271
Views
8
CrossRef citations to date
0
Altmetric
Original Articles

Streptomycin affinity depends on 13 amino acids forming a loop in homology modelled ribosomal S12 protein (rpsL gene) of Lysinibacillus sphaericus DSLS5 associated with marine sponge (Tedania anhelans)

, , , , &
Pages 1190-1200 | Received 09 Jun 2015, Accepted 13 Jul 2015, Published online: 14 Aug 2015

References

  • Abate, G., Mshana, R. N., & Miorner, H. (1998). Evaluation of a colorimetric assay based on 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) for rapid detection of rifampicin resistance in Mycobacterium tuberculosis. International Journal of Tuberculosis and Lung Disease, 2, 1011–1016.
  • Ahmed, I., Yokota, A., Yamazoe, A., & Fujiwara, T. (2007). Proposal of Lysinibacillus boronitolerans gen. nov. sp. nov., and transfer of Bacillus fusiformis to Lysinibacillus fusiformis comb. nov. and Bacillus sphaericus to Lysinibacillus sphaericus comb. nov. International Journal of Systematic and Evolutionary Microbiology, 57, 1117–1125. doi:10.1099/ijs.0.63867-0
  • Chumpolkulwong, N., Hori-Takemoto, C., Hosaka, T., Inaoka, T., Kigawa, T., Shirouzu, M., … Yokoyama, S. (2004). Effects of Escherichia coli ribosomal protein S12 mutations on cell-free protein synthesis. European Journal of Biochemistry, 271, 1127–1134.10.1111/ejb.2004.271.issue-6
  • Cooksey, R. C., Morlock, G. P., McQueen, A., Glickman, S. E., & Crawford, J. T. (1996). Characterization of streptomycin resistance mechanisms among Mycobacterium tuberculosis isolates from patients in New York City. Antimicrobial Agents and Chemotherapy, 40, 1186–1188.
  • Demirci, H., Murphy, F. t., Murphy, E., Gregory, S. T., Dahlberg, A. E., & Jogl, G. (2013). A structural basis for streptomycin-induced misreading of the genetic code. Nature Communications, 4, 1–5. doi:10.1038/ncomms2346
  • Finken, M., Kirschner, P., Meier, A., Wrede, A., & Böttger, E. C. (1993). Molecular basis of streptomycin resistance in Mycobacterium tuberculosis: Alterations of the ribosomal protein S12 gene and point mutations within a functional 16S ribosomal RNA pseudoknot. Molecular Microbiology, 9, 1239–1246.10.1111/mmi.1993.9.issue-6
  • Glide, v. (2011). Schrodinger (Version 2.3). New York, NY: Schrodinger.
  • Honore, N., & Cole, S. T. (1994). Streptomycin resistance in mycobacteria. Antimicrobial Agents and Chemotherapy, 38, 238–242.10.1128/AAC.38.2.238
  • Kenney, T. J., & Churchward, G. (1994). Cloning and sequence analysis of the rpsL and rpsG genes of Mycobacterium smegmatis and characterization of mutations causing resistance to streptomycin. Journal of Bacteriology, 176, 6153–6156.
  • Kirthi, N., Roy-Chaudhuri, B., Kelley, T., & Culver, G. M. (2006). A novel single amino acid change in small subunit ribosomal protein S5 has profound effects on translational fidelity. RNA, 12, 2080–2091. doi:10.1261/rna.302006
  • Kramer, E. B., & Farabaugh, P. J. (2007). The frequency of translational misreading errors in E. coli is largely determined by tRNA competition. RNA, 13, 87–96. doi: 10.1261/rna.294907
  • Laskowski, R. A., Rullmannn, J. A., MacArthur, M. W., Kaptein, R., & Thornton, J. M. (1996). AQUA and PROCHECK-NMR: Programs for checking the quality of protein structures solved by NMR. Journal of Biomolecular NMR, 8, 477–486.
  • Lee, C. S., Jung, Y. T., Park, S., Oh, T. K., & Yoon, J. H. (2010). Lysinibacillus xylanilyticus sp. nov., a xylan-degrading bacterium isolated from forest humus. International Journal of Systematic and Evolutionary Microbiology, 60, 281–286. doi:10.1099/ijs.0.013367-0
  • LigPrep. (2011). Schrodinger (Version 2.3). New York, NY: Schrodinger.
