264
Views
3
CrossRef citations to date
0
Altmetric
Articles

Possible involvement of coaxially stacked double pseudoknots in the regulation of −1 programmed ribosomal frameshifting in RNA viruses

, , &
Pages 1547-1557 | Received 16 Jun 2014, Accepted 15 Aug 2014, Published online: 09 Sep 2014

References

  • Atkins, J. F., Gesteland, R. F., Reid, B. R., & Anderson, C. W. (1979). Normal tRNAs promote ribosomal frameshifting. Cell, 18, 1119–1131.10.1016/0092-8674(79)90225-3
  • Atkins, J. F., Weiss, R. B., & Gesteland, R. F. (1990). Ribosome gymnastics−Degree of difficulty 9.5, style 10.0. Cell, 62, 413–423.10.1016/0092-8674(90)90007-2
  • Baril, M., Dulude, D., Steinberg, S. V., & Brakier-Gingras, L. (2003). The frameshift stimulatory signal of human immunodeficiency virus type 1 group O is a pseudoknot. Journal of Molecular Biology, 331, 571–583.10.1016/S0022-2836(03)00784-8
  • Barry, J. K., & Miller, W. A. (2002). A −1 ribosomal frameshift element that requires base pairing across four kilobases suggests a mechanism of regulating ribosome and replicase traffic on a viral RNA. Proceedings of the National Academy of Sciences, 99, 11133–11138.10.1073/pnas.162223099
  • Brierley, I. (1995). Ribosomal frameshifting viral RNAs. Journal of General Virology, 76, 1885–1892.10.1099/0022-1317-76-8-1885
  • Brierley, I., Pennell, S., & Gilbert, R. J. (2007). Viral RNA pseudoknots: Versatile motifs in gene expression and replication. Nature Reviews Microbiology, 5, 598–610.10.1038/nrmicro1704
  • Brünger, A. T., Adams, P. D., Clore, G. M., DeLano, W. L., Gros, P., GrosseKunstleve, R. W., Jiang, J. S., Kuszewski, J., Nilges, M., Pannu, N. S., Read, R. J., Rice, L. M., Simonson, T., & Warren, G. L. (1998). Crystallography + NMR System: A new software suite for macromolecular structure determination. Acta Crystallographica, D54, 905–921.
  • Chen, G., Chang, K.-Y., Chou, M.-Y., Bustamante, C., & Tinoco, I. (2009). Triplex structures in an RNA pseudoknot enhance mechanical stability and increase efficiency of –1 ribosomal frameshifting. Proceedings of the National Academy of Sciences, 106, 12706–12711.10.1073/pnas.0905046106
  • Cho, C. P., Lin, S. C., Chou, M. Y., Hsu, H. T., & Chang, K. Y. (2013). Regulation of programmed ribosomal frameshifting by co-translational refolding RNA hairpins. PLoS One, 8, e62283.10.1371/journal.pone.0062283
  • den Boon, J. A., Chirnside, E. D., de Vries, A. A., Horzinek, M. C., Spaan, W. J. (1991). Equine arteritis virus is not a togavirus but belongs to the coronaviruslike superfamily. Journal of Virology, 65, 2910–2920.
  • Dinman, J. D., Richter, S., Plant, E. P., Taylor, R. C., Hammell, A. B., & Rana, T. M. (2002). The frameshift signal of HIV-1 involves a potential intramolecular triplex RNA structure. Proceedings of the National Academy of Sciences, 99, 5331–5336.10.1073/pnas.082102199
  • Du, Z., Giedroc, D. P., & Hoffman, D. W. (1996). Structure of the autoregulatory pseudoknot within the gene 32 messenger RNA of bacteriophages T2 and T6: A model for a possible family of structurally related RNA pseudoknots. Biochemistry, 35, 4187–4198.10.1021/bi9527350
  • Du, Z., & Hoffman, D. (1997). An NMR and mutational study of the pseudoknot within the gene 32 mRNA of bacteriophage T2: Insights into a family of structurally related RNA pseudoknots. Nucleic Acids Research, 25, 1130–1135.10.1093/nar/25.6.1130
