466
Views
26
CrossRef citations to date
0
Altmetric
Articles

Thermodynamics calculation of protein–ligand interactions by QM/MM polarizable charge parameters

, , , , &
Pages 163-176 | Received 15 Jan 2015, Accepted 12 Feb 2015, Published online: 11 Mar 2015

References

  • Bakan, A., & Bahar, I. (2009). The intrinsic dynamics of enzymes plays a dominant role in determining the structural changes induced upon inhibitor binding. Proceedings of the National Academy of Sciences of the United States of America, 106, 14349–14354.
  • Baugh, L., Le Trong, I., Cerutti, D. S., Gülich, S., Stayton, P. S., Stenkamp, R. E., & Lybrand, T. P. (2010). A distal point mutation in the streptavidin−biotin complex preserves structure but diminishes binding affinity: Experimental evidence of electronic polarization effects? Biochemistry, 49, 4568–4570.
  • Brown, S. P., & Muchmore, S. W. (2006). High-throughput calculation of protein-ligand binding affinities: Modification and adaptation of the MM-PBSA protocol to enterprise grid computing. Journal of Chemical Information and Modeling, 46, 999–1005.
  • Case, D. A., Darden, T. A., Cheatham, T. E., III, Simmerling, C. L., Wang, J., Duke, R. E., … Kollman, P. A. (2008). AMBER10. San Francisco, CA: University of California.
  • Chen, J., Liang, Z., Wang, W., Yi, C., Zhang, S., & Zhang, Q. (2014). Revealing origin of decrease in potency of darunavir and amprenavir against HIV-2 relative to HIV-1 protease by molecular dynamics simulations. Scientific Reports, 4, 6872.
  • Chen, J., Wang, J., Zhu, W., & Li, G. (2013). A computational analysis of binding modes and conformation changes of MDM2 induced by p53 and inhibitor bindings. Journal of Computer-Aided Molecular Design, 27, 965–974.
  • Chen, S. L., Zhao, D. X., & Yang, Z. Z. (2011). An estimation method of binding free energy in terms of ABEEMσπ/MM and continuum electrostatics fused into LIE method. Journal of Computational Chemistry, 32, 338–348.
  • Chen, X., Zhang, D., & Zhang, J. (2004). Fractionation of peptide with disulfide bond for quantum mechanical calculation of interaction energy with molecules. The Journal of Chemical Physics, 120, 839–844.
  • Cho, A. E., Guallar, V., Berne, B. J., & Friesner, R. (2005). Importance of accurate charges in molecular docking: Quantum mechanical/molecular mechanical (QM/MM) approach. Journal of Computational Chemistry, 26, 915–931.
  • Cieplak, P., Cornell, W. D., Bayly, C., & Kollman, P. A. (1995). Application of the multimolecule and multiconformational RESP methodology to biopolymers: Charge derivation for DNA, RNA, and proteins. Journal of Computational Chemistry, 16, 1357–1377.
  • Cieplak, P., Dupradeau, F.-Y., Duan, Y., & Wang, J. (2009). Polarization effects in molecular mechanical force fields. Journal of Physics: Condensed Matter, 21, 333102.
  • Cornell, W. D., Cieplak, P., Bayly, C. I., & Kollmann, P. A. (1993). Application of RESP charges to calculate conformational energies, hydrogen bond energies, and free energies of solvation. Journal of the American Chemical Society, 115, 9620–9631.
  • Davis, M. E., & McCammon, J. A. (1990). Electrostatics in biomolecular structure and dynamics. Chemical Reviews, 90, 509–521.
  • de Courcy, B., Piquemal, J.-P., Garbay, C., & Gresh, N. (2010). Polarizable water molecules in ligand− macromolecule recognition. Impact on the relative affinities of competing pyrrolopyrimidine inhibitors for FAK kinase. Journal of the American Chemical Society, 132, 3312–3320.
