281
Views
1
CrossRef citations to date
0
Altmetric
Articles

Distinct molecular features facilitating ice-binding mechanisms in hyperactive antifreeze proteins closely related to an Antarctic sea ice bacterium

, , &
Pages 1424-1441 | Received 16 Jun 2014, Accepted 05 Aug 2014, Published online: 05 Sep 2014

References

  • Abby, S. S., Tannier, E., Gouy, M., & Daubin, V. (2010). Detecting lateral gene transfers by statistical reconciliation of phylogenetic forests. BMC Bioinformatics, 11, 324–336.10.1186/1471-2105-11-324
  • Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang, J., Zhang, Z., Miller, W., & Lipman, D. J. (1997). Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Research, 25, 3389–3402.10.1093/nar/25.17.3389
  • Anisimova, M., & Gascuel, O. (2006). Approximate likelihood-ratio test for branches: A fast, accurate, and powerful alternative. Systematic Biology, 55, 539–552.10.1080/10635150600755453
  • Antson, A. A., Smith, D. J., Roper, D. I., Lewis, S., Caves, L. S., Verma, C. S., … Hubbard, R. E. (2001). Understanding the mechanism of ice binding by type III antifreeze proteins. Journal of Molecular Biology, 305, 875–889.10.1006/jmbi.2000.4336
  • Armbrust, E. V. (2009). The life of diatoms in the world’s oceans. Nature, 459, 185–192.10.1038/nature08057
  • Banerjee, R., Roy, A., Ahmad, F., Das, S., & Basak, S. (2012). Evolutionary patterning of hemagglutinin gene sequence of 2009 H1N1 pandemic. Journal of Biomolecular Structure & Dynamics, 29, 733–742.
  • Basak, S., Banerjee, T., Gupta, S. K., & Ghosh, T. C. (2004). Investigation on the causes of codon and amino acid usages variation between thermophilic Aquifex aeolicus and mesophilic Bacillus subtilis. Journal of Biomolecular Structure & Dynamics, 22, 205–214.
  • Basak, S., & Ghosh, T. C. (2006). Temperature adaptation of synonymous codon usage in different functional categories of genes: A comparative study between homologous genes of Methanococcus jannaschii and Methanococcus maripaludis. FEBS Letters, 580, 3895–3899.10.1016/j.febslet.2006.06.014
  • Bayer-Giraldi, M., Uhlig, C., John, U., Mock, T., & Valentin, K. (2010). Antifreeze proteins in polar sea ice diatoms: Diversity and gene expression in the genus Fragilariopsis. Environmental Microbiology, 12, 1041–1052.10.1111/j.1462-2920.2009.02149.x
  • Boc, A., Diallo, A. B., & Makarenkov, V. (2012). T-REX: A web server for inferring, validating and visualizing phylogenetic trees and networks. Nucleic Acids Research, 40, W573–W579.10.1093/nar/gks485
  • Boc, A., & Makarenkov, V. (2011). Towards an accurate identification of mosaic genes and partial horizontal gene transfers. Nucleic Acids Research, 39, e144.10.1093/nar/gkr735
  • Boc, A., Philippe, H., & Makarenkov, V. (2010). Inferring and validating horizontal gene transfer events using bipartition dissimilarity. Systematic Biology, 59, 195–211.10.1093/sysbio/syp103
  • Davies, P. L., & Hew, C. L. (1990). Biochemistry of fish antifreeze proteins. The FASEB Journal, 4, 2460–2468.
  • DeLuca, C. I., Davies, P. L., Ye, Q., & Jia, Z. (1998). The effects of steric mutations on the structure of type III antifreeze protein and its interaction with ice. Journal of Molecular Biology, 275, 515–525.10.1006/jmbi.1997.1482
  • Devries, A. L., & Wohlschlag, D. E. (1969). Freezing resistance in some Antarctic fishes. Science, 163, 1073–1075.10.1126/science.163.3871.1073
  • Duman, J. G. (2001). Antifreeze and ice nucleator proteins in terrestrial arthropods. Annual Review of Physiology, 63, 327–357.10.1146/annurev.physiol.63.1.327
  • Duman, J. G., & Devries, A. L. (1974). Freezing resistance in winter flounder Pseudopleuronectes-Americanus. Nature, 247, 237–238.10.1038/247237a0
  • Duman, J. A., & Olsen, T. M. (1993). Thermal hysteresis protein activity in bacteria, fungi and phylogenetically diverse plants. Cryobiology, 30, 322–328.10.1006/cryo.1993.1031
  • Fletcher, G. L., Goddard, S. V., & Wu, Y. (1999). Antifreeze proteins and their genes: From basic research to business opportunity. Chemtech -Washington DC, 6, 17–29.