  • Du, Z., Holland, J. A., Hansen, M. R., Giedroc, D. P., & Hoffman, D. W. (1997). Base-pairings within the RNA pseudoknot associated with the simian retrovirus-1 gag-pro frameshift site. Journal of Molecular Biology, 270, 464–470.10.1006/jmbi.1997.1127
  • Dulude, D., Baril, M., & Brakier-Gingras, L. (2002). Characterization of the frameshift stimulatory signal controlling a programmed −1 ribosomal frameshift in the human immunodeficiency virus type 1. Nucleic Acids Research, 30, 5094–5102.10.1093/nar/gkf657
  • Farabaugh, P. J. (1996). Programmed translational frameshifting. Microbiology Reviews, 60, 103–134.
  • Gesteland, R. F., & Atkins, J. F. (1996). Recoding: Dynamic reprogramming of translation. Annual Review of Biochemistry, 65, 741–768.10.1146/annurev.bi.65.070196.003521
  • Gesteland, R. F., Weiss, R. B., & Atkins, J. F. (1992). Recoding: Reprogrammed genetic decoding. Science, 257, 1640–1641.10.1126/science.1529352
  • Giedroc, D. P., Theimer, C. A., & Nixon, P. L. (2000). Structure, stability and function of RNA pseudoknots involved in stimulating ribosomal frameshifting. Journal of Molecular Biology, 298, 167–185.10.1006/jmbi.2000.3668
  • Green, L., Kim, C.-H., Bustamante, C., & Tinoco, I., Jr. (2008). Characterization of the Mechanical Unfolding of RNA Pseudoknots. Journal of Molecular Biology, 375, 511–528.10.1016/j.jmb.2007.05.058
  • Hansen, T. M., Reihani, S. N. S., Oddershede, L. B., & Sørensen, M. A. (2007). Correlation between mechanical strength of messenger RNA pseudoknots and ribosomal frameshifting. Proceedings of the National Academy of Sciences, 104, 5830–5835.10.1073/pnas.0608668104
  • Houck-Loomis, B., Durney, M. A., Salguero, C., Shankar, N., Nagle, J. M., Goff, S. P., & D’Souza, V. M. (2011). An equilibrium-dependent retroviral mRNA switch regulates translational recoding. Nature, 480, 561–564.
  • Huang, X., Cheng, Q., & Du, Z. (2013). A genome-wide analysis of RNA pseudoknots that stimulate efficient −1 ribosomal frameshifting or readthrough in animal viruses. Biomed Res Int, 2013, 984028.
  • Huang, X., Du, Z., Cheng, J., & Cheng, Q. (2013). PKscan: A program to identify H-type RNA pseudoknots in any RNA sequence with unlimited length. Bioinformation, 9, 440–442.10.6026/bioinformation
  • Huang, X., Yang, Y., Wang, G., Cheng, Q., & Du, Z. (2014). Highly conserved RNA pseudoknots at the gag-pol junction of HIV-1 suggest a novel mechanism of −1 ribosomal frameshifting. RNA, 20, 587–593.10.1261/rna.042457.113
  • Jacks, T., Power, M. D., Masiarz, F. R., Luciw, P. A., Barr, P. J., & Varmus, H. E. (1988). Characterization of ribosomal frameshifting in HIV-1 gag-pol expression. Nature, 331, 280–283.10.1038/331280a0
  • Jacks, T., & Varmus, H. E. (1985). Expression of the Rous sarcoma virus pol gene by ribosomal frameshifting. Science, 230, 1237–1242.10.1126/science.2416054
  • Kim, Y. G., Maas, S., & Rich, A. (2001). Comparative mutational analysis of cis-acting RNA signals for translational frameshifting in HIV-1 and HTLV-2. Nucleic Acids Research, 29, 1125–1131.10.1093/nar/29.5.1125
  • Kontos, H., Napthine, S., & Brierley, I. (2001). Ribosomal Pausing at a Frameshifter RNA Pseudoknot Is Sensitive to Reading Phase but Shows Little Correlation with Frameshift Efficiency. Molecular and Cellular Biology, 21, 8657–8670.10.1128/MCB.21.24.8657-8670.2001