  • Maguire, B. A. (2009). Inhibition of bacterial ribosome assembly: A suitable drug target? Microbiology and Molecular Biology Reviews, 73, 22–35. doi:10.1128/mmbr.00030-08
  • Marshall, O. J. (2004). PerlPrimer: Cross-platform, graphical primer design for standard, bisulphite and real-time PCR. Bioinformatics, 20, 2471–2472. doi:10.1093/bioinformatics/bth254
  • Matsuoka, M., Takahama, K., & Ogawa, T. (2001). Gene replacement in cyanobacteria mediated by a dominant streptomycin-sensitive rps12 gene that allows selection of mutants free from drug resistance markers. Microbiology, 147, 2077–2087.
  • Miwa, H., Ahmed, I., Yokota, A., & Fujiwara, T. (2009). Lysinibacillus parviboronicapiens sp. nov., a low-boron-containing bacterium isolated from soil. International Journal of Systematic and Evolutionary Microbiology, 59, 1427–1432. doi:10.1099/ijs.0.65455-0
  • Nakada, D., & Kaji, A. (1967). Function and properties of the “native” 30S and 50S ribosomal subunits of Escherichia coli. Proceedings of the National Academy of Sciences USA, 57, 128–135.10.1073/pnas.57.1.128
  • Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., & Ferrin, T. E. (2004). UCSF chimera? A visualization system for exploratory research and analysis. Journal of Computational Chemistry, 25, 1605–1612. doi:10.1002/jcc.20084
  • Pronk, S., Pall, S., Schulz, R., Larsson, P., Bjelkmar, P., Apostolov, R., … Lindahl, E. (2013). GROMACS 4.5: A high-throughput and highly parallel open source molecular simulation toolkit. Bioinformatics, 29, 845–854. doi: 10.1093/bioinformatics/btt05510.1093/bioinformatics/btt055
  • Sander, P., Meier, A., & Böttger, E. C. (1995). rpsL+: A dominant selectable marker for gene replacement in mycobacteria. Molecular Microbiology, 16, 991–1000.10.1111/mmi.1995.16.issue-5
  • Schüttelkopf, A. W., & van Aalten, D. M. (2004). PRODRG: A tool for high-throughput crystallography of protein–ligand complexes. Acta Crystallographica Section D Biological Crystallography, 60, 1355–1363. doi:10.1107/s0907444904011679
  • Sherman, M. I., & Simpson, M. V. (1969). The role of ribosomal conformation in protein biosynthesis: The streptomycin–ribosome interaction. Proceedings of the National Academy of Sciences USA, 64, 1388–1395.10.1073/pnas.64.4.1388
  • Sigrist, C. J., de Castro, E., Cerutti, L., Cuche, B. A., Hulo, N., Bridge, A., … Xenarios, I. (2013). New and continuing developments at PROSITE. Nucleic Acids Research, 41, D344–347. doi: 10.1093/nar/gks1067
  • Springer, B., Kidan, Y. G., Prammananan, T., Ellrott, K., Bottger, E. C., & Sander, P. (2001). Mechanisms of streptomycin resistance: Selection of mutations in the 16S rRNA gene conferring resistance. Antimicrobial Agents and Chemotherapy, 45, 2877–2884. doi:10.1128/aac.45.10.2877-2884.2001
  • Sreevatsan, S., Pan, X., Stockbauer, K. E., Williams, D. L., Kreiswirth, B. N., & Musser, J. M. (1996). Characterization of rpsL and rrs mutations in streptomycin-resistant Mycobacterium tuberculosis isolates from diverse geographic localities. Antimicrobial Agents and Chemotherapy, 40, 1024–1026.
  • Tippmann, H. F. (2004). Analysis for free: Comparing programs for sequence analysis. Briefings in Bioinformatics, 5, 82–87.10.1093/bib/5.1.82
  • Wallner, B., & Elofsson, A. (2003). Can correct protein models be identified? Protein Science, 12, 1073–1086. doi:10.1110/ps.0236803
  • Wang, G., Inaoka, T., Okamoto, S., & Ochi, K. (2009). A novel insertion mutation in streptomyces coelicolor ribosomal S12 protein results in paromomycin resistance and antibiotic overproduction. Antimicrobial Agents and Chemotherapy, 53, 1019–1026. doi:10.1128/aac.00388-08

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.