  • Fletcher, G. L., Kao, M. H., & Fourney, R. M. (1986). Antifreeze peptides confer freezing resistance to fish. Canadian Journal of Zoology, 64, 1897–1901.10.1139/z86-284
  • Frishman, D., & Argos, P. (1996). Incorporation of non-local interactions in protein secondary structure prediction from the amino acid sequence. Protein Engineering, Design and Selection, 9, 133–142.10.1093/protein/9.2.133
  • Frishman, D., & Argos, P. (1997). Seventy-five percent accuracy in protein secondary structure prediction. Proteins: Structure, Function, and Genetics, 27, 329–335.10.1002/(ISSN)1097-0134
  • Gallagher, K. R., & Sharp, K. A. (2003). Analysis of thermal hysteresis protein hydration using the random network model. Biophysical Chemistry, 105, 195–209.10.1016/S0301-4622(03)00087-5
  • Garnham, C. P., Natarajan, A., Middleton, A. J., Kuiper, M. J., Braslavsky, I., & Davies, P. L. (2010). Compound ice-binding site of an antifreeze protein revealed by mutagenesis and fluorescent tagging. Biochemistry, 49, 9063–9071.10.1021/bi100516e
  • Gasteiger, E., Gattiker, A., Hoogland, C., Ivanyi, I., Appel, R. D., & Bairoch, A. (2003). ExPASy: The proteomics server for in-depth protein knowledge and analysis. Nucleic Acids Research, 31, 3784–3788.10.1093/nar/gkg563
  • Ghoorah, A. W., Devignes, M. D., Smaïl-Tabbone, M., & Ritchie, D. W. (2013). Protein docking using case-based reasoning. Proteins: Structure, Function, and Bioinformatics, 81, 2150–2158.10.1002/prot.v81.12
  • Graether, S. P., Kuiper, M. J., Gagné, S. M., Walker, V. K., Jia, Z., Sykes, B. D., & Davies, P. L. (2000). β-helix structure and ice-binding properties of a hyperactive antifreeze protein from an insect. Nature, 406, 325–328.
  • Graham, L. A., Lougheed, S. C., Ewart, K. V., & Davies, P. L. (2008). Lateral transfer of a lectin-like antifreeze protein gene in fishes. PLoS ONE, 3, e2616.10.1371/journal.pone.0002616
  • Griffith, M., & Yaish, M. W. F. (2004). Antifreeze proteins in overwintering plants: A tale of two activities. Trends in Plant Science, 9, 399–405.10.1016/j.tplants.2004.06.007
  • Guo, S., Garnham, C. P., Whitney, J. C., Graham, L. A., & Davies, P. L. (2012). Re-evaluation of a bacterial antifreeze protein as an adhesin with ice-binding activity. PLoS ONE, 7, e48805.10.1371/journal.pone.0048805
  • Hanada, Y., Nishimiya, Y., Miura, A., Tsuda, S., & Kondo, H. ( in press). Hyperactive antifreeze protein from an Antarctic sea ice bacterium Colwellia sp. has a compound ice-binding site without repetitive sequences. FEBS Journal, 281, 3576–3590.
