377
Views
30
CrossRef citations to date
0
Altmetric
Original Articles

Investigation of flap flexibility of β-secretase using molecular dynamic simulations

, &
Pages 1008-1019 | Received 20 Mar 2015, Accepted 18 Jun 2015, Published online: 28 Jul 2015

References

  • Anandakrishnan, R., Aguilar, B., & Onufriev, A. V. (2012). H++ 3.0: Automating pK prediction and the preparation of biomolecular structures for atomistic molecular modeling and simulations. Nucleic Acids Research, 40, W537–W541.
  • Bandyopadhyay, P., & Meher, B. R. (2006). Drug resistance of HIV-1 protease against JE-2147: I47V mutation investigated by molecular dynamics simulation. Chemical Biology Drug Design, 67, 155–161. 10.1111/jpp.2006.67.issue-2
  • Barman, A., Schürer, S., & Prabhakar, R. (2011). Computational modeling of substrate specificity and catalysis of the β-secretase (BACE1) enzyme. Biochemistry, 50, 4337–4349.10.1021/bi200081h
  • Bhakat, S., Martin, A. J. M., & Soliman, M. E. S. (2014). An integrated molecular dynamics, principal component analysis and residue interaction network approach reveals the impact of M184V mutation on HIV reverse transcriptase resistance to lamivudine. Molecular BioSystems, 10, 2215–2228. 10.1039/C4MB00253A
  • Cai, Y., Kurt Yilmaz, N. K., Myint, W., Ishima, R., & Schiffer, C. A. (2012). Differential flap dynamics in wild-type and a drug resistant variant of HIV-1 protease revealed by molecular dynamics and NMR relaxation. Journal of Chemical Theory and Computation, 8, 3452–3462. 10.1021/ct300076y
  • Chakraborty, S., Kumar, S., & Basu, S. (2011). Conformational transition in the substrate binding domain of beta-secretase exploited by NMA and its implication in inhibitor recognition: BACE1-myricetin a case study. Neurochemistry International, 58, 914–923.10.1016/j.neuint.2011.02.021
  • Cole, S. L., & Vassar, R. (2007). The basic biology of BACE1: A key therapeutic target for Alzheimer’s disease. Current Genomics, 8, 509–530.
  • Cole, S. L., & Vassar, R. (2008). BACE1 structure and function in health and Alzheimer’s disease. Current Alzheimer Research, 5, 100–120.10.2174/156720508783954758
  • Galiano, L., Bonora, M., & Fanucci, G. E. (2007). Interflap distances in HIV-1 protease determined by pulsed EPR measurements. Journal of the American Chemical Society, 129, 11004–11005. 10.1021/ja073684k
  • Ghosh, A. K., Devasamudram, T., Hong, L., DeZutter, C., Xu, X. M., Weerasena, V., … Tang, J. (2005). Structure-based design of cycloamide-urethane-derived novel inhibitors of human brain memapsin 2 (beta-secretase). Bioorganic & Medicinal Chemistry Letters, 15, 15–20.
  • Gong, B., Chen, F., Pan, Y., Arrieta-Cruz, I., Yoshida, Y., Haroutunian, V., & Pasinetti, G. M. (2010). SCFFbx2-E3-ligase-mediated degradation of BACE1 attenuates Alzheimer’s disease amyloidosis and improves synaptic function. Aging Cell, 9, 1018–1031.10.1111/j.1474-9726.2010.00632.x
  • Gorfe, A. A., & Caflisch, A. (2005). Functional plasticity in the substrate binding site of β-secretase. Structure, 13, 1487–1498. 10.1016/j.str.2005.06.015
  • Hampel, H., & Shen, Y. (2009). Beta-site amyloid precursor protein cleaving enzyme 1 (BACE1) as a biological candidate marker of Alzheimer’s disease. Scandinavian Journal of Clinical & Laboratory Investigation, 69, 8–12.
  • Hong, L., Koelsch, G., Lin, X. L., Wu, S. L., Terzyan, S., Ghosh, A. K., … Tang, J. (2000). Structure of the protease domain of memapsin 2 (beta-secretase) complexed with inhibitor. Science, 290, 150–153. 10.1126/science.290.5489.150
  • Hong, L., & Tang, J. (2004). Flap position of free memapsin 2 (β-secretase), a model for flap opening in aspartic protease catalysis†,‡. Biochemistry, 43, 4689–4695.10.1021/bi0498252
  • Hong, L., Turner, R., Koelsch, G., Ghosh, A., & Jordan, T. (2002). Crystal structure of memapsin 2 (beta-secretase) complexed with inhibitor OM00-3: Implications on inhibitor design. Neurobiology of Aging, 23, S108–S108.
  • Hornak, V., Okur, A., Rizzo, R. C., & Simmerling, C. (2006). HIV-1 protease flaps spontaneously open and reclose in molecular dynamics simulations. Proceedings of the National Academy of Sciences, 103, 915–920.10.1073/pnas.0508452103