  • Donchev, A., Ozrin, V., Subbotin, M., Tarasov, O., & Tarasov, V. (2005). A quantum mechanical polarizable force field for biomolecular interactions. Proceedings of the National Academy of Sciences of the United States of America , 102, 7829–7834.
  • Duan, Y., Wu, C., Chowdhury, S., Lee, M. C., Xiong, G., Zhang, W., … Lee, T. (2003). A point-charge force field for molecular mechanics simulations of proteins based on condensed-phase quantum mechanical calculations. Journal of Computational Chemistry, 24, 1999–2012.
  • Essmann, U., Perera, L., Berkowitz, M. L., Darden, T., Lee, H., & Pedersen, L. G. (1995). A smooth particle mesh Ewald method. The Journal of Chemical Physics, 103, 8577–8593.
  • Frisch, M. J., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., … Fox, D. J. (2009). Gaussian 09 (Revision C.01). Wallingford, CT: Gaussian.
  • Gilson, M. K., & Zhou, H.-X. (2007). Calculation of protein–ligand binding affinities. Annual Review of Biophysics and Biomolecular Structure, 36, 21–42.
  • Gleeson, M. P., & Gleeson, D. (2009). QM/MM calculations in drug discovery: A useful method for studying binding phenomena? Journal of Chemical Information and Modeling, 49, 670–677.
  • Gohlke, H., Kiel, C., & Case, D. A. (2003). Insights into protein-protein binding by binding free energy calculation and free energy decomposition for the Ras-Raf and Ras–RalGDS complexes. Journal of Molecular Biology, 330, 891–913.
  • Gordon, M. S., Fedorov, D. G., Pruitt, S. R., & Slipchenko, L. V. (2012). Fragmentation methods: A route to accurate calculations on large systems. Chemical Reviews, 112, 632–672.
  • Grant, B. J., Gorfe, A. A., & McCammon, J. A. (2010). Large conformational changes in proteins: Signaling and other functions. Current Opinion in Structural Biology, 20, 142–147.
  • Hagmann, W. K. (2008). The many roles for fluorine in medicinal chemistry. Journal of Medicinal Chemistry, 51, 4359–4369.
  • Honig, B., & Nicholls, A. (1995). Classical electrostatics in biology and chemistry. Science, 268, 1144–1149.
  • Hou, T., Guo, S., & Xu, X. (2002). Predictions of binding of a diverse set of ligands to gelatinase-A by a combination of molecular dynamics and continuum solvent models. The Journal of Physical Chemistry B, 106, 5527–5535.
  • Hyre, D. E., Le Trong, I., Merritt, E. A., Eccleston, J. F., Green, N. M., Stenkamp, R. E., & Stayton, P. S. (2006). Cooperative hydrogen bond interactions in the streptavidin–biotin system. Protein Science, 15, 459–467.
  • Hyre, D. E., Stayton, P. S., Trong, I. L., Freitag, S., & Stenkamp, R. E. (2000). Ser45 plays an important role in managing both the equilibrium and transition state energetics of the streptavidin–biotin system. Protein Science, 9, 878–885.
  • Jiao, D., Golubkov, P. A., Darden, T. A., & Ren, P. (2008). Calculation of protein–ligand binding free energy by using a polarizable potential. Proceedings of the National Academy of Sciences of the United States of America , 105, 6290–6295.
  • Jiao, D., Zhang, J., Duke, R. E., Li, G., Schnieders, M. J., & Ren, P. (2009). Trypsin–ligand binding free energies from explicit and implicit solvent simulations with polarizable potential. Journal of Computational Chemistry, 30, 1701–1711.
  • Ji, C., Mei, Y., & Zhang, J. Z. (2008). Developing polarized protein-specific charges for protein dynamics: MD free energy calculation of pKa shifts for Asp26/Asp20 in thioredoxin. Biophysical Journal, 95, 1080–1088.
  • Jorgensen, W. L. (1989). Free energy calculations: A breakthrough for modeling organic chemistry in solution. Accounts of Chemical Research, 22, 184–189.
