M. V., & Varma, A. K. (2013). Preliminary crystallographic studies of BRCA1 BRCT-ABRAXAS complex. Acta Crystallographica Section F Structural Biology and Crystallization Communications, 69, 1401–1404.10.1107/S1744309113030649
  • Bartek, J., & Lukas, J. (2007). DNA damage checkpoints: From initiation to recovery or adaptation. Current Opinion in Cell Biology, 19, 238–245.10.1016/j.ceb.2007.02.009
  • Bartek, J., Bartkova, J., & Lukas, J. (2007). DNA damage signalling guards against activated oncogenes and tumour progression. Oncogene, 26, 7773–7779.10.1038/sj.onc.1210881
  • Bartkova, J., Horejsi, Z., Sehested, M., Nesland, J. M., Rajpert-De Meyts, E., Skakkebaek, N. E., … Bartek, J. (2007). DNA damage response mediators MDC1 and 53BP1: Constitutive activation and aberrant loss in breast and lung cancer, but not in testicular germ cell tumours. Oncogene, 26, 7414–7422.10.1038/sj.onc.1210553
  • Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254.10.1016/0003-2697(76)90527-3
  • Burma, S., Chen, B. P., Murphy, M., Kurimasa, A., & Chen, D. J. (2001). ATM phosphorylates histone H2AX in response to DNA double-strand breaks. Journal of Biological Chemistry, 276, 42462–42467.10.1074/jbc.C100466200
  • Celeste, A., Fernandez-Capetillo, O., Kruhlak, M. J., Pilch, D. R., Staudt, D. W., Lee, A., … Nussenzweig, A. (2003). Histone H2AX phosphorylation is dispensable for the initial recognition of DNA breaks. Nature Cell Biology, 5, 675–679.10.1038/ncb1004
  • Coquelle, N., Green, R., & Glover, J. N. (2011). Impact of BRCA1 BRCT domain missense substitutions on phosphopeptide recognition. Biochemistry, 50, 4579–4589.10.1021/bi2003795
  • Fontana, A., de Laureto, P. P., Spolaore, B., & Frare, E. (2012). Identifying disordered regions in proteins by limited proteolysis. Methods in Molecular Biology, 896, 297–318.
  • Havliš, J., Thomas, H., Šebela, M., & Shevchenko, A. (2003). Fast-response proteomics by accelerated in-gel digestion of proteins. Analytical Chemistry, 75, 1300–1306.10.1021/ac026136s
  • Huen, M. S., Grant, R., Manke, I., Minn, K., Yu, X., Yaffe, M. B., & Chen, J. (2007). RNF8 transduces the DNA-damage signal via histone ubiquitylation and checkpoint protein assembly. Cell, 131, 901–914.10.1016/j.cell.2007.09.041
  • Jimenez, C. R., Huang, L., Qiu, Y., & Burlingame, A. L. (1998). In-gel digestion of proteins for MALDI-MS fingerprint mapping. Current Protocols in Protein Science, Chapter 16, Unit 16.4, 16.4.1–16.4.5.
  • Joerger, M., deJong, D., Burylo, A., Burgers, J. A., Baas, P., Huitema, A. D., … Schellens, J. H. (2011). Tubulin, BRCA1, ERCC1, Abraxas, RAP80 mRNA expression, p53/p21 immunohistochemistry and clinical outcome in patients with advanced non small-cell lung cancer receiving first-line platinum-gemcitabine chemotherapy. Lung Cancer, 74, 310–317.10.1016/j.lungcan.2011.03.016
  • Kim, D. E., Chivian, D., & Baker, D. (2004). Protein structure prediction and analysis using the Robetta server. Nucleic Acids Research, 32, W526–531.10.1093/nar/gkh468
  • Kim, H., Chen, J., & Yu, X. (2007). Ubiquitin-binding protein RAP80 mediates BRCA1-dependent DNA damage response. Science, 316, 1202–1205.10.1126/science.1139621
  • Kim, H., Huang, J., & Chen, J. (2007). CCDC98 is a BRCA1-BRCT domain-binding protein involved in the DNA damage response. Nature Structural and Molecular Biology, 14, 710–715.10.1038/nsmb1277
  • Kolas, N. K., Chapman, J. R., Nakada, S., Ylanko, J., Chahwan, R., Sweeney, F. D., … Durocher, D. (2007). Orchestration of the DNA-damage response by the RNF8 ubiquitin ligase. Science, 318, 1637–1640.10.1126/science.1150034
  • Kolchanov, N. A., Soloviov, V. V., & Zharkikh, A. A. (1983). The effects of mutations, deletions and insertions of single amino acids on the three-dimensional structure of globins. FEBS Letters, 161, 65–70.10.1016/0014-5793(83)80731-5
  • Leaver-Fay, A., Tyka, M., Lewis, S. M., Lange, O. F., Thompson, J., Jacak, R., … Bradley, P. (2011). ROSETTA3: An object-oriented software suite for the simulation and design of macromolecules. Methods Enzymology, 487, 545–574.10.1016/B978-0-12-381270-4.00019-6
  • Liu, Z., Wu, J., & Yu, X. (2007). CCDC98 targets BRCA1 to DNA damage sites. Nature Structural and Molecular Biology, 14, 716–720.10.1038/nsmb1279