  • Hoshino, T., Kiriaki, M., Ohgiya, S., Fujiwara, M., Kondo, H., Nishimiya, Y., … Tsuda, S. (2003). Antifreeze proteins from snow mold fungi. Canadian Journal of Botany, 81, 1175–1181.10.1139/b03-116
  • Janech, M. G., Krell, A., Mock, T., Kang, J. S., & Raymond, J. A. (2006). Ice-binding proteins from sea ice diatoms (Bacillariophyceae). Journal of Phycology, 42, 410–416.10.1111/jpy.2006.42.issue-2
  • Jia, Z., & Davies, P. L. (2002). Antifreeze proteins: An unusual receptor-ligand interaction. Trends in Biochemical Sciences, 27, 101–106.10.1016/S0968-0004(01)02028-X
  • Jobb, G., von Haeseler, A., & Strimmer, K. (2004). TREEFINDER: A powerful graphical analysis environment for molecular phylogenetics. BMC Evolutionary Biology, 4, 18–26.10.1186/1471-2148-4-18
  • Johnson, M., Zaretskaya, I., Raytselis, Y., Merezhuk, Y., McGinnis, S., & Madden, T. L. (2008). NCBI BLAST: A better web interface. Nucleic Acids Research, 36, W5–W9.10.1093/nar/gkn201
  • Jorov, A., Zhorov, B. S., & Yang, D. S. (2004). Theoretical study of interaction of winter flounder antifreeze protein with ice. Protein Science, 13, 1524–1537.10.1110/(ISSN)1469-896X
  • Keeling, P. J., & Palmer, J. D. (2008). Horizontal gene transfer in eukaryotic evolution. Nature Reviews Genetics, 9, 605–618.10.1038/nrg2386
  • Kelley, J. L., Aagaard, J. E., MacCoss, M. J., & Swanson, W. J. (2010). Functional diversification and evolution of antifreeze proteins in the antarctic fish. Lycodichthys dearborni. Journal of Molecular Biology, 71, 111–118.
  • Kimura, M. (1983). The neutral theory of molecular evolution. Cambridge: Cambridge University Press.10.1017/CBO9780511623486
  • Knight, C. A., Devries, A. L., & Oolman, L. D. (1984). Fish antifreeze protein and the freezing and recrystallization of ice. Nature, 308, 295–296.10.1038/308295a0
  • Knight, C. A., Hallett, J., & DeVries, A. L. (1988). Solute effects on ice recrystallization: An assessment technique. Cryobiology, 25, 55–60.10.1016/0011-2240(88)90020-X
  • Kondo, H., Hanada, Y., Sugimoto, H., Hoshino, T., Garnham, C. P., Davies, P. L., & Tsuda, S. (2012). Ice-binding site of snow mold fungus antifreeze protein deviates from structural regularity and high conservation. Proceedings of the National Academy of Sciences, 109, 9360–9365.10.1073/pnas.1121607109
  • Krembs, C., Eicken, H., Junge, K., & Deming, J. W. (2002). High concentrations of exopolymeric substances in Arctic winter sea ice: Implications for the polar ocean carbon cycle and cryoprotection of diatoms. Deep-Sea Research Part I: Oceanographic Research Papers, 49, 2163–2181.10.1016/S0967-0637(02)00122-X
  • Kwan, A. H., Fairley, K., Anderberg, P. I., Liew, C. W., Harding, M. M., & Mackay, J. P. (2005). Solution structure of a recombinant type I sculpin antifreeze protein. Biochemistry, 44, 1980–1988.10.1021/bi047782j
  • Kyte, J., & Doolittle, R. F. (1982). A simple method for displaying the hydropathic character of a protein. Journal of Molecular Biology, 157, 105–132.10.1016/0022-2836(82)90515-0
  • Laskowski, R. A., MacArthur, M. W., Moss, D. S., & Thornton, J. M. (1993). PROCHECK – A program to check the stereochemical quality of protein structures. Journal of Applied Crystallography, 26, 283–291.10.1107/S0021889892009944
  • Laskowski, R. A., & Swindells, M. B. (2011). LigPlot+: Multiple ligand-protein interaction diagrams for drug discovery. Journal of Chemical Information and Modeling, 51, 2778–2786.10.1021/ci200227u
  • Lee, J. H., Park, A. K., Do, H., Park, K. S., Moh, S. H., Chi, Y. M., & Kim, H. J. (2012). Structural basis for antifreeze activity of ice-binding protein from arctic yeast. The Journal of Biological Chemistry, 287, 11460–11468.10.1074/jbc.M111.331835
  • Liang, H., Zhou, W., & Landweber, L. F. (2006). SWAKK: A web server for detecting positive selection in proteins using a sliding window substitution rate analysis. Nucleic Acids Research, 34, W382–W384.10.1093/nar/gkl272
  • Liou, Y. C., Tocilj, A., Davies, P. L., & Jia, Z. (2000). Mimicry of ice structure by surface hydroxyls and water of a β-helix antifreeze protein. Nature, 406, 322–324.