  • Kamerlin, S. C., Haranczyk, M., & Warshel, A. (2008). Progress in Ab Initio QM/MM free-energy simulations of electrostatic energies in proteins: Accelerated QM/MM studies of pKa, redox reactions and solvation free energies. The Journal of Physical Chemistry B, 113, 1253–1272.
  • Khandelwal, A., Lukacova, V., Comez, D., Kroll, D. M., Raha, S., & Balaz, S. (2005). A combination of docking, QM/MM methods, and MD simulation for binding affinity estimation of metalloprotein ligands. Journal of Medicinal Chemistry, 48, 5437–5447.
  • Khoruzhii, O., Donchev, A. G., Galkin, N., Illarionov, A., Olevanov, M., Ozrin, V., … Tarasov, V. (2008). Application of a polarizable force field to calculations of relative protein–ligand binding affinities. Proceedings of the National Academy of Sciences of the United States of America , 105, 10378–10383.
  • Kollman, P. A., Massova, I., Reyes, C., Kuhn, B., Huo, S., Chong, L., … Wang, W. (2000). Calculating structures and free energies of complex molecules: Combining molecular mechanics and continuum models. Accounts of Chemical Research, 33, 889–897.
  • Kuhn, B., & Kollman, P. A. (2000a). Binding of a diverse set of ligands to avidin and streptavidin: An accurate quantitative prediction of their relative affinities by a combination of molecular mechanics and continuum solvent models. Journal of Medicinal Chemistry, 43, 3786–3791.
  • Kuhn, B., & Kollman, P. A. (2000b). A ligand that is predicted to bind better to avidin than biotin: Insights from computational fluorine scanning. Journal of the American Chemical Society, 122, 3909–3916.
  • Kuiper, G. G., Carlsson, B., Grandien, K., Enmark, E., Häggblad, J., Nilsson, S., & Gustafsson, J.-Å. (1997). Comparison of the ligand binding specificity and transcript tissue distribution of estrogen receptors α and β. Endocrinology, 138, 863–870.
  • Le Trong, I., Freitag, S., Klumb, L. A., Chu, V., Stayton, P. S., & Stenkamp, R. E. (2003). Structural studies of hydrogen bonds in the high-affinity streptavidin–biotin complex: Mutations of amino acids interacting with the ureido oxygen of biotin. Acta Crystallographica Section D Biological Crystallography, 59, 1567–1573.
  • Lin, H., & Truhlar, D. G. (2007). QM/MM: What have we learned, where are we, and where do we go from here? Theoretical Chemistry Accounts, 117, 185–199.
  • Li, Y. L., Mei, Y., Zhang, D. W., Xie, D. Q., & Zhang, J. Z. (2011). Structure and dynamics of a dizinc metalloprotein: Effect of charge transfer and polarization. The Journal of Physical Chemistry B, 115, 10154–10162.
  • Mei, Y., Li, Y. L., Zeng, J., & Zhang, J. Z. (2012). Electrostatic polarization is critical for the strong binding in streptavidin–biotin system. Journal of Computational Chemistry, 33, 1374–1382.
  • Möcklinghoff, S., van Otterlo, W. A., Rose, R., Fuchs, S., Zimmermann, T. J., Dominguez Seoane, M., … Brunsveld, L. (2011). Design and evaluation of fragment-like estrogen receptor tetrahydroisoquinoline ligands from a scaffold-detection approach. Journal of Medicinal Chemistry, 54, 2005–2011.
  • Nilsson, S., Kuiper, G., & Gustafsson, J.-Å. (1998). ERβ a novel estrogen receptor offers the potential for new drug development. Trends in Endocrinology & Metabolism, 9, 387–395.
  • Onufriev, A., Bashford, D., & Case, D. A. (2004). Exploring protein native states and large-scale conformational changes with a modified generalized born model. Proteins: Structure, Function, and Bioinformatics, 55, 383–394.
  • Piquemal, J.-P., & Jordan, K. D. (2012). From quantum mechanics to force fields: New methodologies for the classical simulation of complex systems. Theoretical Chemistry Accounts, 131, 1–2.