  • Ishima, R., Freedberg, D. I., Wang, Y. X., Louis, J. M., & Torchia, D. A. (1999). Flap opening and dimer-interface flexibility in the free and inhibitor-bound HIV protease, and their implications for function. Structure with Folding & Design, 7, 1047–1055.
  • Ishima, R., & Louis, J. M. (2008). A diverse view of protein dynamics from NMR studies of HIV-1 protease flaps. Proteins-Structure Function and Bioinformatics, 70, 1408–1415.
  • Kandalepas, P. C., Sadleir, K. R., Eimer, W. A., Zhao, J., Nicholson, D. A., & Vassar, R. (2013). The Alzheimer’s beta-secretase BACE1 localizes to normal presynaptic terminals and to dystrophic presynaptic terminals surrounding amyloid plaques. Acta Neuropathologica, 126, 329–352.10.1007/s00401-013-1152-3
  • Karubiu, W., Bhakat, S., McGillewie, L., & Soliman, M. E. S. (2015). Flap dynamics of plasmepsin proteases: Insight into proposed parameters and molecular dynamics. Molecular BioSystems, 11, 1061–1066.10.1039/C4MB00631C
  • Karubiu, W., Bhakat, S., & Soliman, M. S. (2014). Compensatory role of double mutation N348I/M184V on nevirapine binding landscape: Insight from molecular dynamics simulation. The Protein Journal, 33, 432–446. 10.1007/s10930-014-9576-8
  • Klaver, D. W., Wilce, M. C., Cui, H., Hung, A. C., Gasperini, R., Foa, L., & Small, D. H. (2010). Is BACE1 a suitable therapeutic target for the treatment of Alzheimer’s disease? Current strategies and future directions, Biological Chemistry, 391, 849–859.
  • Luo, X., & Yan, R. (2010). Inhibition of BACE1 for therapeutic use in Alzheimer’s disease. International Journal of Clinical and Experimental Pathology, 3, 618–628.
  • Patel, S., Vuillard, L., Cleasby, A., Murray, C. W., & Yon, J. (2004). Apo and inhibitor complex structures of BACE (beta-secretase). Journal of Molecular Biology, 343, 407–416.10.1016/j.jmb.2004.08.018
  • Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., & Ferrin, T. E. (2004). UCSF Chimera–A visualization system for exploratory research and analysis. Journal of Computational Chemistry, 25, 1605–1612.10.1002/(ISSN)1096-987X
  • Rajapaksha, T. W., Eimer,W. A., Bozza, T. C., & Vassar, R. (2011). The Alzheimer’s beta-secretase enzyme BACE1 is required for accurate axon guidance of olfactory sensory neurons and normal glomerulus formation in the olfactory bulb. Molecular Neurodegeneration, 6.
  • Roe, D. R., & Cheatham, T. E. (2013). PTRAJ and CPPTRAJ: Software for processing and analysis of molecular dynamics trajectory data. Journal of Chemical Theory and Computation, 9, 3084–3095.10.1021/ct400341p
  • Shimizu, H., Tosaki, A., Kaneko, K., Hisano, T., Sakurai, T., & Nukina, N. (2008). Crystal structure of an active form of BACE1, an enzyme responsible for amyloid beta protein production. Molecular and Cellular Biology, 28, 3663–3671.10.1128/MCB.02185-07
  • Stierand, K., & Rarey, M. (2010). PoseView – Molecular interaction patterns at a glance. Journal of Cheminformatics, 2.
  • Turner, R. T., 3rd, Hong, L., Koelsch, G., Ghosh, A. K., & Tang, J. (2005). Structural locations and functional roles of new subsites S5, S6, and S7 in memapsin 2 (beta-secretase). Biochemistry, 44, 105–112.10.1021/bi048106k
  • Vassar, R. (2002). β-secretase (BACE) as a drug target for Alzheimer’s disease. Advanced Drug Delivery Reviews, 54, 1589–1602. 10.1016/S0169-409X(02)00157-6
  • Vassar, R. (2004). BACE1: The β-secretase enzyme in Alzheimer’s disease. Journal of Molecular Neuroscience, 23, 105–114. 10.1385/JMN:23:1-2
  • Xu, Y., Li, M.-J., Greenblatt, H., Chen, W., Paz, A., Dym, O., … Sussman, J. L. (2012). Flexibility of the flap in the active site of BACE1 as revealed by crystal structures and molecular dynamics simulations. Acta Crystallographica Section D-Biological Crystallography, 68, 13–25. 10.1107/S0907444911047251
  • Zhou, W., Cai, F., Li, Y., Yang, G. S., O’Connor, K. D., Holt, R. A., & Song, W. (2010). BACE1 gene promoter single-nucleotide polymorphisms in Alzheimer’s disease. Journal of Molecular Neuroscience, 42, 127–133.10.1007/s12031-010-9381-6

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.