  • Leger, M., Dulude, D., Steinberg, S. V., & Brakier-Gingras, L. (2007). The three transfer RNAs occupying the A, P and E sites on the ribosome are involved in viral programmed −1 ribosomal frameshift. Nucleic Acids Research, 35, 5581–5592.10.1093/nar/gkm578
  • Mazauric, M. H., Licznar, P., Prere, M. F., Canal, I., & Fayet, O. (2008). Apical loop-internal loop RNA pseudoknots: A new type of stimulator of −1 translational frameshifting in bacteria. Journal of Biological Chemistry, 283, 20421–20432.10.1074/jbc.M802829200
  • Michiels, P. J., Versleijen, A. A., Verlaan, P. W., Pleij, C. W., Hilbers, C. W., & Heus, H. A. (2001). Solution structure of the pseudoknot of SRV-1 RNA, involved in ribosomal frameshifting. Journal of Molecular Biology, 310, 1109–1123.10.1006/jmbi.2001.4823
  • Namy, O., Moran, S. J., Stuart, D. I., Gilbert, R. J. C., & Brierley, I. (2006). A mechanical explanation of RNA pseudoknot function in programmed ribosomal frameshifting. Nature, 441, 244–247.10.1038/nature04735
  • Nix, J., Sussman, D., & Wilson, C. (2000). The 1.3 angstrom crystal structure of a biotin-binding pseudoknot and the basis for RNA molecular recognition. Journal of Molecular Biology, 296, 1235–1244.10.1006/jmbi.2000.3539
  • Parkin, N. T., Chamorro, M., & Varmus, H. E. (1992). Human immunodeficiency virus type 1 gag-pol frameshifting is dependent on downstream mRNA secondary structure: Demonstration by expression in vivo. Journal of Virology, 66, 5147–5151.
  • Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., & Ferrin, T. E. (2004). UCSF Chimera–a visualization system for exploratory research and analysis. Journal of Computational Chemistry, 25, 1605–1612.10.1002/(ISSN)1096-987X
  • Plant, E. P., & Dinman, J. D. (2005). Torsional restraint: A new twist on frameshifting pseudoknots. Nucleic Acids Research, 33, 1825–1833.10.1093/nar/gki329
  • Plant, E. P., Perez-Alvarado, G. C., Jacobs, J. L., Mukhopadhyay, B., Hennig, M., & Dinman, J. D. (2005). A three-stemmed mRNA pseudoknot in the SARS coronavirus frameshift signal. PLoS Biology, 3, e172.10.1371/journal.pbio.0030172
  • Pleij, C. W. (1990). Pseudoknots: A new motif in the RNA game. Trends in Biochemical Sciences, 15, 143–147.10.1016/0968-0004(90)90214-V
  • Pleij, C. W., Rietveld, K., & Bosch, L. (1985). A new principle of RNA folding based on pseudoknotting. Nucleic Acids Research, 13, 1717–1731.10.1093/nar/13.5.1717
  • Somogyi, P., Jenner, A. J., Brierley, I., & Inglis, S. C. (1993). Ribosomal pausing during translation of an RNA pseudoknot. Molecular and Cellular Biology, 13, 6931–6940.
  • Takamatsu, N., Watanabe, Y., Meshi, T., & Okada, Y. (1990). Mutational analysis of the pseudoknot region in the 3′ noncoding region of tobacco mosaic virus RNA. J Virol, 64, 3686–3693.
  • Tholstrup, J., Oddershede, L. B., & Sørensen, M. A. (2012). mRNA pseudoknot structures can act as ribosomal roadblocks. Nucleic Acids Research, 40, 303–313.10.1093/nar/gkr686
  • Tu, C., Tzeng, T. H., & Bruenn, J. A. (1992). Ribosomal movement impeded at a pseudoknot required for frameshifting. Proceedings of the National Academy of Sciences, 89, 8636–8640.10.1073/pnas.89.18.8636
  • van Belkum, A., Abrahams, J. P., Pleij, C. W., & Bosch, L. (1985). Five pseudoknots are present at the 204 nucleotides long 3′ noncoding region of tobacco mosaic virus RNA. Nucleic Acids Research, 13, 7673–7686.10.1093/nar/13.21.7673

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.