  • Ponder, J. W., Wu, C., Ren, P., Pande, V. S., Chodera, J. D., Schnieders, M. J., … DiStasio, R. A., Jr. (2010). Current status of the AMOEBA polarizable force field. The Journal of Physical Chemistry B, 114, 2549–2564.
  • Rappe, A. K., & Goddard, W. A. (1991). Charge equilibration for molecular dynamics simulations. The Journal of Physical Chemistry, 95, 3358–3363.
  • Rocchia, W., Sridharan, S., Nicholls, A., Alexov, E., Chiabrera, A., & Honig, B. (2002). Rapid grid-based construction of the molecular surface and the use of induced surface charge to calculate reaction field energies: Applications to the molecular systems and geometric objects. Journal of Computational Chemistry, 23, 128–137.
  • Ryckaert, J.-P., Ciccotti, G., & Berendsen, H. J. (1977). Numerical integration of the cartesian equations of motion of a system with constraints: Molecular dynamics of n-alkanes. Journal of Computational Physics, 23, 327–341.
  • Sato, M., Grese, T. A., Dodge, J. A., Bryant, H. U., & Turner, C. H. (1999). Emerging therapies for the prevention or treatment of postmenopausal osteoporosis. Journal of Medicinal Chemistry, 42, 1–24.
  • Senn, H. M., & Thiel, W. (2009). QM/MM methods for biomolecular systems. Angewandte Chemie International Edition, 48, 1198–1229.
  • Söderhjelm, P. (2012). Polarization effects in protein–ligand calculations extend farther than the actual induction energy. Theoretical Chemistry Accounts, 131, 1–12.
  • Srinivasan, J., Cheatham, T. E., Cieplak, P., Kollman, P. A., & Case, D. A. (1998). Continuum solvent studies of the stability of DNA, RNA, and phosphoramidate−DNA helices. Journal of the American Chemical Society, 120, 9401–9409.
  • Tong, Y., Mei, Y., Li, Y. L., Ji, C. G., & Zhang, J. Z. (2010). Electrostatic polarization makes a substantial contribution to the free energy of avidin−biotin binding. Journal of the American Chemical Society, 132, 5137–5142.
  • Wallace, A. C., Laskowski, R. A., & Thornton, J. M. (1995). LIGPLOT: A program to generate schematic diagrams of protein–ligand interactions. Protein Engineering, Design and Selection, 8, 127–134.
  • Wang, J., Wolf, R. M., Caldwell, J. W., Kollman, P. A., & Case, D. A. (2004). Development and testing of a general amber force field. Journal of Computational Chemistry, 25, 1157–1174.
  • Wang, W., & Kollman, P. A. (2001). Computational study of protein specificity: The molecular basis of HIV-1 protease drug resistance. Proceedings of the National academy of Sciences of the United States of America, 98, 14937–14942.
  • Weis, A., Katebzadeh, K., Söderhjelm, P., Nilsson, I., & Ryde, U. (2006). Ligand affinities predicted with the MM/PBSA method: Dependence on the simulation method and the force field. Journal of Medicinal Chemistry, 49, 6596–6606.
  • Weiser, J., Shenkin, P. S., & Still, W. C. (1999). Approximate atomic surfaces from linear combinations of pairwise overlaps (LCPO). Journal of Computational Chemistry, 20, 217–230.
  • Wong, C. F., & McCammon, J. A. (1986). Dynamics and design of enzymes and inhibitors. Journal of the American Chemical Society, 108, 3830–3832.
  • Zeng, J., Jia, X., Zhang, J. Z., & Mei, Y. (2013). The F130L mutation in streptavidin reduces its binding affinity to biotin through electronic polarization effect. Journal of Computational Chemistry, 34, 2677–2686.
  • Zhang, D., Chen, X., & Zhang, J. (2003). Molecular caps for full quantum mechanical computation of peptide–water interaction energy. Journal of Computational Chemistry, 24, 1846–1852.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.