  • Lobley, A., Whitmore, L., & Wallace, B. A. (2002). DICHROWEB: An interactive website for the analysis of protein secondary structure from circular dichroism spectra. Bioinformatics, 18, 211–212.10.1093/bioinformatics/18.1.211
  • Lou, Z., Minter-Dykhouse, K., Wu, X., & Chen, J. (2003). MDC1 is coupled to activated CHK2 in mammalian DNA damage response pathways. Nature, 421, 957–961.10.1038/nature01447
  • Mailand, N., Bekker-Jensen, S., Faustrup, H., Melander, F., Bartek, J., Lukas, C., & Lukas, J. (2007). RNF8 ubiquitylates histones at DNA double-strand breaks and promotes assembly of repair proteins. Cell, 131, 887–900.10.1016/j.cell.2007.09.040
  • Muñiz, V. A., Srinivasan, S., Boswell, S. A., Meinhold, D. W., Childs, T., Osuna, R., & Colón, W. (2011). The role of the local environment of engineered Tyr to Trp substitutions for probing the denaturation mechanism of FIS. Protein Science, 20, 302–312.10.1002/pro.561
  • Nikkilä, J., Coleman, K. A., Morrissey, D., Pylkäs, K., Erkko, H., Messick, T. E., … Greenberg, R. A. (2009). Familial breast cancer screening reveals an alteration in the RAP80 UIM domain that impairs DNA damage response function. Oncogene, 28, 1843–1852.10.1038/onc.2009.33
  • Noble, J. E., & Bailey, M. J. (2009). Quantitation of protein. Methods Enzymology, 463, 73–95.10.1016/S0076-6879(09)63008-1
  • Osorio, A., Barroso, A., García, M. J., Martínez-Delgado, B., Urioste, M., & Benítez, J. (2009). Evaluation of the BRCA1 interacting genes RAP80 and CCDC98 in familial breast cancer susceptibility. Breast Cancer Research and Treatment, 113, 371–376.10.1007/s10549-008-9933-4
  • Pace, C. N. (1986). Determination and analysis of urea and guanidine hydrochloride denaturation curves. Methods Enzymology, 131, 266–280.10.1016/0076-6879(86)31045-0
  • Pace, C. N., & Shaw, K. L. (2000). Linear extrapolation method of analyzing solvent denaturation curves. Proteins: Structure, Function, and Genetics, 41, 1–7.10.1002/(ISSN)1097-0134
  • Paull, T. T., Rogakou, E. P., Yamazaki, V., Kirchgessner, C. U., Gellert, M., & Bonner, W. M. (2000). A critical role for histone H2AX in recruitment of repair factors to nuclear foci after DNA damage. Current Biology, 10, 886–895.10.1016/S0960-9822(00)00610-2
  • Pylkäs, K., Erkko, H., Nikkilä, J., Sólyom, S., & Winqvist, R. (2008). Analysis of large deletions in BRCA1, BRCA2 and PALB2 genes in Finnish breast and ovarian cancer families. BMC Cancer, 8, 146.10.1186/1471-2407-8-146
  • Ramachandran, G. N., Ramakrishnan, C., & Sasisekharan, V. (1963). Stereochemistry of polypeptide chain configurations. Journal of Molecular Biology, 7, 95–99.10.1016/S0022-2836(63)80023-6
  • Ramachandran, G. N., & Sasisekharan, V. (1968). Conformation of polypeptides and proteins. Advances in Protein Chemistry, 23, 283–437.10.1016/S0065-3233(08)60402-7
  • Rogakou, E. P., Pilch, D. R., Orr, A. H., Ivanova, V. S., & Bonner, W. M. (1998). DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. Journal of Biological Chemistry, 273, 5858–5868.10.1074/jbc.273.10.5858
  • Rouse, J., & Jackson, S. P. (2002). Interfaces between the detection, signaling, and repair of DNA damage. Science, 297, 547–551.10.1126/science.1074740
  • Sartori, A. A., Lukas, C., Coates, J., Mistrik, M., Fu, S., Bartek, J., … Jackson, S. P. (2007). Human CtIP promotes DNA end resection. Nature, 450, 509–514.10.1038/nature06337
  • Sato, Y., Yoshikawa, A., Mimura, H., Yamashita, M., Yamagata, A., & Fukai, S. (2009). Structural basis for specific recognition of Lys 63-linked polyubiquitin chains by tandem UIMs of RAP80. The EMBO Journal, 28, 2461–2468.10.1038/emboj.2009.160
  • Shiotani, B., & Zou, L. (2009a). ATR signaling at a glance. Journal of Cell Science, 122, 301–304.10.1242/jcs.035105
  • Shiotani, B., & Zou, L. (2009b). Single-stranded DNA orchestrates an ATM-to-ATR switch at DNA breaks. Molecular Cell, 33, 547–558.10.1016/j.molcel.2009.01.024
  • Sobhian, B., Shao, G., Lilli, D. R., Culhane, A. C., Moreau, L. A., Xia, B., … Greenberg, R. A. (2007). RAP80 targets BRCA1 to specific ubiquitin structures at DNA damage sites. Science, 316, 1198–1202.10.1126/science.1139516
  • Solyom, S., Aressy, B., Pylkas, K., Patterson-Fortin, J., Hartikainen, J. M., Kallioniemi, A., … Winqvist, R. (2012). Breast cancer-associated Abraxas mutation disrupts nuclear localization and DNA damage response functions. Science Translational Medicine, 4, 122ra123.