  • Liu, Y., Li, Z., Lin, Q., Kosinski, J., Seetharaman, J., Bujnicki, J. M., … Hew, C. L. (2007). Structure and evolutionary origin of Ca2+-dependent herring type II antifreeze protein. PLoS ONE, 2, e548.10.1371/journal.pone.0000548
  • Macindoe, G., Mavridis, L., Venkatraman, V., Devignes, M. D., & Ritchie, D. W. (2010). HexServer: An FFT-based protein docking server powered by graphics processors. Nucleic Acids Research, 38, W445–W449.10.1093/nar/gkq311
  • Marshall, C. B., Daley, M. E., Graham, L. A., Sykes, B. D., & Davies, P. L. (2002). Identification of the ice-binding face of antifreeze protein from Tenebrio molitor. FEBS Letters, 529, 261–267.10.1016/S0014-5793(02)03355-0
  • Mustard, D., & Ritchie, D. W. (2005). Docking essential dynamics eigen structures. Proteins: Structure, Function, and Bioinformatics, 60, 269–274.10.1002/prot.20569
  • Nishimiya, Y., Kondo, H., Takamichi, M., Sugimoto, H., Suzuki, M., Miura, A., & Tsuda, S. (2008). Crystal structure and mutational analysis of Ca2+-independent type II antifreeze protein from longsnout poacher, Brachyopsis rostratus. Journal of Molecular Biology, 382, 734–746.10.1016/j.jmb.2008.07.042
  • Nutt, D. R., & Smith, J. C. (2008). Dual function of the hydration layer around an antifreeze protein revealed by atomistic molecular dynamics simulations. Journal of the American Chemical Society, 130, 13066–13073.10.1021/ja8034027
  • Patel, S. N., & Graether, S. P. (2010). Structures and ice-binding faces of the alanine-rich type I antifreeze proteins. Biochemistry and Cell Biology, 88, 223–229.10.1139/O09-183
  • Peden, J. F. (2000). Analysis of codon usage (Dissertation). University of Nottingham, England.
  • Pentelute, B. L., Gates, Z. P., Tereshko, V., Dashnau, J. L., Vanderkooi, J. M., Kossiakoff, A. A., & Kent, S. B. (2008). X-ray structure of snow flea antifreeze protein determined by racemic crystallization of synthetic protein enantiomers. Journal of the American Chemical Society, 130, 9695–9701.10.1021/ja8013538
  • Raman, S., Vernon, R., Thompson, J., Tyka, M., Sadreyev, R., Pei, J., … Baker, D. (2009). Structure prediction for CASP8 with all-atom refinement using Rosetta. Proteins: Structure, Function, and Bioinformatics, 77, 89–99.10.1002/prot.v77.9s
  • Raymond, J. A., & Devries, A. L. (1977). Adsorption inhibition as a mechanism of freezing resistance in polar fishes. Proceedings of the National Academy of Sciences, 74, 2589–2593.10.1073/pnas.74.6.2589
  • Raymond, J. A., Fritsen, C., & Shen, K. (2007). An ice-binding protein from an Antarctic sea ice bacterium. FEMS Microbiology Ecology, 61, 214–221.10.1111/fem.2007.61.issue-2
  • Ritchie, D. W. (2003). Evaluation of protein docking predictions using Hex 3.1 in CAPRI rounds 1 and 2. Proteins: Structure, Function, and Genetics, 52, 98–106.10.1002/(ISSN)1097-0134
  • Ritchie, D. W. (2005). High order analytic translation matrix elements for real space six-dimensional polar Fourier correlations. Journal of Applied Crystallography, 38, 808–818.10.1107/S002188980502474X
  • Ritchie, D. W., & Kemp, G. J. L. (1999). Fast computation, rotation, and comparison of low resolution spherical harmonic molecular surfaces. Journal of Computational Chemistry, 20, 383–395.
  • Ritchie, D. W., Kozakov, D., & Vajda, S. (2008). Accelerating and focusing protein-protein docking correlations using multi-dimensional rotational FFT generating functions. Bioinformatics, 24, 1865–1873.10.1093/bioinformatics/btn334
  • Ritchie, D. W., & Venkatraman, V. (2010). Ultra-fast FFT protein docking on graphics processors. Bioinformatics, 26, 2398–2405.10.1093/bioinformatics/btq444
  • Sabbia, V., Piovani, R., Naya, H., Rodriguez-Maseda, H., Romero, H., & Musto, H. (2007). Trends of amino acid usage in the proteins from the human genome. Journal of Biomolecular Structure & Dynamics, 25, 55–59.