  • Sreerama, N., Venyaminov, S. Y., & Woody, R. W. (2000). Estimation of protein secondary structure from circular dichroism spectra: Inclusion of denatured proteins with native proteins in the analysis. Analytical Biochemistry, 287, 243–251.10.1006/abio.2000.4879
  • Stephens, P. J., McKenna, C. E., McKenna, M. C., Nguyen, H. T., & Devlin, F. (1981). Circular dichroism and magnetic circular dichroism of reduced molybdenum-iron protein of Azotobacter vinelandii nitrogenase. Biochemistry, 20, 2857–2864.10.1021/bi00513a023
  • Vikrant, Kumar, R., Yadav, L. R., Nakhwa, P., Waghmare, S. K., Goyal, P., & Varma, A. K. (2013). Structural and functional implication of RAP80 ΔGlu81 mutation. PLoS One, 8, e72707.10.1371/journal.pone.0072707
  • Vikrant, Nakhwa, P., Badgujar, D. C., Kumar, R., Rathore, K. K., & Varma, A. K. (2013). Structural and functional characterization of the MERIT40 to understand its role in DNA repair. Journal of Biomolecular Structure and Dynamics, 1–16. doi:10.1080/07391102.2013.84347310.1080/07391102.2013.843473
  • Vikrant, Sawant, U. U., & Varma, A. K. (2014). Role of MERIT40 in stabilization of BRCA1 complex: A protein–protein interaction study. Biochemical and Biophysical Research Communications, 446, 1139–1144.
  • Walters, J., Milam, S. L., & Clark, A. C. (2009). Practical approaches to protein folding and assembly: Spectroscopic strategies in thermodynamics and kinetics. Methods in Enzymology, 455, 1–39.10.1016/S0076-6879(08)04201-8
  • Wang, B., & Elledge, S. J. (2007). Ubc13/Rnf8 ubiquitin ligases control foci formation of the Rap80/Abraxas/Brca1/Brcc36 complex in response to DNA damage. Proceedings of the National Academy of Sciences, 104, 20759–20763.10.1073/pnas.0710061104
  • Wang, B., Matsuoka, S., Ballif, B. A., Zhang, D., Smogorzewska, A., Gygi, S. P., & Elledge, S. J. (2007). Abraxas and RAP80 form a BRCA1 protein complex required for the DNA damage response. Science, 316, 1194–1198.10.1126/science.1139476
  • Wang, W., & Kirschner, M. W. (2013). Emi1 preferentially inhibits ubiquitin chain elongation by the anaphase-promoting complex. Nature Cell Biology, 15, 797–806.10.1038/ncb2755
  • Wang, Y., Cortez, D., Yazdi, P., Neff, N., Elledge, S. J., & Qin, J. (2000). BASC, a super complex of BRCA1-associated proteins involved in the recognition and repair of aberrant DNA structures. Genes and Development, 14, 927–939.
  • Whitmore, L., & Wallace, B. A. (2004). DICHROWEB, an online server for protein secondary structure analyses from circular dichroism spectroscopic data. Nucleic Acids Research, 32, W668–W673.10.1093/nar/gkh371
  • Whitmore, L., & Wallace, B. A. (2008). Protein secondary structure analyses from circular dichroism spectroscopy: Methods and reference databases. Biopolymers, 89, 392–400.10.1002/(ISSN)1097-0282
  • Williams, R. S., & Glover, J. N. (2003). Structural consequences of a cancer-causing BRCA1-BRCT missense mutation. Journal of Biological Chemistry, 278, 2630–2635.10.1074/jbc.M210019200
  • Zarrine-Afsar, A., Larson, S. M., & Davidson, A. R. (2005). The family feud: Do proteins with similar structures fold via the same pathway? Current Opinion in Structural Biology, 15, 42–49.10.1016/j.sbi.2005.01.011
  • Zerovnik, E. (2011). Oligomerization preceding amyloid fibril formation: A process in common to intrinsically disordered and globular proteins. Network, 22, 154–161.
  • Zhou, B. B., & Elledge, S. J. (2000). The DNA damage response: Putting checkpoints in perspective. Nature, 408, 433–439.
  • Zhukov, I., Jaroszewski, L., & Bierzynski, A. (2000). Conservative mutation Met8 → Leu affects the folding process and structural stability of squash trypsin inhibitor CMTI-I. Protein Science, 9, 273–279.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.