  • Saitou, N., & Nei, M. (1987). The neighbor-joining method: A new method for reconstructing phylogenetic trees. Molecular Biology and Evolution, 4, 406–425.
  • Scotter, A. J., Marshall, C. B., Graham, L. A., Gilbert, J. A., Garnham, C. P., & Davies, P. L. (2006). The basis for hyperactivity of antifreeze proteins. Cryobiology, 53, 229–239.10.1016/j.cryobiol.2006.06.006
  • Servant, F., Bru, C., Carrere, S., Courcelle, E., Gouzy, J., Peyruc, D., & Kahn, D. (2002). ProDom: Automated clustering of homologous domains. Briefings in Bioinformatics, 3, 246–251.10.1093/bib/3.3.246
  • Sicheri, F., & Yang, D. S. C. (1995). Ice-binding structure and mechanism of an antifreeze protein from winter flounder. Nature, 375, 427–431.10.1038/375427a0
  • Siemer, A. B., & McDermott, A. E. (2008). Solid-state NMR on a type III antifreeze protein in the presence of ice. Journal of the American Chemical Society, 130, 17394–17399.10.1021/ja8047893
  • Sinha, N. K., Roy, A., Das, B., Das, S., & Basak, S. (2009). Evolutionary complexities of swine flu H1N1 gene sequences of 2009. Biochemical and Biophysical Research Communications, 390, 349–351.10.1016/j.bbrc.2009.09.060
  • Sitbon, E., & Pietrokovski, S. (2007). Occurrence of protein structure elements in conserved sequence regions. BMC Structural Biology, 7, 3–17.10.1186/1472-6807-7-3
  • Smolin, N., & Daggett, V. (2008). Formation of ice-like water structure on the surface of an antifreeze protein. The Journal of Physical Chemistry B, 112, 6193–6202.10.1021/jp710546e
  • Sorhannus, U. (2011). Evolution of antifreeze protein genes in the diatom genus Fragilariopsis: Evidence for horizontal gene transfer, gene duplication and episodic diversifying selection. Evolutionary Bioinformatics Online, 7, 279–289.
  • Thomas, M. A., Weston, B., Joseph, M., Wu, W., Nekrutenko, A., & Tonellato, P. J. (2003). Evolutionary dynamics of oncogenes and tumor suppressor genes: Higher intensities of purifying selection than other genes. Molecular Biology and Evolution, 20, 964–968.10.1093/molbev/msg110
  • Thompson, J. D., Higgins, D. G., & Gibson, T. J. (1994). CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research, 22, 4673–4680.10.1093/nar/22.22.4673
  • Wang, M., Zhang, X., Zhao, H., Wang, Q., & Pan, Y. (2010). Comparative analysis of vertebrate PEPT1 and PEPT2 genes. Genetica, 138, 587–599.10.1007/s10709-009-9431-6
  • Wierzbicki, A., Dalal, P., Cheatham, T. E. 3rd, Knickelbein, J. E., Haymet, A. D., & Madura, J. D. (2007). Antifreeze proteins at the ice/water interface: Three calculated discriminating properties for orientation of type I proteins. Biophysical Journal, 93, 1442–1451.10.1529/biophysj.107.105189
  • Xiao, N., Suzuki, K., Nishimiya, Y., Kondo, H., Miura, A., Tsuda, S., & Hoshino, T. (2010). Comparison of functional properties of two fungal antifreeze proteins from Antarctomyces psychrotrophicus and Typhula ishikariensis. FEBS Journal, 277, 394–403.10.1111/j.1742-4658.2009.07490.x
  • Yang, D. S., Hon, W. C., Bubanko, S., Xue, Y., Seetharaman, J., Hew, C. L., & Sicheri, F. (1998). Identification of the ice-binding surface on a type III antifreeze protein with a “flatness function” algorithm. Biophysical Journal, 74, 2142–2151.10.1016/S0006-3495(98)77923-8
  • Ye, Y., & Godzik, A. (2003). Flexible structure alignment by chaining aligned fragment pairs allowing twists. Bioinformatics, 19, 246–255.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.